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Let R be a commutative ring with nonzero identity, and let Z(R) be its set of zero-
divisors. The total graph of R is the (undirected) graph T (Γ(R)) with vertices all ele-
ments of R, and two distinct vertices x and y are adjacent if and only if x + y ∈ Z(R). In
this paper, we study the two (induced) subgraphs Z0(Γ(R)) and T0(Γ(R)) of T (Γ(R)),
with vertices Z(R)\{0} and R\{0}, respectively. We determine when Z0(Γ(R)) and
T0(Γ(R)) are connected and compute their diameter and girth. We also investigate zero-
divisor paths and regular paths in T0(Γ(R)).
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1. Introduction

Let R be a commutative ring with nonzero identity, and let Z(R) be its set of zero-

divisors. In [5], we defined the total graph of R to be the (undirected) graph T (Γ(R))

with all elements of R as vertices, and two distinct vertices x and y are adjacent if

and only if x + y ∈ Z(R). Let Z(Γ(R)) be the (induced) subgraph of T (Γ(R)) with

Z(R) as its set of vertices. Then Z(Γ(R)) is connected with diam(Z(Γ(R))) ≤ 2

since x − 0 − y is a path between any two vertices x and y in Z(Γ(R)). In this

paper, we consider the (induced) subgraphs Z0(Γ(R)) of Z(Γ(R)) and T0(Γ(R)) of

T (Γ(R)) obtained by deleting 0 as a vertex. Specifically, Z0(Γ(R)) (respectively,
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T0(Γ(R))) has vertices Z(R)∗ = Z(R)\{0} (respectively, R∗ = R\{0}), and two

distinct vertices x and y are adjacent if and only if x + y ∈ Z(R). Note that

Z0(Γ(R)) is a finite nonempty graph if and only if R is a finite ring that is not a field

(cf. [6, Theorem 2.2]). In addition to Z(Γ(R)), the (induced) subgraphs Reg(Γ(R))

and Nil(Γ(R)) of T (Γ(R)), with vertices Reg(R) and Nil(R), respectively, were

studied in [5]. The total graph has also been investigated in [1, 2, 14].

Recently, there has been considerable attention in the literature to associating

graphs with algebraic structures (see [13]). Probably the most attention has been

to the zero-divisor graph Γ(R) for a commutative ring R. The set of vertices of

Γ(R) is Z(R)∗, and two distinct vertices x and y are adjacent if and only if xy = 0.

So, in some sense, Z0(Γ(R)) is the additive analog of Γ(R). The concept of a zero-

divisor graph goes back to Beck [7], who let all elements of R be vertices and

was mainly interested in colorings. Our definition was introduced by Anderson and

Livingston in [6], where it was shown, among other things, that Γ(R) is connected

with diam(Γ(R)) ∈ {0, 1, 2, 3} and gr(Γ(R)) ∈ {3, 4,∞}. For a recent survey article

on zero-divisor graphs, see [4].

In the second section, we determine when Z0(Γ(R)) is connected and show that

diam(Z0(Γ(R))) ∈ {0, 1, 2,∞}. In the third section, we show that gr(Z0(Γ(R))) ∈

{3,∞} and explicitly calculate gr(Z0(Γ(R))). In both cases, our answers depend on

whether or not R is reduced and on the number of minimal prime ideals of R. In

the fourth section, we consider the graph T0(Γ(R)), show that diam(T0(Γ(R))) =

diam(T (Γ(R))) when |R| ≥ 4, and determine its girth. In the final section, we define

and investigate zero-divisor paths and regular paths in T0(Γ(R)).

Let Γ be a graph. For vertices x and y of Γ, we define d(x, y) to be the length

of a shortest path from x to y (d(x, x) = 0 and d(x, y) = ∞ if there is no path).

Then the diameter of Γ is diam(Γ) = sup{d(x, y) |x and y are vertices of Γ}. The

girth of Γ, denoted by gr(Γ), is the length of a shortest cycle in Γ (gr(Γ) = ∞ if Γ

contains no cycles).

Throughout, R will be a commutative ring with nonzero identity, Z(R) its set

of zero-divisors, Reg(R) = R\Z(R) its set of regular elements, Idem(R) its set

of idempotent elements, Nil(R) its ideal of nilpotent elements, U(R) its group of

units, and total quotient ring T (R) = RReg(R). For any A ⊆ R, let A∗ = A\{0}.

We say that R is reduced if Nil(R) = {0} and that R is quasilocal if R has a unique

maximal ideal. Let Spec(R) denote the set of prime ideals of R, Max(R) the set

of maximal ideals of R, and Min(R) the set of minimal prime ideals of R. Any

undefined notation or terminology is standard, as in [10, 11], or [8].

We would like to thank the referee for a careful reading of the paper and several

helpful suggestions.

2. The Diameter of Z0(Γ(R))

In this section, we show that Z0(Γ(R)) is connected unless R is a reduced ring

with exactly two minimal prime ideals. Moreover, if Z0(Γ(R)) is connected, then
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diam(Z0(Γ(R))) ≤ 2. The case for Z(Γ(R)) is much simpler since every nonzero

vertex in Z(Γ(R)) is adjacent to 0. If Z(R) is an ideal of R, then Z(Γ(R)) is a

complete graph [5, Theorem 2.1]; and if Z(R) is not an ideal of R, then Z(Γ(R)) is

connected with diam(Z(Γ(R))) = 2 [5, Theorem 3.1].

We begin with a lemma containing several results which we will use throughout

this paper.

Lemma 2.1. Let R be a commutative ring.

(1) Z(R) is a union of prime ideals of R.

(2) P ⊆ Z(R) for every P ∈ Min(R).

(3) Z(R) = ∪{P |P ∈ Min(R)} if R is reduced.

(4) Let x ∈ Z(R) and y ∈ Nil(R). Then x + y ∈ Z(R).

(5) If P1, P2, P3 are distinct minimal prime ideals of R, then P1∩P2∩P3 ( P1∩P2.

Proof. For (1), see [11, Theorem 2 and Remarks]. Parts (2) and (3) may be found

in [10, Theorem 2.1; 10, Corollary 2.4], respectively.

(4) By (1) above, x ∈ P ⊆ Z(R) for some P ∈ Spec(R). Since y ∈ Nil(R) ⊆ P ,

it follows that x + y ∈ P ⊆ Z(R).

(5) If P1 ∩ P2 = P1 ∩ P2 ∩ P3, then P1P2 ⊆ P1 ∩ P2 ⊆ P3. Thus either P1 ⊆ P3

or P2 ⊆ P3, a contradiction.

We first study the case when R is not reduced.

Theorem 2.2. Let R be a non-reduced commutative ring. Then Z0(Γ(R)) is con-

nected with diam(Z0(Γ(R))) ∈ {0, 1, 2}.

Proof. Assume that R is not reduced, and let x, y ∈ Z(R)∗ be distinct vertices of

Z0(Γ(R)). If either x ∈ Nil(R) or y ∈ Nil(R), then x + y ∈ Z(R) by Lemma 2.1(4);

so x− y is an edge in Z0(Γ(R)). Thus we may assume that x /∈ Nil(R), y /∈ Nil(R),

and x + y /∈ Z(R). Let 0 6= w ∈ Nil(R). Then x − w − y is a path in Z0(Γ(R)) by

Lemma 2.1(4), and hence diam(Z0(Γ(R))) ≤ 2.

Note that Z0(Γ(R)) is a complete graph if and only if Z(R) is an ideal of R, and

in this case, diam(Z0(Γ(R))) ≤ 1. Also, Z(R) is a union of prime ideals of R by

Lemma 2.1(1); so Z(R) is an ideal of R if and only if it is a prime ideal of R. Thus

a non-reduced ring R has diam(Z0(Γ(R))) = 0 if and only if |Z(R)∗| = 1, if and

only if R ∼= Z4 or R ∼= Z2[X ]/(X2). Examples of non-reduced rings R with either

diam(Z0(Γ(R))) = 1 or diam(Z0(Γ(R))) = 2 are given in Example 2.9 (also see

Theorem 2.8).

We next consider the case when R is reduced. In this case, R is an integral

domain if and only if |Min(R)| = 1. If R is an integral domain, then Z0(Γ(R)) is

the empty graph; so we assume that |Min(R)| ≥ 2.

Theorem 2.3. Let R be a reduced commutative ring with |Min(R)| = 2. Then

Z0(Γ(R)) is not connected.
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Proof. Suppose that R is reduced and |Min(R)| = 2. Let P and Q be the minimal

prime ideals of R. Then Nil(R) = P ∩Q = {0}, and Z(R) = P ∪Q by Lemma 2.1(3)

since R is reduced. Let 0 6= x ∈ P and 0 6= y ∈ Q. Then x + y 6∈ Z(R); so there

can be no path in Z0(Γ(R)) from any a ∈ P ∗ to any b ∈ Q∗. Thus, Z0(Γ(R)) is not

connected.

Note that the P ∗ and Q∗ in the proof of Theorem 2.3 are the connected com-

ponents of Z0(Γ(R)), and each component is a complete subgraph of Z0(Γ(R)).

However, in this case, Z(R) is not an ideal of R; so Z(Γ(R)) is connected with

diam(Z(Γ(R))) = 2 when R is reduced and |Min(R)| = 2.

Theorem 2.4. Let R be a reduced commutative ring that is not an integral domain.

Then Z0(Γ(R)) is connected if and only if |Min(R)| ≥ 3. Moreover, if Z0(Γ(R)) is

connected, then diam(Z0(Γ(R))) ∈ {1, 2}.

Proof. Suppose that Z0(Γ(R)) is connected and R is reduced, but not an inte-

gral domain. Then |Min(R)| ≥ 3 by Theorem 2.3. Conversely, suppose that R is

reduced and |Min(R)| ≥ 3. Let x, y ∈ Z(R)∗ such that x + y /∈ Z(R) (thus x 6= y).

Then there are minimal prime ideals P1 and P2 of R with x ∈ P1 and y ∈ P2 by

Lemma 2.1(3), and P1 6= P2 since x + y /∈ Z(R). Since |Min(R)| ≥ 3, there is a

Q ∈ Min(R)\{P1, P2}; so P1 ∩ P2 6= {0} by Lemma 2.1(5). Pick 0 6= z ∈ P1 ∩ P2.

Then x − z − y is a path in Z0(Γ(R)) from x to y. Thus Z0(Γ(R)) is connected

with diam(Z0(Γ(R))) ≤ 2, and diam(Z0(Γ(R))) 6= 0 since |Z(R)∗| ≥ 2. Hence

1 ≤ diam(Z0(Γ(R))) ≤ 2.

Corollary 2.5. Let R be a reduced commutative ring with 3 ≤ |Min(R)| < ∞.

Then diam(Z0(Γ(R))) = 2. In particular, diam(Z0(Γ(R))) = 2 when R is a reduced

Noetherian ring with |Min(R)| ≥ 3.

Proof. We have 1 ≤ diam(Z0(Γ(R))) ≤ 2 by Theorem 2.4. Also,

diam(Z0(Γ(R))) ≤ 1 if and only if Z(R) is a prime ideal of R. If R is reduced with

Min(R) finite, then Z(R) is a prime ideal of R if and only if Min(R) = {Z(R)} by

Lemma 2.1(3) and the Prime Avoidance Lemma [11, Theorem 81]. But |Min(R)| ≥

3; so diam(Z0(Γ(R))) = 2. The “in particular” statement is clear since Min(R) is

finite when R is Noetherian [11, Theorem 88].

Corollary 2.6. The following statements are equivalent for a commutative ring R.

(1) Z0(Γ(R)) is not connected.

(2) T (R) is a von Neumann regular ring with exactly two maximal ideals.

(3) T (R) is isomorphic to K1 × K2 for fields K1 and K2.

In particular, if R is a finite ring, then Z0(Γ(R)) is connected unless R ∼=

K1 × K2 for finite fields K1 and K2.

Proof. This follows directly from Theorems 2.3 and 2.4. The “in particular” state-

ment is clear.
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Let R be a reduced commutative ring with |Min(R)| ≥ 3. By Corollary 2.5,

diam(Z0(Γ(R))) = 2 if Min(R) is finite. Note that diam(Z0(Γ(R))) = 1 if and

only if Z(R) is an (prime) ideal of R; so if R is reduced with |Min(R)| ≥ 3 and

diam(Z0(Γ(R))) = 1, then both Min(R) and Z(R) must be infinite. An example

of a reduced quasilocal commutative ring R with nonzero maximal ideal Z(R) is

given in [3, Example 3.13] (cf. [12, Example 5.1]). For this ring R, both Min(R)

and Z(R) are infinite, and Z0(Γ(R)) is connected with diam(Z0(Γ(R))) = 1.

The next two theorems summarize results about diam(Z(Γ(R))) (mentioned

earlier from [5]) and diam(Z0(Γ(R))) when R is a finite commutative ring. Note

that Max(R) = Min(R) when R is a finite commutative ring.

Theorem 2.7. Let R be a finite commutative ring. Then diam(Z(Γ(R))) ∈

{0, 1, 2}. Moreover,

(1) diam(Z(Γ(R))) = 0 if and only if R is a field,

(2) diam(Z(Γ(R))) = 1 if and only if R is local and not a field, and

(3) diam(Z(Γ(R))) = 2 if and only if R is not local.

Theorem 2.8. Let R be a finite commutative ring. Then diam(Z0(Γ(R))) ∈

{0, 1, 2,∞}. Moreover,

(1) Z0(Γ(R)) is the empty graph if and only if R is a field,

(2) diam(Z0(Γ(R))) = 0 if and only if R is isomorphic to Z4 or Z2[X ]/(X2),

(3) diam(Z0(Γ(R))) = 1 if and only if R is a local ring with maximal ideal M and

|M | ≥ 3,

(4) diam(Z0(Γ(R))) = 2 if and only if either |Max(R)| ≥ 3 or R is not reduced

with |Max(R)| = 2, and

(5) diam(Z0(Γ(R))) = ∞ if and only if R is reduced with |Max(R)| = 2.

We next illustrate the above results by computing diam(Z0(Γ(R))) for R = Zn

and R = Zn1
× · · · × Znk

. The details are left to the reader; they follow directly

from Theorem 2.8.

Example 2.9. (a) (diam(Z0(Γ(Zn)))) Let R = Zn with n ≥ 2 and n not

prime (note that Z0(Γ(Zn)) is the empty graph if n is prime). Then

diam(Z0(Γ(Z4))) = 0; diam(Z0(Γ(Zpm))) = 1 if either p = 2 and m ≥ 3,

or p ≥ 3 is prime and m ≥ 2; diam(Z0(Γ(Zpq))) = ∞ for distinct primes p and

q; and diam(Z0(Γ(R))) = 2 otherwise.

(b) (diam(Z0(Γ(Zn1
×· · ·×Znk

)))) Let R = Zn1
×· · ·×Znk

with 2 ≤ n1 ≤ · · · ≤ nk

and k ≥ 2. Then diam(Z0(Γ(Zp × Zq))) = ∞ for primes p ≤ q; otherwise

diam(Z0(Γ(R))) = 2.

3. The Girth of Z0(Γ(R))

In this section, we show that gr(Z0(Γ(R))) ∈ {3,∞}. If Z(R) is an ideal of R,

then it is clear that gr(Z0(Γ(R))) = ∞ if |Z(R)| ≤ 3 and gr(Z0(Γ(R))) = 3 if
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|Z(R)| ≥ 4. Just as for the diameter in Sec. 2, our answer depends on the number

of minimal prime ideals of R. If Z(R) is an ideal of R, then, gr(Z(Γ(R))) = ∞ if

|Z(R)| ≤ 2 and gr(Z(Γ(R))) = 3 if |Z(R)| ≥ 3. If Z(R) is not an ideal of R, then

gr(Z(Γ(Z2 × Z2))) = ∞ and gr(Z(Γ(R))) = 3 if R 6∼= Z2 × Z2 [5, Theorem 3.14(1)]

(also, see Theorem 3.3(1)).

We first handle the case when R is not reduced.

Theorem 3.1. Let R be a non-reduced commutative ring. Then gr(Z0(Γ(R))) = ∞

if and only if R has a unique nonzero minimal prime ideal P with P = Nil(R) =

Z(R) and |P | ≤ 3 (i.e. gr(Z0(Γ(R))) = ∞ if and only if Nil(R) = Z(R) and

|Nil(R)| ≤ 3). Otherwise, gr(Z0(Γ(R))) = 3. Moreover, gr(Z0(Γ(R))) = ∞ if

|Z(R)| ≤ 3 and gr(Z0(Γ(R))) = 3 if |Z(R)| ≥ 4.

Proof. Suppose that |Min(R)| ≥ 2. Let P and Q be distinct minimal prime ideals

of R. Then {0} ( P ∩Q ( P ; so |P ∩Q| ≥ 2, and thus |P | ≥ 4. Let x, y, z ∈ P ∗ be

distinct. Then x − y − z − x is a triangle in Z0(Γ(R)); so gr(Z0(Γ(R))) = 3. Now

suppose that Min(R) = {P}, and thus Nil(R) = P . If Nil(R) ( Z(R), then there is a

prime ideal Q of R with {0} 6= Nil(R) = P ( Q ⊆ Z(R) by Lemma 2.1(1). As above,

|Q| ≥ 4; so again gr(Z0(Γ(R))) = 3. If Nil(R) = Z(R), then gr(Z0(Γ(R))) = 3 if

|Nil(R)| ≥ 4 and gr(Z0(Γ(R))) = ∞ if |Nil(R)| ≤ 3. The “moreover” statement

follows directly from the above arguments.

We next consider the case when R is reduced.

Theorem 3.2. Let R be a reduced commutative ring that is not an integral domain.

Then gr(Z0(Γ(R))) = ∞ if and only if Min(R) = {P, Q} with max{|P |, |Q|} ≤ 3.

Otherwise, gr(Z0(Γ(R))) = 3. In particular, gr(Z0(Γ(R))) = 3 when |Min(R)| ≥ 3.

Proof. Suppose that P1, P2, P3 are distinct minimal prime ideals of R. Then {0} ⊆

P1 ∩P2 ∩P3 ( P1 ∩P2 ( P1 by Lemma 2.1(5); so |P1 ∩P2| ≥ 2, and thus |P1| ≥ 4.

Let x, y, z ∈ P ∗

1 be distinct. Then x − y − z − x is a triangle in Z0(Γ(R)); so

gr(Z0(Γ(R))) = 3 if |Min(R)| ≥ 3. Thus we may assume that |Min(R)| = 2; say

Min(R) = {P, Q}. As in the proof of Theorem 2.3, P ∩Q = {0} and Z(R) = P ∪Q,

and hence no x ∈ P ∗ and y ∈ Q∗ are adjacent in Z0(Γ(R)). Thus gr(Z0(Γ(R))) = 3

if and only if either |P | ≥ 4 or |Q| ≥ 4. Otherwise, gr(Z0(Γ(R))) = ∞. The “in

particular” statement is clear.

Using earlier mentioned results from [5] and Theorems 3.1 and 3.2, we can give

explicit calculations for gr(Z0(Γ(R))) and gr(Z(Γ(R))).

Theorem 3.3. Let R be a commutative ring. Then gr(Z(Γ(R))) ∈ {3,∞} and

gr(Z0(Γ(R))) ∈ {3,∞}.

(1) gr(Z(Γ(R))) = ∞ if and only if either R is an integral domain or R is isomor-

phic to Z4, Z2[X ]/(X2), or Z2 × Z2. Otherwise, gr(Z(Γ(R))) = 3.
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(2) Z0(Γ(R)) is the empty graph if and only if R is an integral domain. For R

not an integral domain, gr(Z0(Γ(R))) = ∞ if and only if R is isomorphic

to Z4, Z2[X ]/(X2), Z2 × Z2, Z6, Z9, Z3 × Z3, or Z3[X ]/(X2). Otherwise,

gr(Z0(Γ(R))) = 3.

Proof. (1) First, suppose that Z(R) is an ideal of R. If |Z(R)| = 1, then R is an

integral domain; so |Z(Γ(R))| = 1, and thus gr(Z(Γ(R))) = ∞. If |Z(R)| = 2,

then R is isomorphic to Z4 or Z2[X ]/(X2); so |Z(Γ(R))| = 2, and hence

gr(Z(Γ(R))) = ∞. If |Z(R)| ≥ 3, then gr(Z(Γ(R))) = 3 since x − 0 − y − x

is a triangle in Z(Γ(R)) for distinct x, y ∈ Z(R)∗. If Z(R) is not an ideal

of R, then gr(Z(Γ(Z2 × Z2))) = ∞ and gr(Z(Γ(R))) = 3 if R 6∼= Z2 × Z2

[5, Theorem 3.14(1)]. Part (1) now follows directly from the above two cases.

(2) First, suppose that R is not reduced. Then by Theorem 3.1, gr(Z0(Γ(R))) = ∞

if and only if {0} 6= Nil(R) = Z(R) and |Z(R)| ≤ 3, and gr(Z0(Γ(R))) = 3

otherwise. So in this case, gr(Z0(Γ(R))) = ∞ if and only if R is isomorphic to

Z4, Z2[X ]/(X2), Z9, or Z3[X ]/(X2).

Next, suppose that R is reduced and not an integral domain. Then

by Theorem 3.2, gr(Z0(Γ(R))) = ∞ if and only if Min(R)= {P, Q} with

max{|P |, |Q|} ≤ 3, and gr(Z0(Γ(R))) = 3 otherwise. In the first case, we have

Z(R) = P ∪ Q and P ∩ Q = {0} with max{|P |, |Q|} ≤ 3. In this case, R is a

reduced finite ring with two maximal ideals, each with two or three elements.

Thus gr(Z0(Γ(R))) = ∞ if and only if R is isomorphic to Z2×Z2, Z2×Z3
∼= Z6,

or Z3 × Z3. Part (2) now follows directly from the above two cases.

We end this section with the analog of Example 2.9 for gr(Z0(Γ(R))) when

R = Zn or R = Zn1
× · · · × Znk

. The details are left to the reader; they follow

directly from Theorem 3.3(2).

Example 3.4. (a) (gr(Z0(Γ(Zn)))) Let R = Zn with n ≥ 2 and n not prime (note

that Z0(Γ(Zn)) is the empty graph if n is prime). Then gr(Z0(Γ(R))) = ∞ if

either n = 4, n = 6, or n = 9. Otherwise, gr(Z0(Γ(R))) = 3.

(b) (gr(Z0(Γ(Zn1
× · · · × Znk

)))) Let R = Zn1
× · · · × Znk

with 2 ≤ n1 ≤ · · · ≤ nk

and k ≥ 2. Then gr(Z0(Γ(R))) = ∞ if either n1 = n2 = 2, n1 = 2 and n2 = 3,

or n1 = n2 = 3. Otherwise, gr(Z0(Γ(R))) = 3.

4. T0(Γ(R))

In this section, we study the graph T0(Γ(R)). We show that diam(T0(Γ(R))) =

diam(T (Γ(R))) if and only if |R| ≥ 4. (Note that |R| ≤ 3 if and only if R is

isomorphic to Z2 or Z3.) We then explicitly compute gr(T0(Γ(R))). For x, y ∈ R∗,

let dT (x, y) (respectively, dT0
(x, y)) denote the distance from x to y in T (Γ(R))

(respectively, T0(Γ(R))). We first show that these two distances are always equal.
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Lemma 4.1. Let R be a commutative ring and x, y ∈ R∗. Then x, y are connected

by a path in T0(Γ(R)) if and only if x, y are connected by a path in T (Γ(R)).

Moreover, dT0
(x, y) = dT (x, y) and diam(T0(Γ(R))) ≤ diam(T (Γ(R))).

Proof. If x, y are connected by a path in T0(Γ(R)), then clearly x, y are connected

by a path in T (Γ(R)). Conversely, assume that x − a1 − · · · − an − y is a shortest

path from x to y in T (Γ(R)), and assume that ai = 0 for some i with 1 ≤ i ≤ n.

Then ai−1, ai+1 ∈ Z(R)∗ and ai−1 + ai+1 ∈ Reg(R) (let a0 = x and an+1 = y). Let

zi = −(ai−1 + ai+1). Then x− a1 − · · ·− ai−1 − zi − ai+1 − · · ·− an − y is a shortest

path from x to y in T0(Γ(R)), and hence x, y are connected by a path in T0(Γ(R)).

The “moreover” statement is clear.

Recall that T (Γ(R)) is not connected if Z(R) is an ideal of R [5, Theorem 2.1].

If Z(R) is not an ideal of R, then T (Γ(R)) is connected if and only if (Z(R)) = R

(i.e. R is generated by Z(R) as an ideal) [5, Theorem 3.3]. Moreover, in this case,

diam(T (Γ(R))) = n, where n ≥ 2 is the least positive integer such that R =

(z1, . . . , zn) for some z1, . . . , zn ∈ Z(R) [5, Theorem 3.4]. Also, diam(T (Γ(R))) =

dT (0, 1) [5, Corollary 3.5(1)]. Thus T (Γ(R)) is connected if and only if

diam(T (Γ(R))) < ∞.

Theorem 4.2. Let R be a commutative ring.

(1) If |R| ≤ 3, then T0(Γ(R)) is connected, but T (Γ(R)) is not connected.

(2) If |R| ≥ 4, then T0(Γ(R)) is connected if and only if T (Γ(R)) is connected.

Proof. (1) If |R| ≤ 3, then R ∼= Z2 or R ∼= Z3. It is easily verified that (1) holds

for these two rings.

(2) If T (Γ(R)) is connected, then T0(Γ(R)) is also connected by Lemma 4.1. Con-

versely, assume that T0(Γ(R)) is connected and |R| ≥ 4. Then R is not an

integral domain; so there is an x ∈ Z(R)∗. Let y ∈ R∗. Then there is a path

from x to y in T0(Γ(R)). But x is adjacent to 0 in T (Γ(R)); so there is a path

from 0 to y in T (Γ(R)). Thus T (Γ(R)) is also connected.

Corollary 4.3. Let R be a commutative ring. Then T0(Γ(R)) is connected if and

only if either (Z(R)) = R or R is isomorphic to Z2 or Z3. Moreover, T0(Γ(R)) is

connected if and only if diam(T0(Γ(R))) < ∞.

Proof. This follows directly from Theorem 4.2 and the discussion preceding

Theorem 4.2.

In general, there is no relationship between diam(Z0(Γ(R))) and diam(T0

(Γ(R))). By Examples 2.9 and 4.6, we have diam(Z0(Γ(Z8))) = 1 < ∞ =

diam(T0(Γ(Z8))), diam(T0(Γ(Z6))) = 2 < ∞ = diam(Z0(Γ(Z6))), and diam(Z0(Γ

(Z12))) = 2 = diam(T0(Γ(Z12))).
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Our next goal is to show that diam(T0(Γ(R))) = diam(T (Γ(R))) when |R| ≥ 4.

However, we will need the following lemma.

Lemma 4.4. Let R be a commutative ring with diam(T (Γ(R))) = n < ∞, and let

s ∈ R∗ and u ∈ U(R) be distinct.

(1) If s ∈ Z(R)∗, then dT0
(u, s) = dT (u, s) ∈ {n − 1, n}.

(2) If n is an even integer, then dT0
(u − s, s) = m = dT (u − s, s) for some even

integer m ≤ n.

(3) If n is an odd integer and u 6= −s, then dT0
(u + s, s) = m = dT (u + s, s) for

some odd integer m ≤ n.

(4) If n is an even integer, then dT0
(u−s, s) = n = dT (u−s, s) for every s ∈ Z(R)∗.

(5) If n is an odd integer, then dT0
(u+s, s) = n = dT (u+s, s) for every s ∈ Z(R)∗.

Proof. Observe that n ≥ 2 by [5, Theorem 3.4].

(1) Let s − a1 − · · · − am−1 − u be a shortest path from s to u in T0(Γ(R)) of

length m. Then m = dT0
(x, y) = dT (x, y) ≤ n by Lemma 4.1. Since u ∈

(s, s+a1, a1 +a2, . . . , am−1 +u), we have R = (s, s+a1, a1 +a2, . . . , am−1 +u).

Since R is generated by m + 1 elements of Z(R) and diam(T (Γ(R))) = n, we

have n ≤ m +1 by [5, Theorem 3.4]. Thus m ≤ n ≤ m + 1; so either m = n− 1

or m = n.

(2) Let n be an even integer. If u − s = s, then dT0
(u − s, s) = 0. Thus we may

assume that u−s 6= s, and hence dT0
(u−s, s) ≥ 2 since (u−s)+s = u 6∈ Z(R).

Let m ≥ 2, and let s − a1 − · · · − am−1 − (u − s) be a shortest path from s to

u− s in T0(Γ(R)) of length m. Thus m ≤ n. Suppose that m is an odd integer.

Since u = (s+a1)− (a1 +a2)+ · · ·− (am−2 +am−1)+(am−1 +(u−s)), we have

R = (s + a1, a1 + a2, a2 + a3, . . . , am−1 + (u − s)) is generated by m elements

of Z(R). Hence n ≤ m by [5, Theorem 3.4]; so m = n, which is a contradiction

since n is an even integer. Thus dT0
(u− s, s) = m = dT (u− s, s) for some even

integer m ≤ n.

(3) Let n be an odd integer and s 6= −u; so u 6= u + s ∈ R∗. If u + 2s ∈ Z(R),

then dT0
(u + s, s) = 1. Thus we may assume that u + 2s /∈ Z(R), and hence

dT0
(u+s, s) ≥ 2. Let m ≥ 2, and let s − a1−· · ·−am−1− (u + s) be a shortest

path from s to u + s in T0(Γ(R)) of length m. Thus m ≤ n. Suppose that m is

an even integer. Since −u = (s+a1)−(a1 +a2)+ · · ·+(am−2+am−1)−(am−1 +

(u + s)), we have R = (s + a1, a1 + a2, a2 + a3, . . . , am−1 + (u + s)) is generated

by m elements of Z(R). Hence n ≤ m by [5, Theorem 3.4]; so m = n, which is

a contradiction since n is an odd integer. Thus dT0
(u+ s, s) = m = dT (u+ s, s)

for some odd integer m ≤ n.

(4) Let n be an even integer and s ∈ Z(R)∗. Then u − s, s ∈ R∗ are distinct and

(u− s)+ s = u /∈ Z(R); so m = dT0
(u− s, s) is an even positive integer by part

(2) above. Let s− a1 − · · · − am−1 − (u− s) be a shortest path from s to u− s

in T0(Γ(R)) of length m. If m = n, then we are done; so assume that m < n.
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Since u = 2s− (s + a1) + (a1 + a2) − · · · − (am−2 + am−1) + (am−1 + (u − s)),

we have R = (s, s + a1, a1 + a2, a2 + a3, . . . , am−1 + (u − s)) is generated by

m+1 elements of Z(R). Hence n ≤ m+1 by [5, Theorem 3.4]. Thus n = m+1,

which is a contradiction since n is an even integer and m + 1 is an odd integer.

Thus dT0
(u − s, s) = n = dT (u − s, s).

(5) Let n be an odd integer and s ∈ Z(R)∗. Thus u + s, s ∈ R∗ are distinct

and 2s + u /∈ Z(R) (for if 2s + u ∈ Z(R), then R = (s, 2s + u), and hence

diam(T (Γ(R))) = 2 by [5, Theorem 3.4]); so m = dT0
(u + s, s) ≥ 3 is an odd

integer by part (3) above. Let s−a1−· · ·−am−1−(u+s) be a shortest path from

s to u + s in T0(Γ(R)) of length m. If m = n, then we are done; so assume that

m < n. Since −u = 2s−(s+a1)+(a1+a2)−· · ·+(am−2+am−1)−(am−1+(u+s)),

we have R = (s, s + a1, a1 + a2, a2 + a3, . . . , am−1 + (u − s)) is generated by

m+1 elements of Z(R). Hence n ≤ m+1 by [5, Theorem 3.4]. Thus n = m+1,

which is a contradiction since n is an odd integer and m + 1 is an even integer.

Hence dT0
(u + s, s) = n = dT (u + s, s).

Theorem 4.5. Let R be a commutative ring.

(1) diam(T0(Γ(Z2))) = 0 < ∞ = diam(T (Γ(Z2))).

(2) diam(T0(Γ(Z3))) = 1 < ∞ = diam(T (Γ(Z3))).

(3) If |R| ≥ 4, then diam(T0(Γ(R))) = diam(T (Γ(R))).

Proof. Parts (1) and (2) are easily verified; so we may assume that |R| ≥ 4.

Then T (Γ(R)) is connected if and only if T0(Γ(R)) is connected by Theorem 4.2,

and diam(T0(Γ(R))) ≤ diam(T (Γ(R))) by Lemma 4.1. Thus diam(T (Γ(R))) =

∞ if and only if diam(T0(Γ(R))) = ∞ by Corollary 4.3 and the remarks before

Theorem 4.2. Hence we may assume that diam(T (Γ(R))) = n < ∞, and thus R is

not an integral domain. Let z ∈ Z(R)∗. If n is an odd integer, then dT (1 + z, z) =

n = dT0
(1 + z, z) by Lemma 4.4(5), and hence diam(T (Γ(R))) = diam(T0(Γ(R))) =

n by Lemma 4.1. If n is an even integer, then dT (1 − z, z) = dT0
(1 − z, z) = n by

Lemma 4.4(4), and thus diam(T (Γ(R))) = diam(T0(Γ((R))) = n by Lemma 4.1.

Hence diam(T0(Γ(R))) = diam(T (Γ(R))) for all rings R with |R| ≥ 4.

The next example follows directly from Theorem 4.5 and the discussion preced-

ing Theorem 4.2.

Example 4.6. (a) (diam(T0(Γ(Zn)))) We have observed that diam(T0(Γ(Z2))) =

0, diam(T0(Γ(Z3))) = 1, and diam(T0(Γ(Zp))) = ∞ when p ≥ 5 is prime. Let

n = pm1

1 · · · pmk

k for distinct primes pi and mi ≥ 1. If k = 1 and m1 ≥ 2, then

diam(T0(Γ(R))) = ∞. If k ≥ 2, then diam(T0(Γ(R))) = 2.

(b) (diam(T0(Γ(Zn1
×· · ·×Znk

)))) Let R = Zn1
×· · ·×Znk

with 2 ≤ n1 ≤ · · · ≤ nk

and k ≥ 2. Then diam(T0(Γ(R))) = 2.

The girth of T0(Γ(R)) is also easily determined. Recall from [5, Theorem 2.6(3)]

that if Z(R) is an ideal of R, then gr(T (Γ(R))) = 3 if and only if |Z(R)| ≥ 3,
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gr(T (Γ(R))) = 4 if and only if 2 /∈ Z(R) and |Z(R)| = 2, and gr(T (Γ(R))) = ∞

otherwise. (Note that if |Z(R)| = 2, then R is isomorphic to Z4 or Z2[X ]/(X2), and

2 ∈ Z(R) in either case. So, “the gr(T (Γ(R))) = 4 case” cannot actually happen

when Z(R) is an ideal of R.) If Z(R) is not an ideal of R, then gr(T (Γ(R))) = 4 if

and only if R ∼= Z2 × Z2, and gr(T (Γ(R))) = 3 otherwise [5, Theorem 3.14]. Thus

gr(T (Γ(R))) ∈ {3, 4,∞}. Note that gr(T (Γ(R))) ≤ gr(T0(Γ(R))) since T0(Γ(R)) is

a (induced) subgraph of T (Γ(R)).

We next give explicit calculations for gr(T (Γ(R))) and gr(T0(Γ(R))). These cal-

culations show that gr(T0(Γ(R))) = gr(T (Γ(R))) unless R is isomorphic to Z2×Z2,

Z9, or Z3[X ]/(X2).

Theorem 4.7. Let R be a commutative ring. Then gr(T (Γ(R))) ∈ {3, 4,∞}.

Moreover,

(1) gr(T (Γ(R))) = ∞ if and only if either R is an integral domain or R is isomor-

phic to Z4 or Z2[X ]/(X2),

(2) gr(T (Γ(R))) = 4 if and only if R is isomorphic to Z2 × Z2, and

(3) gr(T (Γ(R))) = 3 otherwise.

Proof. By [5, Theorem 2.6(3); 5, Theorem 3.14], gr(T (Γ(R))) = 3 unless R ∼=
Z2 × Z2 or |Z(R)| ≤ 2. If R ∼= Z2 × Z2, then gr(T (Γ(R))) = 4. If |Z(R)| ≤ 2, then

R is either an integral domain or isomorphic to Z4 or Z2[X ]/(X2). In each of these

cases, gr(T (Γ(R))) = ∞. The result now follows.

Theorem 4.8. Let R be a commutative ring. Then gr(T0(Γ(R))) ∈ {3, 4,∞}.

Moreover,

(1) gr(T0(Γ(R))) = ∞ if and only if either R is an integral domain or R is iso-

morphic to Z4, Z2[X ]/(X2), or Z2 × Z2,

(2) gr(T0(Γ(R))) = 4 if and only if R is isomorphic to Z9 or Z3[X ]/(X2), and

(3) gr(T0(Γ(R))) = 3 otherwise.

Proof. Note that gr(T0(Γ(R))) ≤ gr(Z0(Γ(R))) since Z0(Γ(R)) is a (induced) sub-

graph of T0(Γ(R)). Thus Theorem 4.8 follows directly from Theorem 3.3(2) since

one can easily verify that the rings Z4, Z2[X ]/(X2), Z2 ×Z2, Z6, Z9, Z3 ×Z3, and

Z3[X ]/(X2) have gr(T0(Γ(R))) equal to ∞, ∞, ∞, 3, 4, 3, and 4, respectively.

We close this section with the analog of Example 2.9 for gr(T0(Γ(R))). It follows

directly from Theorem 4.8.

Example 4.9. (a) (gr(T0(Γ(Zn)))) Let R = Zn with n ≥ 2. Then gr(T0(Γ(Zn))) =

∞ if n is prime, gr(T0(Γ(Z4))) = ∞, gr(T0(Γ(Z9))) = 4, and gr(T0(Γ(R))) = 3

otherwise.

(b) (gr(T0(Γ(Zn1
× · · · × Znk

)))) Let R = Zn1
× · · · × Znk

with 2 ≤ n1 ≤ · · · ≤ nk

and k ≥ 2. Then gr(T0(Γ(Z2 × Z2))) = ∞, and gr(T0(Γ(R))) = 3 otherwise.
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5. Zero-Divisor Paths and Regular Paths in T0(Γ(R))

Let R be a commutative ring and x, y ∈ R∗ be distinct. We say that x−a1−· · ·−an−

y is a zero-divisor path from x to y if a1, . . . , an ∈ Z(R)∗ and ai + ai+1 ∈ Z(R) for

every 0 ≤ i ≤ n (let a0 = x and an+1 = y). We define dZ(x, y) to be the length of a

shortest zero-divisor path from x to y (dZ(x, x) = 0 and dZ(x, y) = ∞ if there is no

such path) and diamZ(R) = sup{dZ(x, y) |x, y ∈ R∗}. Thus dT (x, y) = dT0
(x, y) ≤

dZ(x, y), for every x, y ∈ R∗. In particular, if x, y ∈ R∗ are distinct and x+y ∈ Z(R),

then x−y is a zero-divisor path from x to y with dZ(x, y) = 1. For any commutative

ring R, we have max{diam(Z0(Γ(R))), diam(T0(Γ(R)))} ≤ diamZ(R). However,

if R is a quasilocal reduced ring with |Min(R)| ≥ 3, then diam(Z0(Γ(R))) ≤ 2

by Theorem 2.4, but diamZ(R) = ∞ since there is no zero-divisor path from 1

to any x ∈ Z(R)∗ (cf. Theorem 5.1(1)). Also, diam(T0(Γ(Z1225))) = 2 < 3 =

diamZ(Z1225) by Examples 4.6 and 5.5. Note that diamZ(Z2) = 0, diamZ(Z3) = 1,

and diamZ(R) = ∞ for any other integral domain R.

We first determine when there is a zero-divisor path between every two distinct

elements of R∗.

Theorem 5.1. Let R be a commutative ring that is not an integral domain. Then

there is a zero-divisor path from x to y for every x, y ∈ R∗ if and only if one of the

following two statements holds.

(1) R is reduced, |Min(R)| ≥ 3, and R = (z1, z2) for some z1, z2 ∈ Z(R)∗.

(2) R is not reduced and R = (z1, z2) for some z1, z2 ∈ Z(R)∗.

Moreover, if there is a zero-divisor path from x to y for every x, y ∈ R∗, then R is

not quasilocal and diamZ(R) ∈ {2, 3}.

Proof. Suppose that there is a zero-divisor path from x to y for every x, y ∈ R∗.

First, assume that R is reduced and not an integral domain. Since Z0(Γ(R)) is

connected if and only if |Min(R)| ≥ 3 by Theorem 2.4, we have |Min(R)| ≥ 3. Let

y ∈ Z(R)∗. Then there is a zero-divisor path 1 − a1 − · · · − an − y from 1 to y

for some a1, . . . , an ∈ Z(R)∗. Thus z = 1 + a1 ∈ Z(R)∗, and hence R = (a1, z).

If R is not reduced, then a similar argument, as in the reduced case, shows that

R = (z1, z2) for some z1, z2 ∈ Z(R)∗.

Conversely, assume that (1) holds. Thus 1 = w + z for some w, z ∈ Z(R)∗. Let

x, y ∈ R∗ be distinct. Then x = xw + xz and y = yw + yz. We consider two cases.

Case one: assume that x, y ∈ Z(R)∗. Then we are done by Theorem 2.4. Case two:

assume that x /∈ Z(R). Hence xw, xz ∈ Z(R)∗. Suppose that x + y /∈ Z(R). Then

assume that either xw = yw or y = ±yw. Then x− (−xw) − y is the desired zero-

divisor path of length two from x to y. Next, assume that xw 6= yw, yw 6= 0 and

y 6= ±yw. Then x−(−xw)−(−yw)−y is the desired zero-divisor path of length three

from x to y. Finally, assume that yw = 0. Since y 6= 0 and y = yw + yz, we have

yz = y 6= 0. Thus x− (−xz)− y is the desired zero-divisor path of length two from
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x to y. Now assume that (2) holds. Since Z0(Γ(R)) is connected by Theorem 2.2,

an argument similar to that in case two of the reduced case completes the proof.

Assume that there is a zero-divisor path from x to y for every x, y ∈ R∗ and

that R is not an integral domain. Then R cannot be quasilocal since R = (z1, z2) for

some z1, z2 ∈ Z(R)∗ by (1) and (2) above. Clearly diamZ(R) 6= 0. Let z ∈ Z(R)∗.

Then z, 1− z ∈ R∗ are distinct and z + (1− z) = 1 /∈ Z(R); so diamZ(R) ≥ 2. The

“moreover” statement now follows from the above proof.

Corollary 5.2. Let R be a commutative ring. Then diamZ(R) ∈ {0, 1, 2, 3,∞}.

Moreover, diamZ(R) ∈ {2, 3,∞} except for diamZ(Z2) = 0 and diamZ(Z3) = 1.

Corollary 5.3. Let R be a commutative ring such that Z(R) is not an ideal of R.

Then there is a zero-divisor path from x to y for every x, y ∈ T (R)∗ if and only if

either R is reduced with |Min(R)| ≥ 3 or R is not reduced.

Proof. Since Z(R) is not an ideal of R, there are z1, z2 ∈ Z(R)∗ such that

z1 + z2 ∈ Reg(R). Thus T (R) = (z1, z2); so the corollary follows directly from

Theorem 5.1.

Theorem 5.4. (1) Let R = R1 × R2 for commutative quasilocal rings R1, R2

with maximal ideals M1, M2, respectively. If there are a1 ∈ U(R1) and a2 ∈

U(R2) with (2a1, 2a2) ∈ U(R) and (3a1, 3a2) /∈ Z(R), then diamZ(R) ∈ {3,∞}.

Moreover, diamZ(R) = 3 if either R1 or R2 is not reduced.

(2) Let R = R1 × · · · × Rn for commutative rings R1, . . . , Rn with n ≥ 3. Then

diamZ(R) = 2.

Proof. (1) Let a = (a1, a2), b = (2a1, 2a2) ∈ U(R). Then a 6= b and dZ(a, b) 6= 1

since a + b = (3a1, 3a2) /∈ Z(R). Assume that there is an f = (m1, m2) ∈ R∗

such that a−f − b is a zero-divisor path from a to b. Thus f ∈ Z(R)∗; so either

m1 ∈ M1 or m2 ∈ M2. If m1 ∈ M1, then m1 + a1, m1 + 2a1 ∈ U(R1). Hence

m2 +a2, m2 +2a2 ∈ M2, since a+ f, b+ f ∈ Z(R). But then a2 = (m2 +2a2)−

(m2 + a2) ∈ M2, a contradiction. In a similar manner, m2 ∈ M2 also leads to

a contradiction; so no such f exists. Thus dZ(a, b) ≥ 3; so diamZ(R) ∈ {3,∞}.

The “moreover” statement now follows from Theorem 5.1.

(2) We have diamZ(R) ∈ {2, 3} by Theorem 5.1 since |Min(R)| ≥ n ≥ 3. Let

x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ R∗ with x + y /∈ Z(R). We may assume

that x1 6= 0. Let z = (−x1,−y2, 1, . . . , 1, 0) ∈ Z(R)∗. Then x+ z, y + z ∈ Z(R);

so x − z − y is the desired zero-divisor path from x to y of length 2. Hence

diamZ(R) = 2.

The following example shows that all possible values for diamZ(R) given in

Corollary 5.2 and Theorem 5.4 may be realized. The details are left to the reader.

Example 5.5. (a) (diamZ(Zn)) We have already observed that diamZ(Z2) = 0,

diamZ(Z3) = 1, and diamZ(Zp) = ∞ when p ≥ 5 is prime. Let R = Zn with
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n ≥ 2 and n not prime. Let n = pm1

1 · · · pmk

k for distinct primes pi and mi ≥ 1.

If either k = 1, or k = 2 and m1 = m2 = 1, then diamZ(R) = ∞. If k =

2, p1, p2 ≥ 5, and m1 +m2 ≥ 3, then diamZ(R) = 3. Otherwise, diamZ(R) = 2.

(b) (diamZ(Zn1
× · · · × Znk

)) Let R = Zn1
× · · · × Znk

with 2 ≤ n1 ≤ · · · ≤ nk

and k ≥ 2. If k = 2 and n1, n2 are prime, then diamZ(R) = ∞. If k = 2 and

n1 = pm1

1 , n2 = pm2

2 for primes p1, p2 ≥ 5 and m1+m2 ≥ 3, then diamZ(R) = 3.

Otherwise, diamZ(R) = 2.

Let x, y ∈ R∗ be distinct. We say that x − a1 − · · · − an − y is a regular path

from x to y if a1, . . . , an ∈ Reg(R) and ai + ai+1 ∈ Z(R) for every 0 ≤ i ≤ n (let

a0 = x and an+1 = y). We define dreg(x, y) to be the length of a shortest regular

path from x to y (dreg(x, x) = 0 and dreg(x, y) = ∞ if there is no such path), and

diamreg(R) = sup{dreg(x, y) |x, y ∈ R∗}. Thus dT (x, y) = dT0
(x, y) ≤ dreg(x, y)

for every x, y ∈ R∗. In particular, if x, y ∈ R∗ are distinct and x + y ∈ Z(R),

then x − y is a regular path from x to y with dreg(x, y) = 1. For any commutative

ring R, we have max{diam(T0(Γ(R))), diam(Reg(Γ(R)))} ≤ diamreg(R). Note that

diam(T0(Γ(Z60))) = 2 < ∞ = diamreg(Z60) and diam(Reg(Γ(Z6))) = 1 < 2 =

diamreg(Z6). However, if R is an integral domain, then T0(Γ(R)) = Reg(Γ(R)); so

all three diameters are equal. Moreover, diamreg(Z2) = 0, diamreg(Z3) = 1 and

diamreg(R) = ∞ for any other integral domain R. Hence diamZ(R) = diamreg(R)

for any integral domain R.

Theorem 5.6. Let R be a commutative ring with diam(T0(Γ(R))) = n < ∞.

(1) Let u ∈ U(R), s ∈ R∗, and P be a shortest path from s to u of length n − 1 in

T0(Γ(R)). Then P is a regular path from s to u.

(2) Let u ∈ U(R), s ∈ R∗, and P : s − a1 − · · · − an = u be a shortest path from

s to u of length n in T0(Γ(R)). Then either P is a regular path from s to u,

or a1 ∈ Z(R)∗ and a1 − · · · − an = u is a regular path from a1 to u of length

n − 1 = dT0
(a1, u).

Proof. (1) If n = 2, then P is a regular path from s to u by definition. Thus we

may assume that n > 2. Since dT0
(z, u) is either n−1 or n for every z ∈ Z(R)∗

by Lemma 4.4(1) and dT0
(s, u) = n− 1, we conclude that P must be a regular

path.

(2) Suppose that P is not a regular path; so ai ∈ Z(R)∗ for some 1 ≤ i ≤ n − 1.

Since dT0
(z, u) is either n − 1 or n for every z ∈ Z(R)∗ by Lemma 4.4(1)

and dT0
(s, u) = n, we must have a1 ∈ Z(R)∗ and ai ∈ Reg(R) for every

2 ≤ i ≤ n − 1. Thus a1 − · · · − an − u is a regular path of length n − 1 =

dT0
(a1, u).

We next determine when there is a regular path between every two distinct

elements of R∗.
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Theorem 5.7. Let R be a commutative ring.

(1) If s ∈ Reg(R) and w ∈ Nil(R)∗, then there is no regular path from s to w.

(2) If R is reduced and quasilocal, then there is no regular path from any unit to

any nonzero nonunit in R.

In particular, if there is a regular path from x to y for every x, y ∈ R∗, then either

R is reduced and not quasilocal or R is isomorphic to Z2 or Z3.

Proof. (1) Let s ∈ Reg(R) and w ∈ Nil(R)∗. Since a + w ∈ Reg(R) for every

a ∈ Reg(R) by Lemma 2.1(4), there is no regular path from s to w.

(2) Let M be the maximal ideal of R, x ∈ U(R), and 0 6= y ∈ M . Suppose that

there is a regular path x − x1 − · · · − xn − y. Then x + x1 = z1 ∈ Z(R) ⊆ M ;

so x1 = −x + z1 ∈ U(R). In a similar manner, each xi ∈ U(R). But then

xn + y ∈ U(R), a contradiction.

The “in particular” statement is clear by parts (1) and (2) above and the remarks

preceding Theorem 5.6.

Theorem 5.8. Let R be a commutative ring. Then there is a regular path from x

to y for every x, y ∈ R∗ if and only if R is reduced, Reg(Γ(R)) is connected, and

for every z ∈ Z(R)∗ there is a w ∈ Z(R)∗ such that dZ(z, w) > 1 (possibly with

dZ(z, w) = ∞).

Proof. Suppose that there is a regular path from x to y for every x, y ∈ R∗. Then

R is reduced by Theorem 5.7, and it is clear that Reg(Γ(R)) is connected. Let

z ∈ Z(R)∗, and let z−a1−· · ·−1 be a regular path from z to 1. Then a1 ∈ Reg(R)

and w = −(z + a1) ∈ Z(R)∗. Thus z 6= w and z + w 6∈ Z(R); so dZ(z, w) > 1.

Conversely, suppose that R is reduced, Reg(Γ(R)) is connected, and for every

z ∈ Z(R)∗ there is a w ∈ Z(R)∗ such that dZ(z, w) > 1 (possibly with dZ(z, w) =

∞). Let x, y ∈ R∗. If x, y ∈ Reg(R), then there is nothing to prove. First, assume

that x ∈ Z(R)∗ and y ∈ Reg(R). Since x ∈ Z(R)∗, there is a w ∈ Z(R)∗ such that

dZ(x, w) > 1. Then x + w 6∈ Z(R); so x + u = −w ∈ Z(R) for some u ∈ Reg(R).

Since Reg(Γ(R)) is connected, let u − u1 − · · · − y be a regular path from u to

y. Then x − u − u1 − · · · − y is a regular path from x to y. Next, assume that

x, y ∈ Z(R)∗. Then again as above, there are u, v ∈ Reg(R) such that x+u ∈ Z(R)

and y + v ∈ Z(R). If u = v, then x−u− y is a regular path from x to y. So assume

that u 6= v. Since Reg(Γ(R)) is connected, let u − · · · − v be a regular path from u

to v. Then x − u − · · · − v − y is a regular path from x to y.

In view of Theorems 2.3 and 5.8, we have the following result.

Corollary 5.9. Let R be a reduced commutative ring with |Min(R)| = 2. Then

there is a regular path from x to y for every x, y ∈ R∗ if and only if Reg(Γ(R)) is

connected.
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Recall from [9] that a commutative ring R is a p.p. ring if every principal ideal

of R is projective. For example, a commutative von Neumann regular ring is a

p.p. ring, and Z × Z is a p.p. ring that is not von Neumann regular. It was shown

in [15, Proposition 15] that a commutative ring R is a p.p. ring if and only if every

element of R is the product of an idempotent element and a regular element of

R (thus a commutative p.p. ring that is not an integral domain has non-trivial

idempotents). We show that a commutative p.p. ring R that is not an integral

domain has diamreg(R) = 2, but first a lemma.

Lemma 5.10. Let R be commutative ring, u, v ∈ Reg(R), and e ∈ Idem(R). Then

eu + (1 − e)v ∈ Reg(R).

Proof. Let eu+ (1− e)v = w ∈ R, and suppose that cw = 0 for some c ∈ R. Then

ew = e[eu + (1 − e)v] = eu and (1 − e)w = (1 − e)[eu + (1 − e)v] = (1 − e)v. Thus

ceu = cew = 0 and c(1 − e)v = c(1 − e)w = 0, and hence ce = c(1 − e) = 0 since

u, v ∈ Reg(R). Thus c = ce + c(1 − e) = 0; so eu + (1 − e)v = w ∈ Reg(R).

Theorem 5.11. Let R be a commutative p.p. ring that is not an integral domain.

Then there is a regular path from x to y for every x, y ∈ R∗. Moreover, diamreg(R) =

diam(T0(Γ(R))) = diam(T (Γ(R))) = 2.

Proof. Let x, y ∈ R∗ be distinct, and suppose that x + y /∈ Z(R). We consider

three cases. Case one: assume that x, y ∈ Z(R)∗. Since x+y /∈ Z(R), necessarily x+

y ∈ Reg(R), and thus x−(−(x+y))−y is the desired regular path of length two from

x to y. Case two: assume that x, y ∈ Reg(R). Since R is a p.p. ring and not an inte-

gral domain, there is an e ∈ Idem(R)\{0, 1}. Hence w = −[(1−e)x+ey] ∈ Reg(R) by

Lemma 5.10. Since e(1−e) = 0 and e /∈ {0, 1}, we have x+w = ex−ey = e(x−y) ∈

Z(R) and y+w = (e−1)x− (e−1)y = (e−1)(x−y) ∈ Z(R). Thus x−w−y is the

desired regular path of length 2 from x to y. Case three: assume that x ∈ Reg(R)

and y ∈ Z(R)∗. Hence y = fu for some f ∈ Idem(R)\{0, 1} and u ∈ Reg(R). Then

h = −[(1− f)x + fu] ∈ Reg(R) by Lemma 5.10. Since f(1− f) = 0 and f /∈ {0, 1},

we have x + h = fx − fu = f(x − u) ∈ Z(R) and y + h = (f − 1)x ∈ Z(R). Thus

x − h− y is the desired regular path of length two from x to y; so diamreg(R) ≤ 2.

For the “moreover” statement, we first note that T (Γ(R)) is connected with

diam(T (Γ(R))) = 2 by [5, Corollary 3.6] since R has a non-trivial idempotent.

Thus 2 = diam(T (Γ(R))) = diam(T0(Γ(R))) ≤ diamreg(R) ≤ 2 by Theorem 4.7,

since |R| ≥ 4; so we have the desired equality.

Corollary 5.12. Let R be a commutative von Neumann regular ring that is not

a field. Then there is a regular path from x to y for every x, y ∈ R∗. Moreover,

diamreg(R) = 2.

Corollary 5.13. Let R be a commutative ring. If there is an e ∈ Idem(R)\{0, 1},

then Reg(Γ(R)) is connected with diam(Reg(Γ(R))) ∈ {0, 1, 2}.
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Proof. Let u, v ∈ Reg(R) be distinct, u + v /∈ Z(R), and e ∈ Idem(R)\{0, 1}.

Then w = −eu + (1 − e)v ∈ Reg(R) by Lemma 5.10; so u − w − v is the desired

path from u to v in Reg(Γ(R)) of length two. Thus Reg(Γ(R)) is connected and

diam(Reg(Γ(R))) ≤ 2.

One easily verifies that diam(Reg(Γ(Z2×Z2))) = 0, diam(Reg(Γ(Z3×Z3))) = 1,

and diam(Reg(Γ(Z5 × Z5))) = 2. Thus all possible values for diam(Reg(Γ(R))) in

Corollary 5.13 may be realized.

We next determine diamreg(R) for R = Zn and R = Zn1
×· · ·×Znk

. The details

are left to the reader; they follow directly from Theorem 5.7 and Corollary 5.12.

Example 5.14. (a) (diamreg(Zn)) We have already observed that diamreg(Z2) = 0,

diamreg(Z3) = 1, and diamreg(Zp) = ∞ when p ≥ 5 is prime. Let R = Zn with

n ≥ 2 and n not prime. Then diamreg(R) = 2 if n is the product of (at least 2)

distinct primes. Otherwise, diamreg(R) = ∞.

(b) (diamreg(Zn1
×· · ·×Znk

)) Let R = Zn1
×· · ·×Znk

with 2 ≤ n1 ≤ · · · ≤ nk and

k ≥ 2. Then diamreg(R) = 2 if every ni is prime. Otherwise, diamreg(R) = ∞.

The rings in Theorem 5.11 and Corollary 5.12 are reduced and not quasilocal.

We next give an example of a reduced non-quasilocal ring R that is not an integral

domain such that there is no regular path from x to y for some x, y ∈ R∗.

Example 5.15. Let I = 2XZ[X ] be an ideal of Z[X ], and let R = Z[X ]/I. Then R

is reduced, not quasilocal, and Z(R) = XZ[X ]/I∪2Z[X ]/I. Note that R 6= (Z(R));

so T0(Γ(R)) is not connected by Corollary 4.3. Thus there is no regular path from

x to y for some x, y ∈ R∗. It may easily be shown that there is no regular path

from x = 1 + I to y = X + I.

We have diam(T0(Γ(R))) ≤ min{diamZ(R), diamreg(R)} for any commutative

ring R. Examples 4.6, 5.5 and 5.14 show that all three diameters may be different.

For n = 52 · 72 = 1225, we have diam(T0(Γ(Zn))) = 2 < 3 = diamZ(Zn) < ∞ =

diamreg(Zn). For n = 22 · 3 · 5 = 60, we have diam(T0(Γ(Zn))) = diamZ(Zn) =

2 < ∞ = diamreg(Zn). Also, diam(T0(Γ(Z35))) = diamreg(Z35) = 2 < ∞ =

diamZ(Z35).

We could also define grZ(R) and grreg(R) by only using cycles in Z(R)∗ and

Reg(R), respectively. However, this gives nothing new since grZ(R) = gr(Z0(Γ(R)))

and grreg(R) = gr(Reg(Γ(R))). We have already determined gr(Z0(Γ(R))) in

Theorem 3.3(2), and gr(Reg(Γ(R))) has been studied in [5, Theorems 2.6 and 3.14].

We end this paper by giving gr(Reg(Γ(R))) for R = Zn and R = Zn1
× · · · × Znk

;

details are left to the reader.

Example 5.16. (a) (gr(Reg(Γ(Zn)))) Let R = Zn with n ≥ 2. Then

gr(Reg(Γ(R))) = ∞ if n = 4, n = 6, or n is prime; gr(Reg(Γ(R))) = 4 if

n = pm with p ≥ 3 prime and m ≥ 2; and gr(Reg(Γ(R))) = 3 otherwise.

1250074-17



D. F. Anderson & A. Badawi

(b) (gr(Reg(Γ(Zn1
× · · · ×Znk

)))) Let R = Zn1
× · · · ×Znk

with 2 ≤ n1 ≤ · · · ≤ nk

and k ≥ 2. Then gr(Reg(Γ(R))) = ∞ if nk−1 = 2 and nk = 2, 3, 4, or 6.

Otherwise, gr(Reg(Γ(R))) = 3.
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