ISSN: 0092-7872 print/1532-4125 online

ON THE ANNIHILATOR GRAPH OF A COMMUTATIVE RING

Abstract

Ayman Badawi Department of Mathematics and Statistics, American University of Sharjah, Sharjah, UAE

Let R be a commutative ring with nonzero identity, $Z(R)$ be its set of zero-divisors, and if $a \in Z(R)$, then let $a n n_{R}(a)=\{d \in R \mid d a=0\}$. The annihilator graph of R is the (undirected) graph $A G(R)$ with vertices $Z(R)^{*}=Z(R) \backslash\{0\}$, and two distinct vertices x and y are adjacent if and only if ann $n_{R}(x y) \neq a n n_{R}(x) \cup a n n_{R}(y)$. It follows that each edge (path) of the zero-divisor graph $\Gamma(R)$ is an edge (path) of $A G(R)$. In this article, we study the graph $A G(R)$. For a commutative ring R, we show that $A G(R)$ is connected with diameter at most two and with girth at most four provided that $A G(R)$ has a cycle. Among other things, for a reduced commutative ring R, we show that the annihilator graph $A G(R)$ is identical to the zero-divisor graph $\Gamma(R)$ if and only if R has exactly two minimal prime ideals.

Key Words: Annihilator graph; Annihilator ideal; Zero-divisor graph.

2000 Mathematics Subject Classification: Primary 13A15; Secondary 05C99.

1. INTRODUCTION

Let R be a commutative ring with nonzero identity, and let $Z(R)$ be its set of zero-divisors. Recently, there has been considerable attention in the literature to associating graphs with algebraic structures (see [8, 11-14]). Probably the most attention has been to the zero-divisor graph $\Gamma(R)$ for a commutative ring R. The set of vertices of $\Gamma(R)$ is $Z(R)^{*}$, and two distinct vertices x and y are adjacent if and only if $x y=0$. The concept of a zero-divisor graph goes back to Beck [6], who let all elements of R be vertices and was mainly interested in colorings. The zero-divisor graph was introduced by David F. Anderson and Paul S. Livingston in [3], where it was shown, among other things, that $\Gamma(R)$ is connected with $\operatorname{diam}(\Gamma(R)) \in\{0,1,2,3\}$ and $\operatorname{gr}(\Gamma(R)) \in\{3,4, \infty\}$. For a recent survey article on zero-divisor graphs, see [5]. In this article, we introduce the annihilator graph $A G(R)$ for a commutative ring R. Let $a \in Z(R)$ and let $a n n_{R}(a)=\{r \in R \mid r a=0\}$. The annihilator graph of R is the (undirected) graph $A G(R)$ with vertices $Z(R)^{*}=$ $Z(R) \backslash\{0\}$, and two distinct vertices x and y are adjacent if and only if $a n n_{R}(x y) \neq$ $a n n_{R}(x) \cup a n n_{R}(y)$. It follows that each edge (path) of $\Gamma(R)$ is an edge (path) of $A G(R)$.

[^0]In the second section, we show that $A G(R)$ is connected with diameter at most two (Theorem 2.2). If $A G(R)$ is not identical to $\Gamma(R)$, then we show that $\operatorname{gr}(A G(R))$ (i.e., the length of a smallest cycle) is at most four (Corollary 2.11). In the third section, we determine when $A G(R)$ is identical to $\Gamma(R)$. For a reduced commutative ring R, we show that $A G(R)$ is identical to $\Gamma(R)$ if and only if R has exactly two distinct minimal prime ideals (Theorem 3.6). Among other things, we determine when $A G(R)$ is a complete graph, a complete bipartite graph, or a star graph.

Let Γ be a (undirected) graph. We say that Γ is connected if there is a path between any two distinct vertices. For vertices x and y of Γ, we define $d(x, y)$ to be the length of a shortest path from x to $y(d(x, x)=0$ and $d(x, y)=\infty$ if there is no path). Then the diameter of Γ is $\operatorname{diam}(\Gamma)=\sup \{d(x, y) \mid x$ and y are vertices of $\Gamma\}$. The girth of Γ, denoted by $g r(\Gamma)$, is the length of a shortest cycle in $\Gamma(g r(\Gamma)=\infty$ if Γ contains no cycles).

A graph Γ is complete if any two distinct vertices are adjacent. The complete graph with n vertices will be denoted by K^{n} (we allow n to be an infinite cardinal). A complete bipartite graph is a graph Γ which may be partitioned into two disjoint nonempty vertex sets A and B such that two distinct vertices are adjacent if and only if they are in distinct vertex sets. If one of the vertex sets is a singleton, then we call Γ a star graph. We denote the complete bipartite graph by $K^{m, n}$, where $|A|=m$ and $|B|=n$ (again, we allow m and n to be infinite cardinals); so a star graph is a $K^{1, n}$ and $K^{1, \infty}$ denotes a star graph with infinitely many vertices. Finally, let $\bar{K}^{m, 3}$ be the graph formed by joining $\Gamma_{1}=K^{m, 3}(=A \cup B$ with $|A|=m$ and $|B|=3)$ to the star graph $\Gamma_{2}=K^{1, m}$ by identifying the center of Γ_{2} and a point of B.

Throughout, R will be a commutative ring with nonzero identity, $Z(R)$ its set of zero-divisors, $\operatorname{Nil}(R)$ its set of nilpotent elements, $U(R)$ its group of units, $T(R)$ its total quotient ring, and $\operatorname{Min}(R)$ its set of minimal prime ideals. For any $A \subseteq R$, let $A^{*}=A \backslash\{0\}$. We say that R is reduced if $\operatorname{Nil}(R)=\{0\}$ and that R is quasi-local if R has a unique maximal ideal. The distance between two distinct vertices a, b of $\Gamma(R)$ is denoted by $d_{\Gamma(R)}(a, b)$. If $A G(R)$ is identical to $\Gamma(R)$, then we write $A G(R)=\Gamma(R)$; otherwise, we write $A G(R) \neq \Gamma(R)$. As usual, \mathbb{Z} and \mathbb{Z}_{n} will denote the integers and integers modulo n, respectively. Any undefined notation or terminology is standard, as in [9] or [7].

2. BASIC PROPERTIES OF $\boldsymbol{A G}(\boldsymbol{R})$

In this section, we show that $A G(R)$ is connected with diameter at most two. If $A G(R) \neq \Gamma(R)$, we show that $\operatorname{gr}(A G(R)) \in\{3,4\}$. If $\left|Z(R)^{*}\right|=1$ for a commutative ring R, then R is ring-isomorphic to either Z_{4} or $Z_{2}[X] /\left(X^{2}\right)$ and hence $A G(R)=$ $\Gamma(R)$. Since commutative rings with exactly one nonzero zero-divisor are studied in [$2,3,10]$, throughout this article we only consider commutative rings with at least two nonzero zero-divisors.

We begin with a lemma containing several useful properties of $A G(R)$.
Lemma 2.1. Let R be a commutative ring.
(1) Let x, y be distinct elements of $Z(R)^{*}$. Then $x-y$ is not an edge of $A G(R)$ if and only if ann $n_{R}(x y)=a n n_{R}(x)$ or $\operatorname{ann}_{R}(x y)=\operatorname{ann}_{R}(y)$.
(2) If $x-y$ is an edge of $\Gamma(R)$ for some distinct $x, y \in Z(R)^{*}$, then $x-y$ is an edge of $A G(R)$. In particular, if P is a path in $\Gamma(R)$, then P is a path in $A G(R)$.
(3) If $x-y$ is not an edge of $A G(R)$ for some distinct $x, y \in Z(R)^{*}$, then ann $n_{R}(x) \subseteq$ $\operatorname{ann}_{R}(y)$ or $\operatorname{ann}_{R}(y) \subseteq \operatorname{ann}_{R}(x)$.
(4) If $\operatorname{ann} n_{R}(x) \nsubseteq a n n_{R}(y)$ and $a n n_{R}(y) \nsubseteq a n n_{R}(x)$ for some distinct $x, y \in Z(R)^{*}$, then $x-y$ is an edge of $A G(R)$.
(5) If $d_{\Gamma(R)}(x, y)=3$ for some distinct $x, y \in Z(R)^{*}$, then $x-y$ is an edge of $A G(R)$.
(6) If $x-y$ is not an edge of $A G(R)$ for some distinct $x, y \in Z(R)^{*}$, then there is a $w \in Z(R)^{*} \backslash\{x, y\}$ such that $x-w-y$ is a path in $\Gamma(R)$, and hence $x-w-y$ is also a path in $A G(R)$.

Proof. (1) Suppose that $x-y$ is not an edge of $A G(R)$. Then $a n n_{R}(x y)=$ $a n n_{R}(x) \cup a n n_{R}(y)$ by definition. Since $a n n_{R}(x y)$ is a union of two ideals, we have $a n n_{R}(x y)=a n n_{R}(x)$ or $a n n_{R}(x y)=a n n_{R}(y)$. Conversely, suppose that $a n n_{R}(x y)=$ $a n n_{R}(x)$ or $a n n_{R}(x y)=a n n_{R}(y)$. Then $a n n_{R}(x y)=a n n_{R}(x) \cup a n n_{R}(y)$, and thus $x-$ y is not an edge of $A G(R)$.
(2) Suppose that $x-y$ is an edge of $\Gamma(R)$ for some distinct $x, y \in Z(R)^{*}$. Then $x y=0$ and hence $a n n_{R}(x y)=R$. Since $x \neq 0$ and $y \neq 0, \operatorname{ann}_{R}(x) \neq R$ and $a n n_{R}(y) \neq$ R. Thus $x-y$ is an edge of $A G(R)$. The "in particular" statement is now clear.
(3) Suppose that $x-y$ is not an edge of $A G(R)$ for some distinct $x, y \in$ $Z(R)^{*}$. Then $\operatorname{ann}_{R}(x) \cup \operatorname{ann}_{R}(y)=\operatorname{ann}_{R}(x y)$. Since $a n n_{R}(x y)$ is a union of two ideals, we have $a n n_{R}(x) \subseteq \operatorname{ann}_{R}(y)$ or $a n n_{R}(y) \subseteq a n n_{R}(x)$.
(4) This statement is now clear by (3).
(5) Suppose that $d_{\Gamma(R)}(x, y)=3$ for some distinct $x, y \in Z(R)^{*}$. Then $a n n_{R}(x) \nsubseteq a n n_{R}(y)$ and $a n n_{R}(y) \nsubseteq a n n_{R}(x)$. Hence $x-y$ is an edge of $A G(R)$ by (4).
(6) Suppose that $x-y$ is not an edge of $A G(R)$ for some distinct $x, y \in$ $Z(R)^{*}$. Then there is a $w \in \operatorname{ann}_{R}(x) \cap a n n_{R}(y)$ such that $w \neq 0$ by (3). Since $x y \neq 0$, we have $w \in Z(R)^{*} \backslash\{x, y\}$. Hence $x-w-y$ is a path in $\Gamma(R)$, and thus $x-w-y$ is a path in $A G(R)$ by (2).

In view of (6) in the preceding lemma, we have the following result.
Theorem 2.2. Let R be a commutative ring with $\left|Z(R)^{*}\right| \geq 2$. Then $A G(R)$ is connected and $\operatorname{diam}(A G(R)) \leq 2$.

Lemma 2.3. Let R be a commutative ring, and let x, y be distinct nonzero elements. Suppose that $x-y$ is an edge of $A G(R)$ that is not an edge of $\Gamma(R)$ for some distinct $x, y \in Z(R)^{*}$. If there is a $w \in a n n_{R}(x y) \backslash\{x, y\}$ such that $w x \neq 0$ and $w y \neq 0$, then $x-$ $w-y$ is a path in $A G(R)$ that is not a path in $\Gamma(R)$, and hence $C: x-w-y-x$ is a cycle in $A G(R)$ of length three and each edge of C is not an edge of $\Gamma(R)$.

Proof. Suppose that $x-y$ is an edge of $A G(R)$ that is not an edge of $\Gamma(R)$. Then $x y \neq 0$. Assume there is a $w \in a n n_{R}(x y) \backslash\{x, y\}$ such that $w x \neq 0$ and $w y \neq 0$. Since $y \in a n n_{R}(x w) \backslash\left(a n n_{R}(x) \cup a n n_{R}(w)\right)$, we conclude that $x-w$ is an edge of $A G(R)$. Since $x \in a n n_{R}(y w) \backslash\left(\operatorname{ann}_{R}(y) \cup a n n_{R}(w)\right)$, we conclude that $y-w$ is an edge of
$A G(R)$. Hence $x-w-y$ is a path in $A G(R)$. Since $x w \neq 0$ and $y w \neq 0$, we have $x-w-y$ is not a path in $\Gamma(R)$. It is clear that $x-w-y-x$ is a cycle in $\operatorname{AG}(R)$ of length three and each edge of C is not an edge of $\Gamma(R)$.

Theorem 2.4. Let R be a commutative ring. Suppose that $x-y$ is an edge of $A G(R)$ that is not an edge of $\Gamma(R)$ for some distinct $x, y \in Z(R)^{*}$. If $x y^{2} \neq 0$ and $x^{2} y \neq 0$, then there is a $w \in Z(R)^{*}$ such that $x-w-y$ is a path in $A G(R)$ that is not a path in $\Gamma(R)$, and hence $C: x-w-y-x$ is a cycle in $A G(R)$ of length three and each edge of C is not an edge of $\Gamma(R)$.

Proof. Suppose that $x-y$ is an edge of $A G(R)$ that is not an edge of $\Gamma(R)$. Then $x y \neq 0$ and there is a $w \in a n n_{R}(x y) \backslash\left(a n n_{R}(x) \cup a n n_{R}(y)\right)$. We show $w \notin\{x, y\}$. Assume $w \in\{x, y\}$. Then either $x^{2} y=0$ or $y^{2} x=0$, which is a contradiction. Thus $w \notin\{x, y\}$. Hence $x-w-y$ is the desired path in $A G(R)$ by Lemma 2.3.

Corollary 2.5. Let R be a reduced commutative ring. Suppose that $x-y$ is an edge of $A G(R)$ that is not an edge of $\Gamma(R)$ for some distinct $x, y \in Z(R)^{*}$. Then there is a $w \in \operatorname{ann}_{R}(x y) \backslash\{x, y\}$ such that $x-w-y$ is a path in $A G(R)$ that is not a path in $\Gamma(R)$, and hence $C: x-w-y-x$ is a cycle in $A G(R)$ of length three and each edge of C is not an edge of $\Gamma(R)$.

Proof. Suppose that $x-y$ is an edge of $A G(R)$ that is not an edge of $\Gamma(R)$ for some distinct $x, y \in Z(R)^{*}$. Since R is reduced, we have $(x y)^{2} \neq 0$. Hence $x y^{2} \neq 0$ and $x^{2} y \neq 0$, and thus the claim is now clear by Theorem 2.4.

In light of Corollary 2.5, we have the following result.
Theorem 2.6. Let R be a reduced commutative ring, and suppose that $A G(R) \neq$ $\Gamma(R)$. Then $\operatorname{gr}(A G(R))=3$. Furthermore, there is a cycle C of length three in $A G(R)$ such that each edge of C is not an edge of $\Gamma(R)$.

In view of Theorem 2.4, the following is an example of a nonreduced commutative ring R where $x-y$ is an edge of $A G(R)$ that is not an edge of $\Gamma(R)$ for some distinct $x, y \in Z(R)^{*}$, but every path in $A G(R)$ of length two from x to y is also a path in $\Gamma(R)$.

Example 2.7. Let $R=\mathbb{Z}_{8}$. Then $2-6$ is an edge of $A G(R)$ that is not an edge of $\Gamma(R)$. Now $2-4-6$ is the only path in $A G(R)$ of length two from 2 to 6 and it is also a path in $\Gamma(R)$. Note that $A G(R)=K^{3}, \Gamma(R)=K^{1,2}, g r(\Gamma(R))=\infty$, $\operatorname{gr}(A G(R))=3, \operatorname{diam}(\Gamma(R))=2$, and $\operatorname{diam}(A G(R))=1$.

The following is an example of a nonreduced commutative ring R such that $A G(R) \neq \Gamma(R)$ and if $x-y$ is an edge of $A G(R)$ that is not an edge of $\Gamma(R)$ for some distinct $x, y \in Z(R)^{*}$, then there is no path in $A G(R)$ of length two from x to y.

Example 2.8.

(1) Let $R=\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ and let $a=(0,1), b=(1,2)$, and $c=(0,3)$. Then $a-b$ and $c-b$ are the only two edges of $A G(R)$ that are not edges of $\Gamma(R)$, but there is
no path in $A G(R)$ of length two from a to b and there is no path in $A G(R)$ of length two from c to b. Note that $A G(R)=K^{2,3}, \Gamma(R)=\bar{K}^{1,3}, \operatorname{gr}(A G(R))=4$, $\operatorname{gr}(\Gamma(R))=\infty, \operatorname{diam}(A G(R)=2$, and $\operatorname{diam}(\Gamma(R))=3$.
(2) Let $R=\mathbb{Z}_{2} \times \mathbb{Z}_{2}[X] /\left(X^{2}\right)$. Let $\quad x=X+\left(X^{2}\right) \in \mathbb{Z}_{2}[X] /\left(X^{2}\right), \quad a=(0,1), b=$ $(1, x)$, and $c=(0,1+x)$. Then $a-b$ and $c-b$ are the only two edges of $A G(R)$ that are not edges of $\Gamma(R)$, but there is no path in $A G(R)$ of length two from a to b and there is no path in $A G(R)$ of length two from c to b. Again, note that $A G(R)=K^{2,3}, \Gamma(R)=\bar{K}^{1,3}, \operatorname{gr}(A G(R))=4, \operatorname{gr}(\Gamma(R))=\infty$, $\operatorname{diam}(A G(R)=2$, and $\operatorname{diam}(\Gamma(R))=3$.

Theorem 2.9. Let R be a commutative ring and suppose that $A G(R) \neq \Gamma(R)$. Then the following statements are equivalent:
(1) $\operatorname{gr}(A G(R))=4$;
(2) $\operatorname{gr}(A G(R)) \neq 3$;
(3) If $x-y$ is an edge of $A G(R)$ that is not an edge of $\Gamma(R)$ for some distinct $x, y \in$ $Z(R)^{*}$, then there is no path in $A G(R)$ of length two from x to y;
(4) There are some distinct $x, y \in Z(R)^{*}$ such that $x-y$ is an edge of $A G(R)$ that is not an edge of $\Gamma(R)$ and there is no path in $A G(R)$ of length two from x to y;
(5) R is ring-isomorphic to either $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ or $\mathbb{Z}_{2} \times \mathbb{Z}_{2}[X] /\left(X^{2}\right)$.

Proof. (1) $\Rightarrow(2)$. No comments.
(2) \Rightarrow (3). Suppose that $x-y$ is an edge of $A G(R)$ that is not an edge of $\Gamma(R)$ for some distinct $x, y \in Z(R)^{*}$. Since $\operatorname{gr}(A G(R)) \neq 3$, there is no path in $A G(R)$ of length two from x to y.
$(3) \Rightarrow(4) . \quad$ Since $A G(R)) \neq \Gamma(R)$ by hypothesis, there are some distinct $x, y \in$ $Z(R)^{*}$ such that $x-y$ is an edge of $A G(R)$ that is not an edge of $\Gamma(R)$, and hence there is no path in $A G(R)$ of length two from x to y by (3).
$(4) \Rightarrow(5)$. Suppose there are some distinct $x, y \in Z(R)^{*}$ such that $x-y$ is an edge of $A G(R)$ that is not an edge of $\Gamma(R)$ and there is no path in $A G(R)$ of length two from x to y. Then $a n n_{R}(x) \cap a n n_{R}(y)=\{0\}$. Since $x y \neq 0$ and $a n n_{R}(x) \cap$ $a n n_{R}(y)=\{0\}$, by Lemma 2.3 we conclude that $\operatorname{ann}_{R}(x y)=a n n_{R}(x) \cup a n n_{R}(y) \cup$ $\{y\}$ such that $y^{2} \neq 0$ or $\operatorname{ann}_{R}(x y)=\operatorname{ann}_{R}(x) \cup a n n_{R}(y) \cup\{x\}$ such that $x^{2} \neq 0$ (note that if $\{x, y\} \subseteq a n n_{R}(x y)$, then $x-x y-y$ is a path in $A G(R)$ of length two). Without lost of generality, we may assume that $a n n_{R}(x y)=a n n_{R}(x) \cup a n n_{R}(y) \cup\{y\}$ and $y^{2} \neq 0$. Let a be a nonzero element of $a n n_{R}(x)$ and b be a nonzero element of $a n n_{R}(y)$. Since $a n n_{R}(x) \cap a n n_{R}(y)=\{0\}$, we have $a+b \in a n n_{R}(x y) \backslash\left(a n n_{R}(x) \cup\right.$ $\left.a n n_{R}(y)\right)$, and hence $a+b=y$. Thus $\left|a n n_{R}(x)\right|=\left|a n n_{R}(y)\right|=2$. Since $x y^{2}=0$, we have $\operatorname{ann}_{R}(x)=\left\{0, y^{2}\right\}$ and $\operatorname{ann}_{R}(y)=\{0, x y\}$. Since $y^{2}+x y=y$, we have $\left(y^{2}+\right.$ $x y)^{2}=y^{2}$. Since $x y^{3}=0$ and $x y^{2}=x^{2} y^{2}=0$, we have $\left(y^{2}+x y\right)^{2}=y^{2}$ implies that $y^{4}=y^{2}$. Since $y^{2} \neq 0$ and $y^{4}=y^{2}$, we have y^{2} is a nonzero idempotent of R. Hence $a n n_{R}(x y)=a n n_{R}(x) \cup a n n_{R}(y) \cup\{y\}=\left\{0, y^{2}, x y, y\right\}$. Thus $a n n_{R}(x y) \subseteq y R$ and since $y R \subseteq a n n_{R}(x y)$, we conclude $a n n_{R}(x y)=y R=\left\{0, y^{2}, x y, y\right\}$. Since $y^{2}+x y=y$ and $y^{4}=y^{2}$, we have $\left(y^{2}+x y\right)^{3}=y^{3}$ and hence $y^{3}=y^{2}$. Thus $y^{2} R=y(y R)=\left\{0, y^{2}\right\}$. Since y^{2} is a nonzero idempotent of R and $y^{2} R$ is a ring with two elements, we conclude that $y^{2} R$ is ring-isomorphic to \mathbb{Z}_{2}. Let $f \in \operatorname{ann}_{R}\left(y^{2}\right)$. Then $y^{2} f=y(y f)=$

0 , and thus $y f \in \operatorname{ann}_{R}(y)$. Hence either $y f=0$ or $y f=y x$. Suppose $y f=0$. Since $a n n_{R}(y)=\{0, x y\}$, either $f=0$ or $f=x y$. Suppose $y f=y x$. Then $y(f-x)=0$, and thus $f-x=0$ or $f-x=x y$. Hence $f=x$ or $f=x+x y$. It is clear that $0, x, x y, x+x y$ are distinct elements of R and thus $\operatorname{ann}_{R}\left(y^{2}\right)=\{0, x, x y, x+x y\}$. Since $\operatorname{ann}_{R}\left(y^{2}\right)=\left(1-y^{2}\right) R$, we have $\left(1-y^{2}\right) R=\{0, x, x y, x+x y\}$. Since $\left(1-y^{2}\right) R$ is a ring with four elements, we conclude that $\left(1-y^{2}\right) R$ is ring-isomorphic to either \mathbb{Z}_{4} or $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or F_{4} or $\mathbb{Z}_{2}[X] /\left(X^{2}\right)$. Since $x-y$ is an edge of $A G(R)$ that is not an edge of $\Gamma(R)$ and there is no path in $A G(R)$ of length two from x to y by hypothesis, we conclude that R is non-reduced by Corollary 2.5 . Since R is ring-isomorphic to $y^{2} R \times\left(1-y^{2}\right) R$ and non-reduced, we conclude that R is ring-isomorphic to either $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ or $\mathbb{Z}_{2} \times \mathbb{Z}_{2}[X] /\left(X^{2}\right)$.
$(5) \Rightarrow(1)$. See Example 2.8.
Corollary 2.10. Let R be a commutative ring such that $A G(R) \neq \Gamma(R)$, and assume that R is not ring-isomorphic to $\mathbb{Z}_{2} \times B$, where $B=\mathbb{Z}_{4}$ or $B=\mathbb{Z}_{2}[X] /\left(X^{2}\right)$. If E is an edge of $A G(R)$ that is not an edge of $\Gamma(R)$, then E is an edge of a cycle of length three in $A G(R)$.

Corollary 2.11. Let R be a commutative ring such that $A G(R) \neq \Gamma(R)$. Then $\operatorname{gr}(A G(R)) \in\{3,4\}$.

Proof. This result is a direct implication of Theorem 2.9.

3. WHEN IS $A G(R)$ IDENTICAL TO $\Gamma(R)$?

Let R be a commutative ring such that $\left|Z(R)^{*}\right| \geq 2$. Then $\operatorname{diam}(\Gamma(R)) \in$ $\{1,2,3\}$ by [3, Theorem 2.3]. Hence, if $\Gamma(R)=A G(R)$, then $\operatorname{diam}(\Gamma(R)) \in\{1,2\}$ by Theorem 2.2. We recall the following results.

Lemma 3.1.

(1) [3, the proof of Theorem 2.8] Let R be a reduced commutative ring that is not an integral domain. Then $\Gamma(R)$ is complete if and only if R is ring-isomorphic to $\mathbb{Z}_{2} \times$ \mathbb{Z}_{2}.
(2) $[10$, Theorem 2.6(3)] Let R be a commutative ring. Then $\operatorname{diam}(\Gamma(R))=2$ if and only if either $(i) R$ is reduced with exactly two minimal primes and at least three nonzero zero divisors, or (ii) $Z(R)$ is an ideal whose square is not $\{0\}$ and each pair of distinct zero divisors has a nonzero annihilator.

We first study the case when R is reduced.
Lemma 3.2. Let R be a reduced commutative ring that is not an integral domain, and let $z \in Z(R)^{*}$. Then:
(1) $\operatorname{ann}_{R}(z)=\operatorname{ann}_{R}\left(z^{n}\right)$ for each positive integer $n \geq 2$;
(2) If $c+z \in Z(R)$ for some $c \in \operatorname{ann}_{R}(z) \backslash\{0\}$, then ann $n_{R}(z+c)$ is properly contained in $\operatorname{ann}_{R}(z)$ (i.e., $\operatorname{ann}_{R}(c+z) \subset a n n_{R}(z)$). In particular, if $Z(R)$ is an ideal of R and $c \in a n n_{R}(z) \backslash\{0\}$, then $\operatorname{ann}_{R}(z+c)$ is properly contained in $\operatorname{ann}_{R}(z)$.

Proof. (1) Let $n \geq 2$. It is clear that $\operatorname{ann}_{R}(z) \subseteq a n n_{R}\left(z^{n}\right)$. Let $f \in a n n_{R}\left(z^{n}\right)$. Since $f z^{n}=0$ and R is reduced, we have $f z=0$. Thus $a n n_{R}\left(z^{n}\right)=a n n_{R}(z)$.
(2) Let $c \in a n n_{R}(z) \backslash\{0\}$, and suppose hat $c+z \in Z(R)$. Since $z^{2} \neq 0$, we have $c+z \neq 0$, and hence $c+z \in Z(R)^{*}$. Since $c \in \operatorname{ann}_{R}(z)$ and R is reduced, we have $c \notin$ $a n n_{R}(c+z)$. Hence $a n n_{R}(c+z) \neq \operatorname{ann}_{R}(z)$. Since $\operatorname{ann} n_{R}(c+z) \subset a n n_{R}(z(c+z))=$ $a n n_{R}\left(z^{2}\right)$ and $a n n_{R}\left(z^{2}\right)=a n n_{R}(z)$ by (1), it follows that $a n n_{R}(c+z) \subset a n n_{R}(z)$.

Theorem 3.3. Let R be a reduced commutative ring that is not an integral domain. Then the following statements are equivalent:
(1) $A G(R)$ is complete;
(2) $\Gamma(R)$ is complete (and hence $A G(R)=\Gamma(R)$);
(3) R is ring-isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Proof. (1) \Rightarrow (2). Let $a \in Z(R)^{*}$. Suppose that $a^{2} \neq a$. Since $a n n_{R}\left(a^{3}\right)=a n n_{R}(a)$ by Lemma 3.2(1) and $a^{3} \neq 0$, we have $a-a^{2}$ is not an edge of $A G(R)$, a contradiction. Thus $a^{2}=a$ for each $a \in Z(R)$. Let x, y be distinct elements in $Z(R)^{*}$. We show that $x-y$ is an edge of $\Gamma(R)$. Suppose that $x y \neq 0$. Since $x-y$ is an edge of $A G(R)$, we have $a n n_{R}(x y) \neq a n n_{R}(x)$, and thus $x y \neq x$. Since $x^{2}=x$, we have $a n n_{R}(x(x y))=a n n_{R}\left(x^{2} y\right)=a n n_{R}(x y)$, and thus $x-x y$ is not an edge of $A G(R)$, a contradiction. Hence $x y=0$ and $x-y$ is an edge of $\Gamma(R)$.
$(2) \Rightarrow(3)$. It follows from Lemma 3.1(1).
$(3) \Rightarrow(1)$. It is easily verified.
Let R be a reduced commutative ring with $|\operatorname{Min}(R)| \geq 2$. If $Z(R)$ is an ideal of R, then $\operatorname{Min}(R)$ must be infinite, since $Z(R)=\cup\{Q \mid Q \in \operatorname{Min}(R)\}$. For the construction of a reduced commutative ring R with infinitely many minimal prime ideals such that $Z(R)$ is an ideal of R, see [10, Section 5 (Examples)] and [1, Example 3.13].

Theorem 3.4. Let R be a reduced commutative ring that is not an integral domain, and assume that $Z(R)$ is an ideal of R. Then $A G(R) \neq \Gamma(R)$ and $\operatorname{gr}(A G(R))=3$.

Proof. Let $z \in Z(R)^{*}, \quad c \in a n n_{R}(z) \backslash\{0\}$, and $m \in a n n_{R}(c+z) \backslash\{0\}$. Then $m \in$ $a n n_{R}(c+z) \subset a n n_{R}(z)$ by Lemma 3.2(2), and thus $m c=0$. Since $c^{2} \neq 0$, we have $m \neq c$, and hence $c+z \neq m+z$. Since $\{c, m\} \subseteq a n n_{R}(z)$ and $z^{2} \neq 0$, we have $c+z$ and $m+z$ are nonzero distinct elements of $Z(R)$. Since $(m+z)(c+z)=z^{2} \neq 0$, we have $(c+z)-(m+z)$ is not an edge of $\Gamma(R)$. Since $c^{2} \neq 0$ and $m^{2} \neq 0$, it follows that $(c+m) \in a n n_{R}\left(z^{2}\right) \backslash\left(a n n_{R}(c+z) \cup a n n_{R}(m+z)\right)$, and thus $(c+z)-(m+z)$ is an edge of $A G(R)$. Since $(c+z)-(m+z)$ is an edge of $A G(R)$ that is not an edge of $\Gamma(R)$, we have $A G(R) \neq \Gamma(R)$. Since R is reduced and $A G(R) \neq \Gamma(R)$, we have $\operatorname{gr}(A G(R))=3$ by Theorem 2.6.

Theorem 3.5. Let R be a reduced commutative ring with $|\operatorname{Min}(R)| \geq 3$ (possibly $\operatorname{Min}(R)$ is infinite $)$. Then $A G(R) \neq \Gamma(R)$ and $\operatorname{gr}(A G(R))=3$.

Proof. If $Z(R)$ is an ideal of R, then $A G(R) \neq \Gamma(R)$ by Theorem 3.4. Hence assume that $Z(R)$ is not an ideal of R. Since $|\operatorname{Min}(R)| \geq 3$, we have $\operatorname{diam}(\Gamma(R))=3$ by Lemma 3.1(2), and thus $A G(R) \neq \Gamma(R)$ by Theorem 2.2. Since R is reduced and $A G(R) \neq \Gamma(R)$, we have $g r(A G(R))=3$ by Theorem 2.6.

Theorem 3.6. Let R be a reduced commutative ring that is not an integral domain. Then $A G(R)=\Gamma(R)$ if and only if $|\operatorname{Min}(R)|=2$.

Proof. Suppose that $A G(R)=\Gamma(R)$. Since R is a reduced commutative ring that is not an integral domain, $|\operatorname{Min}(R)|=2$ by Theorem 3.5. Conversely, suppose that $|\operatorname{Min}(R)|=2$. Let P_{1}, P_{2} be the minimal prime ideals of R. Since R is reduced, we have $Z(R)=P_{1} \cup P_{2}$ and $P_{1} \cap P_{2}=\{0\}$. Let $a, b \in Z(R)^{*}$. Assume that $a, b \in P_{1}$. Since $P_{1} \cap P_{2}=\{0\}$, neither $a \in P_{2}$ nor $b \in P_{2}$, and thus $a b \neq 0$. Since $P_{1} P_{2} \subseteq P_{1} \cap$ $P_{2}=\{0\}$, it follows that $a n n_{R}(a b)=a n n_{R}(a)=a n n_{R}(b)=P_{2}$. Thus $a-b$ is not an edge of $A G(R)$. Similarly, if $a, b \in P_{2}$, then $a-b$ is not an edge of $A G(R)$. If $a \in P_{1}$ and $b \in P_{2}$, then $a b=0$, and thus $a-b$ is an edge of $A G(R)$. Hence each edge of $A G(R)$ is an edge of $\Gamma(R)$, and therefore, $A G(R)=\Gamma(R)$.

Theorem 3.7. Let R be a reduced commutative ring. Then the following statements are equivalent:
(1) $\operatorname{gr}(A G(R))=4$;
(2) $A G(R)=\Gamma(R)$ and $g r(\Gamma(R))=4$;
(3) $g r(\Gamma(R))=4$;
(4) $T(R)$ is ring-isomorphic to $K_{1} \times K_{2}$, where each K_{i} is a field with $\left|K_{i}\right| \geq 3$;
(5) $|\operatorname{Min}(R)|=2$ and each minimal prime ideal of R has at least three distinct elements;
(6) $\Gamma(R)=K^{m, n}$ with $m, n \geq 2$;
(7) $A G(R)=K^{m, n}$ with $m, n \geq 2$.

Proof. (1) \Rightarrow (2). Since $\operatorname{gr}(A G(R))=4, A G(R)=\Gamma(R)$ by Theorem 2.6, and thus $g r(\Gamma(R))=4$. (2) $\Rightarrow(3)$. No comments. (3) $\Leftrightarrow(4) \Leftrightarrow(5) \Leftrightarrow(6)$ are clear by [2, Theorem 2.2]. (6) \Rightarrow (7). Since (6) implies $|\operatorname{Min}(R)|=2$ by [2, Theorem 2.2], we conclude that $A G(R)=\Gamma(R)$ by Theorem 3.6, and thus $\operatorname{gr}(A G(R))=\operatorname{gr}(\Gamma(R))=4$. (7) \Rightarrow (1). This is clear since $A G(R)$ is a complete bipartite graph and $n, m \geq 2$.

Theorem 3.8. Let R be a reduced commutative ring that is not an integral domain. Then the following statements are equivalent:
(1) $\operatorname{gr}(A G(R))=\infty$;
(2) $A G(R)=\Gamma(R)$ and $g r(A G(R))=\infty$;
(3) $\operatorname{gr}(\Gamma(R))=\infty$;
(4) $T(R)$ is ring-isomorphic to $Z_{2} \times K$, where K is a field;
(5) $|\operatorname{Min}(R)|=2$ and at least one minimal prime ideal ideal of R has exactly two distinct elements;
(6) $\Gamma(R)=K^{1, n}$ for some $n \geq 1$;
(7) $A G(R)=K^{1, n}$ for some $n \geq 1$.

Proof. (1) \Rightarrow (2). Since $\operatorname{gr}(A G(R))=\infty, A G(R)=\Gamma(R)$ by Theorem 2.6, and thus $g r(\Gamma(R))=\infty$. (2) \Rightarrow (3). No comments. (3) $\Leftrightarrow(4) \Leftrightarrow(5) \Leftrightarrow(6)$ are clear by
[2, Theorem 2.4]. (6) \Rightarrow (7). Since (6) implies $|\operatorname{Min}(R)|=2$ by [2, Theorem 2.4], we conclude that $A G(R)=\Gamma(R)$ by Theorem 3.6, and thus $\operatorname{gr}(A G(R))=g r(\Gamma(R))=\infty$. $(7) \Rightarrow(1)$. It is clear.

In view of Theorem 3.7 and Theorem 3.8, we have the following result.
Corollary 3.9. Let R be a reduced commutative ring. Then $A G(R)=\Gamma(R)$ if and only if $\operatorname{gr}(A G(R))=\operatorname{gr}(\Gamma(R)) \in\{4, \infty\}$.

For the remainder of this section, we study the case when R is nonreduced.
Theorem 3.10. Let R be a nonreduced commutative ring with $\left|\operatorname{Nil}(R)^{*}\right| \geq 2$ and let $A G_{N}(R)$ be the (induced) subgraph of $A G(R)$ with vertices $\operatorname{Nil}(R)^{*}$. Then $A G_{N}(R)$ is complete.

Proof. Suppose there are nonzero distinct elements $a, b \in \operatorname{Nil}(R)$ such that $a b \neq 0$. Assume that $a n n_{R}(a b)=a n n_{R}(a) \cup a n n_{R}(b)$. Hence $a n n_{R}(a b)=a n n_{R}(a)$ or $a n n_{R}(a b)=a n n_{R}(b)$. Without lost of generality, we may assume that $a n n_{R}(a b)=$ $a n n_{R}(a)$. Let n be the least positive integer such that $b^{n}=0$. Suppose that $a b^{k} \neq 0$ for each $\mathrm{k}, 1 \leq k<n$. Then $b^{n-1} \in \operatorname{ann}_{R}(a b) \backslash a n n_{R}(a)$, a contradiction. Hence assume that $k, 1 \leq k<n$ is the least positive integer such that $a b^{k}=0$. Since $a b \neq 0,1<$ $k<n$. Hence $b^{k-1} \in \operatorname{ann}_{R}(a b) \backslash a n n_{R}(a)$, a contradiction. Thus $a-b$ is an edge of $A G_{N}(R)$.

In view of Theorem 3.10, we have the following result.
Corollary 3.11. Let R be a nonreduced quasi-local commutative ring with maximal ideal Nil (R) such that $\left|\operatorname{Nil}(R)^{*}\right| \geq 2$. Then $A G(R)$ is complete. In particular, $A G\left(\mathbb{Z}_{2^{n}}\right)$ is complete for each $n \geq 3$ and if $q>2$ is a positive prime number of \mathbb{Z}, then $A G\left(\mathbb{Z}_{q^{n}}\right)$ is complete for each $n \geq 2$.

The following is an example of a quasi-local commutative ring R with maximal ideal $\operatorname{Nil}(R)$ such that $w^{2}=0$ for each $w \in \operatorname{Nil}(R), \operatorname{diam}(\Gamma(R))=2$, $\operatorname{diam}(A G(R))=1$, and $\operatorname{gr}(A G(R))=\operatorname{gr}(\Gamma(R))=3$.

Example 3.12. Let $R=\mathbb{Z}_{2}[X, Y] /\left(X^{2}, Y^{2}\right), \quad x=X+\left(X^{2}, Y^{2}\right) \in R$, and $y=Y+$ $\left(X^{2}, Y^{2}\right) \in R$. Then R is a quasi-local commutative ring with maximal ideal $\operatorname{Nil}(R)=$ $(x, y) R$. It is clear that $w^{2}=0$ for each $w \in \operatorname{Nil}(R)$ and $\operatorname{diam}(A G(R))=1$ by Corollary 3.11. Since $\operatorname{Nil}(R)^{2} \neq\{0\}$ and $\operatorname{xyNil}(R)=\{0\}$, we have $\operatorname{diam}(\Gamma(R))=2$ by Lemma 3.1(2). Since $x-x y-(x y+x)-x$ is a cycle of length three in $\Gamma(R)$, we have $\operatorname{gr}(A G(R))=\operatorname{gr}(\Gamma(R))=3$.

Theorem 3.13. Let R be a nonreduced commutative ring with $\left|\operatorname{Nil}(R)^{*}\right| \geq 2$, and let $\Gamma_{N}(R)$ be the induced subgraph of $\Gamma(R)$ with vertices $\operatorname{Nil}(R)^{*}$. Then $\Gamma_{N}(R)$ is complete if and only if $\operatorname{Nil}(R)^{2}=\{0\}$.

Proof. If $\operatorname{Nil}(R)^{2}=\{0\}$, then it is clear that $\Gamma_{N}(R)$ is complete. Hence assume that $\Gamma_{N}(R)$ is complete. We need only show that $w^{2}=0$ for each $w \in \operatorname{Nil}(R)^{*}$.

Let $w \in \operatorname{Nil}(R)^{*}$ and assume that $w^{2} \neq 0$. Let n be the least positive integer such that $w^{n}=0$. Then $n \geq 3$. Thus $w, w^{n-1}+w$ are distinct elements of $\operatorname{Nil}(R)^{*}$. Since $w\left(w^{n-1}+w\right)=0$ and $w^{n}=0$, we have $w^{2}=0$, a contradiction. Thus $w^{2}=0$ for each $w \in \operatorname{Nil}(R)$.

Theorem 3.14. Let R be a nonreduced commutative ring, and suppose that $\operatorname{Nil}(R)^{2} \neq$ $\{0\}$. Then $A G(R) \neq \Gamma(R)$ and $\operatorname{gr}(A G(R))=3$.

Proof. Since $\operatorname{Nil}(R)^{2} \neq\{0\}, A G(R) \neq \Gamma(R)$ by Theorem 3.10 and Theorem 3.13. Thus $\operatorname{gr}(A G(R)) \in\{3,4\}$ by Corollary 2.11. Let $F=\mathbb{Z}_{2} \times B$, where B is \mathbb{Z}_{4} or $\mathbb{Z}_{2}[X] /\left(X^{2}\right)$. Since $\operatorname{Nil}(F)^{2}=\{0\}$ and $\operatorname{Nil}(F) \neq\{0\}$, we have $\operatorname{gr}(A G(R)) \neq 4$ by Theorem 2.9. Thus $\operatorname{gr}(A G(R))=3$.

Theorem 3.15. Let R be a nonreduced commutative ring such that $Z(R)$ is not an ideal of R. Then $A G(R) \neq \Gamma(R)$.

Proof. Since R is nonreduced and $Z(R)$ is not an ideal of R, $\operatorname{diam}(\Gamma(R))=3$ by [10, Corollary 2.5]. Hence $A G(R) \neq \Gamma(R)$ by Theorem 2.2.

Theorem 3.16. Let R be a nonreduced commutative ring. Then the following statements are equivalent:
(1) $\operatorname{gr}(A G(R))=4$;
(2) $A G(R) \neq \Gamma(R)$ and $\operatorname{gr}(A G(R))=4$;
(3) R is ring-isomorphic to either $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ or $\mathbb{Z}_{2} \times \mathbb{Z}_{2}[X] /\left(X^{2}\right)$;
(4) $\Gamma(R)=\bar{K}^{1,3}$;
(5) $A G(R)=K^{2,3}$.

Proof. (1) \Rightarrow (2). Suppose $A G(R)=\Gamma(R)$. Then $g r(\Gamma(R))=4$, and R is ringisomorphic to $D \times B$, where D is an integral domain with $|D| \geq 3$ and $B=\mathbb{Z}_{4}$ or $\mathbb{Z}_{2}[X] /\left(X^{2}\right)$ by [2, Theorem 2.3]. Assume that R is ring-isomorphic to $D \times \mathbb{Z}_{4}$. Since $|D| \geq 3$, there is an $a \in D \backslash\{0,1\}$. Let $x=(0,1), y=(1,2), w=(a, 2) \in R$. Then x, y, w are distinct elements in $Z(R)^{*}, w(x y)=(0,0), w x \neq(0,0)$, and $w y \neq$ $(0,0)$. Thus $x-w-y-x$ is a cycle of length three in $A G(R)$ by Lemma 2.3, a contradiction. Similarly, assume that R is ring-isomorphic to $D \times \mathbb{Z}_{2}[X] /\left(X^{2}\right)$. Again, since $|D| \geq 3$, there is an $a \in D \backslash\{0,1\}$. Let $x=X+\left(X^{2}\right) \in \mathbb{Z}_{2}[X] /\left(X^{2}\right)$. Then it is easily verified that $(0,1)-(a, x)-(1, x)-(0,1)$ is a cycle of length three in $A G(R)$, a contradiction. Thus $A G(R) \neq \Gamma(R) .(2) \Rightarrow(3)$. It is clear by Theorem 2.9. (3) \Leftrightarrow (4). It is clear by [2, Theorem 2.5]. (4) \Rightarrow (5). Since (4) implies (3) by [2, Theorem 2.5], it is easily verified that the annihilator graph of the two rings in (3) is $K^{2,3}$. (4) $\Rightarrow(5)$. Since $A G(R)$ is a $K^{2,3}$, it is clear that $\operatorname{gr}(A G(R))=4$.

We observe that $\operatorname{gr}\left(\Gamma\left(\mathbb{Z}_{8}\right)\right)=\infty$, but $\operatorname{gr}\left(A G\left(\mathbb{Z}_{8}\right)\right)=3$. We have the following result.

Theorem 3.17. Let R be a commutative ring such that $A G(R) \neq \Gamma(R)$. Then the following statements are equivalent:
(1) $\Gamma(R)$ is a star graph;
(2) $\Gamma(R)=K^{1,2}$;
(3) $A G(R)=K^{3}$.

Proof. (1) \Rightarrow (2). Since $\operatorname{gr}(\Gamma(R))=\infty$ and $\Gamma(R) \neq A G(R)$, we have R is nonreduced by Corollary 3.9 and $\left|Z(R)^{*}\right| \geq 3$. Since $\Gamma(R)$) is a star graph, there are two sets A, B such that $Z(R)^{*}=A \cup B$ with $|A|=1, A \cap B=\emptyset, A B=\{0\}$, and $b_{1} b_{2} \neq$ 0 for every $b_{1}, b_{2} \in B$. Since $|A|=1$, we may assume that $A=\{w\}$ for some $w \in$ $Z(R)^{*}$. Since each edge of $\Gamma(R)$ is an edge of $A G(R)$ and $A G(R) \neq \Gamma(R)$, there are some $x, y \in B$ such that $x-y$ is an edge of $A G(R)$ that is not an edge of $\Gamma(R)$. Since $a n n_{R}(c)=w$ for each $c \in B$ and $a n n_{R}(x y) \neq a n n_{R}(x) \cup a n n_{R}(y)$, we have $a n n_{R}(x y) \neq w$. Thus $a n n_{R}(x y)=B$ and $x y=w$. Since $A=\{x y\}$ and $A B=$ $\{0\}$, we have $x(x y)=x^{2} y=0$ and $y(x y)=y^{2} x=0$. We show that $B=\{x, y\}$, and hence $|B|=2$. Thus assume there is a $c \in B$ such that $c \neq x$ and $c \neq y$. Then $w c=x y c=0$. We show that $(x c+x y) \neq x$ and $(x c+x y) \neq x y$ (note that $x y=w)$. Suppose that $(x c+x y)=x$. Then $y(x c+x y)=y x$. But $y(x c+x y)=y x c+x y^{2}=$ $0+0=0$ and $x y \neq 0$, a contradiction. Hence $x \neq(x c+x y)$. Since $x, c \in B$, we have $x c \neq 0$ and thus $(x c+x y) \neq x y$. Thus $x,(x c+x y), x y$ are distinct elements of $Z(R)^{*}$. Since $x^{2} y=0$ and $y \in B$, either $x^{2}=0$ or $x^{2}=x y$ or $x^{2}=y$. Suppose that $x^{2}=y$. Since $x y=w \neq 0$, we have $x y=x\left(x^{2}\right)=x^{3}=w \neq 0$. Since $x^{2} y=0$, we have $x^{4}=$ 0 . Since $x^{4}=0$ and $x^{3} \neq 0$, we have $x^{2}, x^{3}, x^{2}+x^{3}$ are distinct elements of $Z(R)^{*}$, and thus $x^{2}-x^{3}-\left(x^{2}+x^{3}\right)-x^{2}$ is a cycle of length three in $\Gamma(R)$, a contradiction. Hence, we assume that either $x^{2}=0$ or $x^{2}=x y=w$. In both cases, we have $x^{2} c=$ 0 . Since $x,(x c+x y)$, $x y$ are distinct elements of $Z(R)^{*}$ and $x y^{2}=y x^{2}=x^{2} c=0$, we have $x-(x c+x y)-x y-x$ is a cycle of length three in $\Gamma(R)$, a contradiction. Thus $B=\{x, y\}$ and $|B|=2$. Hence $\Gamma(R)=K^{1,2}$. (2) \Rightarrow (3). Since each edge of $\Gamma(R)$ is an edge of $A G(R)$ and $\Gamma(R) \neq A G(R)$ and $\Gamma(R)=K^{1,2}$, it is clear that $A G(R)$ must be K^{3}. (3) $\Rightarrow(1)$. Since $\left|Z(R)^{*}\right|=3$ and $\Gamma(R)$ is connected and $A G(R) \neq \Gamma(R)$, exactly one edge of $A G(R)$ is not an edge of $\Gamma(R)$. Thus $\Gamma(R)$ is a star graph.

Theorem 3.18. Let R be a non-reduced commutative ring with $\left|Z(R)^{*}\right| \geq 2$. Then the following statements are equivalent:
(1) $A G(R)$ is a star graph;
(2) $\operatorname{gr}(A G(R))=\infty$;
(3) $A G(R)=\Gamma(R)$ and $g r(\Gamma(R))=\infty$;
(4) $\operatorname{Nil}(R)$ is a prime ideal of R and either $Z(R)=\operatorname{Nil}(R)=\{0,-w, w\}(w \neq-w)$ for some nonzero $w \in R$ or $Z(R) \neq \operatorname{Nil}(R)$ and $\operatorname{Nil}(R)=\{0, w\}$ for some nonzero $w \in R$ (and hence $w Z(R)=\{0\})$;
(5) Either $A G(R)=K^{1,1}$ or $A G(R)=K^{1, \infty}$;
(6) Either $\Gamma(R)=K^{1,1}$ or $\Gamma(R)=K^{1, \infty}$.

Proof. (1) \Rightarrow (2). It is clear by the definition of the star graph. (2) \Rightarrow (3). Since $\operatorname{gr}(A G(R))=\infty, A G(R)=\Gamma(R)$ by Corollary 2.11, and thus $\operatorname{gr}(\Gamma(R))=\infty$. (3) \Rightarrow (4). Suppose that $\left|\operatorname{Nil}(R)^{*}\right| \geq 3$. Since $A G_{N}(R)$ is complete by Theorem 3.10 and $\left|\operatorname{Nil}(R)^{*}\right| \geq 3$, we have $\operatorname{gr}(A G(R))=\operatorname{gr}(\Gamma(R))=3$, a contradiction. Thus $\left|\operatorname{Nil}(R)^{*}\right| \in\{1,2\}$. Suppose $\left|\operatorname{Nil}(R)^{*}\right|=2$. Then $\operatorname{Nil}(R)=\{0, w,-w\}(w \neq-w)$ for some nonzero $w \in R$. We show $Z(R)=\operatorname{Nil}(R)$. Assume there is a $k \in Z(R) \backslash \operatorname{Nil}(R)$. Suppose that $w k=0$. Since $\operatorname{Nil}(R)^{2}=\{0\}, w-k-(-w)-w$ is a cycle of length
three in $\Gamma(R)$, a contradiction. Thus assume that $w k \neq 0$. Hence there is an $f \in Z(R)^{*} \backslash\{w,-w, k\}$, such that $w-f-z$ is a path of length two in $\Gamma(R)$ by Theorem 2.2 (note that we are assuming that $A G(R)=\Gamma(R)$). Thus $w-f-(-w)-$ w is a cycle of length three in $\Gamma(R)$, a contradiction. Hence if $\left|\operatorname{Nil}(R)^{*}\right|=2$, then $Z(R)=\operatorname{Nil}(R)$. Thus assume that $\operatorname{Nil}(R)=\{0, w\}$ for some nonzero $w \in R$. We show $\operatorname{Nil}(R)$ is a prime ideal of R. Since $\operatorname{gr}(A G(R))=\operatorname{gr}(\Gamma(R))=\infty$, we have $A G(R)=$ $\Gamma(R)$ is a star graph by [2, Theorem 2.5] and Theorem 3.16. Since $\left|Z(R)^{*}\right| \geq 2$ by hypothesis and $\left|\operatorname{Nil}(R)^{*}\right|=1$, we have $Z(R) \neq \operatorname{Nil}(R)$. Let $c \in Z(R)^{*} \backslash \operatorname{Nil}(R)^{*}$. We show $w c=0$. Suppose that $w c \neq 0$. Since $\left|\operatorname{Nil}(R)^{*}\right|=1$ and $w c \neq 0$, we have $w c=$ w. Thus $w(c-1)=0$. Since $w+1 \in U(R)$ and $c \notin U(R)$, we have $c-1 \neq w$. Since $\Gamma(R)$ is a star graph and $w(c-1)=0$ and $w c \neq 0$, we have $(c-1) j=0$ for each $j \in$ $Z(R)^{*} \backslash\{c-1\}$. In particular, $(c-1)[(c-1)+w]=0$, and therefore $w-(c-1)-$ $(c-1+w)-w$ is a cycle of length three in $\Gamma(R)$, a contradiction. Hence $w c=0$. Since $w Z(R)=\{0\}$ and $\Gamma(R)$ is a star graph, we have $\operatorname{Nil}(R)=\{0, w\}$ is a prime ideal of R. (4) \Rightarrow (5). Suppose that $\operatorname{Nil}(R)$ is a prime ideal of R. If $Z(R)=\operatorname{Nil}(R)$ and $\left|\operatorname{Nil}(R)^{*}\right|=2$, then $A G(R)=K^{1,1}$. Hence, assume that $\operatorname{Nil}(R)=\{0, w\}$ for some nonzero $w \in R$. We show that $Z(R)$ is an infinite set. Let $c \in Z(R) \backslash \operatorname{Nil}(R)$ and let $n>m \geq 1$. We show that $c^{m} \neq c^{n}$. Suppose that $c^{m}=c^{n}$. Then $c^{m}\left(1-c^{n-m}\right)=0$. Since $\operatorname{Nil}(R)=\{0, w\}$ is a prime ideal of R, we have $\left(1-c^{n-m}\right)=w$. Since $1-w \in$ $U(R)$, we have $1-w=c^{n-m} \in U(R)$, a contradiction. Thus $c^{m} \neq c^{n}$, and hence $Z(R)$ is an infinite set. Since $\operatorname{Nil}(R)=\{0, w\}$ is a prime ideal of R and $w Z(R)=\{0\}$, we have $A G(R)=K^{1, \infty}$. (5) $\Rightarrow(6)$. It is clear. (6) $\Rightarrow(1)$. Since $\Gamma(R)$ is a star graph and $\Gamma(R) \neq K^{1,2}$, we have $A G(R)=\Gamma(R)$ by Theorem 3.17, and thus $\operatorname{gr}(A G(R))=\infty$.

Corollary 3.19 ([3, Theorem 2.13], [2, Remark 2.6(a)], and [4, Theorem 3.9]). Let R be a nonreduced commutative ring with $\left|Z(R)^{*}\right| \geq 2$. Then $\Gamma(R)$ is a star graph if and only if $\Gamma(R)=K^{1,1}, \Gamma(R)=K^{1,2}$, or $\Gamma(R)=K^{1, \infty}$.

Proof. The proof is a direct implication of Theorems 3.17 and 3.18.
In the following example, we construct two nonreduced commutative rings say R_{1} and R_{2}, where $A G\left(R_{1}\right)=K^{1,1}$ and $A G\left(R_{2}\right)=K^{1, \infty}$.

Example 3.20.

(1) Let $R_{1}=\mathbb{Z}_{3}[X] /\left(X^{2}\right)$, and let $x=X+\left(X^{2}\right) \in R_{1}$. Then $Z\left(R_{1}\right)=\operatorname{Nil}\left(R_{1}\right)=$ $\{0,-x, x\}$ and $A G\left(R_{1}\right)=\Gamma\left(R_{1}\right)=K^{1,1}$. Also note that $A G\left(\mathbb{Z}_{9}\right)=\Gamma\left(\mathbb{Z}_{9}\right)=K^{1,1}$.
(2) Let $R_{2}=\mathbb{Z}_{2}[X, Y] /\left(X Y, X^{2}\right)$. Then let $x=X+\left(X Y+X^{2}\right)$ and $y=Y+(X Y+$ $\left.X^{2}\right) \in R_{2}$. Then $Z\left(R_{2}\right)=(x, y) R_{2}, \operatorname{Nil}\left(R_{2}\right)=\{0, x\}$, and $Z\left(R_{2}\right) \neq \operatorname{Nil}\left(R_{2}\right)$. It is clear that $A G\left(R_{2}\right)=\Gamma\left(R_{2}\right)=K^{1, \infty}$.

Remark 3.21. Let R be a nonreduced commutative ring. In view of Theorem 3.15, Theorem 3.16, and Theorem 3.18, if $A G(R)=\Gamma(R)$, then $Z(R)$ is an ideal of R and $\operatorname{gr}(A G(R))=\operatorname{gr}(\Gamma(R)) \in\{3, \infty\}$. The converse is true if $\operatorname{gr}(A G(R)=\operatorname{gr}(\Gamma(R))=\infty$
(see Theorems 3.15 and 3.18). However, if $Z(R)$ is an ideal of R and $\operatorname{gr}(A G(R))=$ $\operatorname{gr}(\Gamma(R))=3$, then it is possible to have all the following cases:
(1) It is possible to have a commutative ring R such that $Z(R)$ is an ideal of R, $Z(R) \neq \operatorname{Nil}(R), A G(R)=\Gamma(R)$, and $\operatorname{gr}(A G(R))=3$. See Example 3.22;
(2) It is possible to have a commutative ring R such that $Z(R)$ is an ideal of R, $Z(R) \neq \operatorname{Nil}(R), \operatorname{Nil}(R)^{2}=\{0\}, A G(R) \neq \Gamma(R), \operatorname{diam}(A G(R))=\operatorname{diam}(\Gamma(R))=2$, and $\operatorname{gr}(A G(R))=\operatorname{gr}(\Gamma(R))=3$. See Example 3.23.
(3) It is possible to have a commutative ring R such that $Z(R)$ is an ideal of $R, \quad Z(R) \neq \operatorname{Nil}(R), \quad \operatorname{Nil}(R)^{2}=\{0\}, \quad A G(R)$ is a complete graph (i.e., $\operatorname{diam}(A G(R))=1), A G(R) \neq \Gamma(R), \operatorname{diam}(\Gamma(R))=2$, and $\operatorname{gr}(A G(R))=$ $g r(\Gamma(R))=3$. See Theorem 3.24.

Example 3.22. Let $D=\mathbb{Z}_{2}[X, Y, W], I=\left(X^{2}, Y^{2}, X Y, X W\right) D$ be an ideal of D, and let $R=D / I$. Then let $x=X+I, y=Y+I$, and $w=W+I$ be elements of R. Then $\operatorname{Nil}(R)=(x, y) R$ and $Z(R)=(x, y, w) R$ is an ideal of R. By construction, we have $\operatorname{Nil}(R)^{2}=\{0\}, A G(R)=\Gamma(R), \operatorname{diam}(A G(R))=\operatorname{diam}(\Gamma(R))=2$, and $\operatorname{gr}(A G(R))=$ $g r(\Gamma(R))=3$ (for example, $x-(x+y)-y-x$ is a cycle of length three).

Example 3.23. Let $D=\mathbb{Z}_{2}[X, Y, W], I=\left(X^{2}, Y^{2}, X Y, X W, Y W^{3}\right) D$ be an ideal of D, and let $R=D / I$. Then let $x=X+I, y=Y+I$, and $w=W+I$ be elements of R. Then $\operatorname{Nil}(R)=(x, y) R$ and $Z(R)=(x, y, w) R$ is an ideal of R. By construction, $\operatorname{Nil}(R)^{2}=\{0\}, \operatorname{diam}(A G(R))=\operatorname{diam}(\Gamma(R))=2, \operatorname{gr}(A G(R))=$ $\operatorname{gr}(\Gamma(R))=3$. However, since $w^{3} \neq 0$ and $y \in \operatorname{ann}_{R}\left(w^{3}\right) \backslash\left(\operatorname{ann}_{R}(w) \cup \operatorname{ann}_{R}\left(w^{2}\right)\right)$, we have $w-w^{2}$ is an edge of $A G(R)$ that is not an edge of $\Gamma(R)$, and hence $A G(R) \neq$ $\Gamma(R)$.

Given a commutative ring R and an R-module M, the idealization of M is the ring $R(+) M=R \times M$ with addition defined by $(r, m)+(s, n)=(r+s, m+n)$ and multiplication defined by $(r, m)(s, n)=(r s, r n+s m)$ for all $r, s \in R$ and $m, n \in$ M. Note that $\{0\}(+) M \subseteq \operatorname{Nil}(R(+) M)$ since $(\{0\}(+) M)^{2}=\{(0,0)\}$. We have the following result.

Theorem 3.24. Let D be a principal ideal domain that is not a field with quotient field K (for example, let $D=\mathbb{Z}$ or $D=F[X]$ for some field F), and let $Q=(p)$ be a nonzero prime ideal of D for some prime (irreducible) element $p \in D$. Set $M=K / D_{Q}$ and $R=D(+) M$. Then $Z(R) \neq \operatorname{Nil}(R), A G(R)$ is a complete graph, $A G(R) \neq \Gamma(R)$, and $g r(A G(R))=g r(\Gamma(R))=3$.

Proof. By construction of $R, Z(R)=Q(+) M, \operatorname{Nil}(R)=\{0\}(+) M$, and $\operatorname{Nil}(R)^{2}=$ $\{(0,0)\}$. Let x, y be distinct elements of $Z(R)^{*}$, and suppose that $x y \neq 0$. Since $\operatorname{Nil}(R)^{2}=\{(0,0)\}$, to show that $A G(R)$ is complete, we consider two cases. Case I: assume $x \in \operatorname{Nil}(R)^{*}$ and $y \in Z(R) \backslash \operatorname{Nil}(R)$. Then $x=\left(0, \frac{a}{c p^{m}}+D_{Q}\right)$ for some nonzero $a \in D, c \in D \backslash Q$, and some positive integer $m \geq 1$ such that $\operatorname{gcd}\left(a, c p^{m}\right)=1$, and $y=\left(h p^{n}, f\right)$ for some positive integer $n \geq 1$, a nonzero $h \in D$, and $f \in M$. Since $x y \neq 0$, we have $n<m$. Hence $x y=\left(0, \frac{h a}{c p^{m-n}}+D_{Q}\right) \in \operatorname{Nil}(R)^{*}$. Since $\left(p^{m-n}, 0\right) \in$ $a n n_{R}(x y) \backslash\left(a n n_{R}(x) \cup a n n_{R}(y)\right)$, we have $x-y$ is an edge of $A G(R)$. Case II: assume that $x, y \in Z(R)^{*} \backslash \operatorname{Nil}(R)^{*}$. Then $x=\left(d p^{u}, g\right)$ and $y=\left(v p^{r}, w\right)$ for some positive
integers $u, r \geq 1$, nonzero $d, v \in D \backslash Q$, and $g, w \in M$. Hence $x y=\left(d v p^{u+r}, d p^{u} w+\right.$ $\left.v p^{r} g\right)$. Since $\left(0, \frac{1}{p^{u+r}}+D_{Q}\right) \in a n n_{R}(x y) \backslash\left(a n n_{R}(x) \cup a n n_{R}(y)\right)$, we have $x-y$ is an edge of $A G(R)$. Since $\left(0, \frac{1}{p}+D_{Q}\right)-\left(0, \frac{1}{p^{2}}+D_{Q}\right)-\left(0, \frac{1}{p^{3}}+D_{Q}\right)-\left(0, \frac{1}{p}+D_{Q}\right)$ is a cycle of length three in $\Gamma(R)$, we have $\operatorname{gr}(A G(R))=\operatorname{gr}(\Gamma(R))=3$.

The following example shows that the hypothesis " Q is principal" in the above theorem is crucial.

Example 3.25. Let $D=\mathbb{Z}[X]$ with quotient field K and $Q=(2, X) D$. Then Q is a nonprincipal prime ideal of D. Set $M=K / D_{Q}$ and $R=D(+) M$. Then $Z(R)=$ $Q(+) M, \operatorname{Nil}(R)=\{0\}(+) M$, and $\operatorname{Nil}(R)^{2}=\{(0,0)\}$. Let $a=(2,0)$ and $b=\left(0, \frac{1}{X}+\right.$ $\left.D_{Q}\right)$. Then $a b=\left(0, \frac{2}{X}+D_{Q}\right) \in \operatorname{Nil}(R)^{*}$. Since $a n n_{R}(a b)=a n n_{R}(b)$, we have $a-b$ is not an edge of $A G(R)$. Thus $A G(R)$ is not a complete graph.

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to the referee for his (her) great effort in proofreading the manuscript and for the several comments.

REFERENCES

[1] Anderson, D. F. (2008). On the diameter and girth of a zero-divisor graph, II. Houston J. Math. 34:361-371.
[2] Anderson, D. F., Mulay, S. B. (2007). On the diameter and girth of a zero-divisor graph. J. Pure Appl. Algebra 210(2):543-550.
[3] Anderson, D. F., Livingston, P. S. (1999). The zero-divisor graph of a commutative ring. J. Algebra 217:434-447.
[4] Anderson, D. F., Levy, R., Shapiro, J. (2003). Zero-divisor graphs, von Neumann regular rings, and boolean algebras. JPAA 180:221-241.
[5] Anderson, D. F., Axtell, M. C., Stickles, J. A. Jr. (2011). Zero-divisor graphs in commutative rings. In: Fontana, M., Kabbaj, S.-E., Olberding, B., Swanson, I., eds. Commutative Algebra, Noetherian and Non-Noetherian Perspectives. New York: Springer-Verlag, pp. 23-45.
[6] Beck, I. (1988). Coloring of commutative rings. J. Algebra 116:208-226.
[7] Bollaboás, B. (1998). Modern Graph Theory. New York: Springer-Verlag.
[8] Hung-Jen Chiang-Hsieh (2008). Classification of rings with projective zero-divisor graphs. J. Algebra 319:2789-2802.
[9] Huckaba, J. A. (1988). Commutative Rings with Zero Divisors. New York/Basel: Marcel Dekker.
[10] Lucas, T. G. (2006). The diameter of a zero-divisor graph. J. Algebra 301:3533-3558.
[11] Hsin-Ju Wang (2006). Zero-divisor graphs of genus one. J. Algebra 304:666-678.
[12] Wickham, C. (2009). Rings whose zero-divisor graphs have positive genus. J. Algebra 321:377-383.
[13] Akbari, S., Maimani, H. R., Yassemi, S. (2003). When a zero-divisor graph is planar or a complete r-partite graph. J. Algebra 270:169-180.
[14] Maimani, H. R., Pournaki, M. R., Tehranian, A., Yassemi, S. (2011). Graphs attached to rings revisited. Arab. J. Sci. Eng. 36:997-1012.

[^0]: Received December 27, 2011; Revised June 14, 2012. Communicated by S. Bazzoni.
 Address correspondence to Ayman Badawi, Department of Mathematics and Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, UAE; E-mail: abadawi@aus.edu

