1

7 8

9

10

11 12

13

14

15

16

17

18

19

20

21 22

23 24

25 26 27

28

ON THE ANNIHILATOR GRAPH OF A COMMUTATIVE RING

Ayman Badawi

Department of Mathematics and Statistics, American University of Sharjah, Sharjah, UAE

Let R be a commutative ring with nonzero identity, Z(R) be its set of zero-divisors, and if $a \in Z(R)$, then let $ann_R(a) = \{d \in R \mid da = 0\}$. The annihilator graph of R is the (undirected) graph AG(R) with vertices $Z(R)^* = Z(R) \setminus \{0\}$, and two distinct vertices x and y are adjacent if and only if $ann_R(xy) \neq ann_R(x) \cup ann_R(y)$. It follows that each edge (path) of the zero-divisor graph $\Gamma(R)$ is an edge (path) of AG(R). In this article, we study the graph AG(R). For a commutative ring R, we show that AG(R) is connected with diameter at most two and with girth at most four provided that AG(R)has a cycle. Among other things, for a reduced commutative ring R, we show that the annihilator graph AG(R) is identical to the zero-divisor graph $\Gamma(R)$ if and only if R has exactly two minimal prime ideals.

Key Words: Annihilator graph; Annihilator ideal; Zero-divisor graph.

2000 Mathematics Subject Classification: Primary 13A15; Secondary 05C99.

Q1

1. INTRODUCTION

Let R be a commutative ring with nonzero identity, and let Z(R) be its set 29 of zero-divisors. Recently, there has been considerable attention in the literature 30 to associating graphs with algebraic structures (see [8, 11-14]). Probably the most 31 attention has been to the zero-divisor graph $\Gamma(R)$ for a commutative ring R. The 32 set of vertices of $\Gamma(R)$ is $Z(R)^*$, and two distinct vertices x and y are adjacent if 33 and only if xy = 0. The concept of a zero-divisor graph goes back to Beck [6], 34 who let all elements of R be vertices and was mainly interested in colorings. The 35 zero-divisor graph was introduced by David F. Anderson and Paul S. Livingston 36 in [3], where it was shown, among other things, that $\Gamma(R)$ is connected with 37 diam($\Gamma(R)$) $\in \{0, 1, 2, 3\}$ and gr($\Gamma(R)$) $\in \{3, 4, \infty\}$. For a recent survey article on 38 zero-divisor graphs, see [5]. In this article, we introduce the annihilator graph AG(R)39 for a commutative ring R. Let $a \in Z(R)$ and let $ann_{R}(a) = \{r \in R \mid ra = 0\}$. The 40 annihilator graph of R is the (undirected) graph AG(R) with vertices $Z(R)^* =$ 41 $Z(R)\setminus\{0\}$, and two distinct vertices x and y are adjacent if and only if $ann_R(xy) \neq Z(R)\setminus\{0\}$, 42 $ann_R(x) \cup ann_R(y)$. It follows that each edge (path) of $\Gamma(R)$ is an edge (path) of 43 AG(R). 44

45 46

47 Address correspondence to Ayman Badawi, Department of Mathematics and Statistics,

48 American University of Sharjah, P.O. Box 26666, Sharjah, UAE; E-mail: abadawi@aus.edu

In the second section, we show that AG(R) is connected with diameter at most two (Theorem 2.2). If AG(R) is not identical to $\Gamma(R)$, then we show that gr(AG(R))(i.e., the length of a smallest cycle) is at most four (Corollary 2.11). In the third section, we determine when AG(R) is identical to $\Gamma(R)$. For a reduced commutative ring *R*, we show that AG(R) is identical to $\Gamma(R)$ if and only if *R* has exactly two distinct minimal prime ideals (Theorem 3.6). Among other things, we determine when AG(R) is a complete graph, a complete bipartite graph, or a star graph.

Let Γ be a (undirected) graph. We say that Γ is *connected* if there is a path between any two distinct vertices. For vertices x and y of Γ , we define d(x, y) to be the length of a shortest path from x to y (d(x, x) = 0 and $d(x, y) = \infty$ if there is no path). Then the *diameter* of Γ is $diam(\Gamma) = \sup\{d(x, y) | x \text{ and } y \text{ are vertices of } \Gamma\}$. The girth of Γ , denoted by $gr(\Gamma)$, is the length of a shortest cycle in Γ ($gr(\Gamma) = \infty$ if Γ contains no cycles).

62 A graph Γ is *complete* if any two distinct vertices are adjacent. The complete 63 graph with n vertices will be denoted by K^n (we allow n to be an infinite cardinal). 64 A complete bipartite graph is a graph Γ which may be partitioned into two disjoint 65 nonempty vertex sets A and B such that two distinct vertices are adjacent if and only 66 if they are in distinct vertex sets. If one of the vertex sets is a singleton, then we call 67 Γ a star graph. We denote the complete bipartite graph by $K^{m,n}$, where |A| = m and 68 |B| = n (again, we allow m and n to be infinite cardinals); so a star graph is a $K^{1,n}$ 69 and $K^{1,\infty}$ denotes a star graph with infinitely many vertices. Finally, let $\overline{K}^{m,3}$ be the 70 graph formed by joining $\Gamma_1 = K^{m,3}$ (= $A \cup B$ with |A| = m and |B| = 3) to the star 71 graph $\Gamma_2 = K^{1,m}$ by identifying the center of Γ_2 and a point of *B*. 72

Throughout, R will be a commutative ring with nonzero identity, Z(R) its set 73 of zero-divisors, Nil(R) its set of nilpotent elements, U(R) its group of units, T(R) its 74 total quotient ring, and Min(R) its set of minimal prime ideals. For any $A \subseteq R$, let 75 $A^* = A \setminus \{0\}$. We say that R is reduced if $Nil(R) = \{0\}$ and that R is quasi-local if R 76 has a unique maximal ideal. The distance between two distinct vertices a, b of $\Gamma(R)$ 77 is denoted by $d_{\Gamma(R)}(a, b)$. If AG(R) is identical to $\Gamma(R)$, then we write $AG(R) = \Gamma(R)$; 78 otherwise, we write $AG(R) \neq \Gamma(R)$. As usual, \mathbb{Z} and \mathbb{Z}_n will denote the integers and 79 integers modulo n, respectively. Any undefined notation or terminology is standard, 80 as in [9] or [7]. 81

82

83 84

2. BASIC PROPERTIES OF AG(R)

In this section, we show that AG(R) is connected with diameter at most two. If $AG(R) \neq \Gamma(R)$, we show that $gr(AG(R)) \in \{3, 4\}$. If $|Z(R)^*| = 1$ for a commutative ring R, then R is ring-isomorphic to either Z_4 or $Z_2[X]/(X^2)$ and hence AG(R) = $\Gamma(R)$. Since commutative rings with exactly one nonzero zero-divisor are studied in [2, 3, 10], throughout this article we only consider commutative rings with at least two nonzero zero-divisors.

We begin with a lemma containing several useful properties of AG(R).

91 92 93

94

Lemma 2.1. Let R be a commutative ring.

95 (1) Let x, y be distinct elements of $Z(R)^*$. Then x - y is not an edge of AG(R) if and 96 only if $ann_R(xy) = ann_R(x)$ or $ann_R(xy) = ann_R(y)$.

97 98	(2) If $x - y$ is an edge of $\Gamma(R)$ for some distinct $x, y \in Z(R)^*$, then $x - y$ is an edge of $AG(R)$. In particular, if P is a path in $\Gamma(R)$, then P is a path in $AG(R)$.
99 100	(3) If $x - y$ is not an edge of $AG(R)$ for some distinct $x, y \in Z(R)^*$, then $ann_R(x) \subseteq ann_R(y)$ or $ann_R(y) \subseteq ann_R(x)$.
101	(4) If $ann_R(x) \nsubseteq ann_R(y) = unn_R(x)$. (5) If $ann_R(x) \nsubseteq ann_R(y)$ and $ann_R(y) \nsubseteq ann_R(x)$ for some distinct $x, y \in Z(R)^*$, then
102	x - y is an edge of $AG(R)$.
103 104 105 106 107	 (5) If d_{Γ(R)}(x, y) = 3 for some distinct x, y ∈ Z(R)*, then x − y is an edge of AG(R). (6) If x − y is not an edge of AG(R) for some distinct x, y ∈ Z(R)*, then there is a w ∈ Z(R)*\{x, y} such that x − w − y is a path in Γ(R), and hence x − w − y is also a path in AG(R).
108	Proof. (1) Suppose that $x - y$ is not an edge of $AG(R)$. Then $ann_R(xy) =$
109 110 111	$ann_R(x) \cup ann_R(y)$ by definition. Since $ann_R(xy)$ is a union of two ideals, we have $ann_R(xy) = ann_R(x)$ or $ann_R(xy) = ann_R(y)$. Conversely, suppose that $ann_R(xy) = ann_R(x)$ or $ann_R(xy) = ann_R(x)$. Then $ann_R(xy) = ann_R(x) \cup ann_R(y)$, and thus $x - ann_R(x) \cup ann_R(x)$.
112	y is not an edge of $AG(R)$.
113 114	(2) Suppose that $x - y$ is an edge of $\Gamma(R)$ for some distinct $x, y \in Z(R)^*$. Then
115 116	$xy = 0$ and hence $ann_R(xy) = R$. Since $x \neq 0$ and $y \neq 0$, $ann_R(x) \neq R$ and $ann_R(y) \neq R$. Thus $x - y$ is an edge of $AG(R)$. The "in particular" statement is now clear.
117 118 119 120	(3) Suppose that $x - y$ is not an edge of $AG(R)$ for some distinct $x, y \in Z(R)^*$. Then $ann_R(x) \cup ann_R(y) = ann_R(xy)$. Since $ann_R(xy)$ is a union of two ideals, we have $ann_R(x) \subseteq ann_R(y)$ or $ann_R(y) \subseteq ann_R(x)$.
120	(4) This statement is now clear by (3).
122 123 124	(5) Suppose that $d_{\Gamma(R)}(x, y) = 3$ for some distinct $x, y \in Z(R)^*$. Then $ann_R(x) \not\subseteq ann_R(y)$ and $ann_R(y) \not\subseteq ann_R(x)$. Hence $x - y$ is an edge of $AG(R)$ by (4).
125 126 127 128	(6) Suppose that $x - y$ is not an edge of $AG(R)$ for some distinct $x, y \in Z(R)^*$. Then there is a $w \in ann_R(x) \cap ann_R(y)$ such that $w \neq 0$ by (3). Since $xy \neq 0$, we have $w \in Z(R)^* \setminus \{x, y\}$. Hence $x - w - y$ is a path in $\Gamma(R)$, and thus $x - w - y$ is a path in $AG(R)$ by (2).
129 130	In view of (6) in the preceding lemma, we have the following result.
131	
132 133	Theorem 2.2. Let R be a commutative ring with $ Z(R)^* \ge 2$. Then $AG(R)$ is connected and diam $(AG(R)) \le 2$.
133	$Connecteu una utum(AO(R)) \leq 2.$
135	Lemma 2.3. Let R be a commutative ring, and let x , y be distinct nonzero elements.
136 137	Suppose that $x - y$ is an edge of $AG(R)$ that is not an edge of $\Gamma(R)$ for some distinct $x, y \in Z(R)^*$. If there is a $w \in ann_R(xy) \setminus \{x, y\}$ such that $wx \neq 0$ and $wy \neq 0$, then $x - q$
137	$x, y \in Z(R)$. If there is a $w \in ann_R(xy) \setminus \{x, y\}$ such that $wx \neq 0$ and $wy \neq 0$, then $x = w - y$ is a path in $AG(R)$ that is not a path in $\Gamma(R)$, and hence $C : x - w - y - x$ is a
139	cycle in $AG(R)$ of length three and each edge of C is not an edge of $\Gamma(R)$.
140 141	Proof. Suppose that $x - y$ is an edge of $AG(R)$ that is not an edge of $\Gamma(R)$. Then
141	<i>xy</i> \neq 0. Assume there is a $w \in ann_R(xy) \setminus \{x, y\}$ such that $wx \neq 0$ and $wy \neq 0$. Since
143	$y \in ann_R(xw) \setminus (ann_R(x) \cup ann_R(w))$, we conclude that $x - w$ is an edge of $AG(R)$.

143 $y \in ann_R(xw) \setminus (ann_R(x) \cup ann_R(w))$, we conclude that x - w is an edge of AG(R). 144 Since $x \in ann_R(yw) \setminus (ann_R(y) \cup ann_R(w))$, we conclude that y - w is an edge of

145 AG(R). Hence x - w - y is a path in AG(R). Since $xw \neq 0$ and $yw \neq 0$, we have 146 x - w - y is not a path in $\Gamma(R)$. It is clear that x - w - y - x is a cycle in AG(R) of 147 length three and each edge of C is not an edge of $\Gamma(R)$. \square 148 149 **Theorem 2.4.** Let R be a commutative ring. Suppose that x - y is an edge of AG(R)that is not an edge of $\Gamma(R)$ for some distinct $x, y \in Z(R)^*$. If $xy^2 \neq 0$ and $x^2y \neq 0$, then 150 151 there is a $w \in Z(R)^*$ such that x - w - y is a path in AG(R) that is not a path in $\Gamma(R)$, 152 and hence C: x - w - y - x is a cycle in AG(R) of length three and each edge of C is 153 not an edge of $\Gamma(R)$. 154 155 **Proof.** Suppose that x - y is an edge of AG(R) that is not an edge of $\Gamma(R)$. 156 Then $xy \neq 0$ and there is a $w \in ann_R(xy) \setminus (ann_R(x) \cup ann_R(y))$. We show $w \notin \{x, y\}$. Assume $w \in \{x, y\}$. Then either $x^2y = 0$ or $y^2x = 0$, which is a contradiction. Thus 157 $w \notin \{x, y\}$. Hence x - w - y is the desired path in AG(R) by Lemma 2.3. 158 159 **Corollary 2.5.** Let R be a reduced commutative ring. Suppose that x - y is an edge 160 of AG(R) that is not an edge of $\Gamma(R)$ for some distinct x, $y \in Z(R)^*$. Then there is a 161 $w \in ann_R(xy) \setminus \{x, y\}$ such that x - w - y is a path in AG(R) that is not a path in $\Gamma(R)$, 162 and hence C: x - w - y - x is a cycle in AG(R) of length three and each edge of C is 163 not an edge of $\Gamma(R)$. 164 165 **Proof.** Suppose that x - y is an edge of AG(R) that is not an edge of $\Gamma(R)$ for 166 some distinct x, $y \in Z(R)^*$. Since R is reduced, we have $(xy)^2 \neq 0$. Hence $xy^2 \neq 0$ 167 and $x^2y \neq 0$, and thus the claim is now clear by Theorem 2.4. 168 169 In light of Corollary 2.5, we have the following result. 171 **Theorem 2.6.** Let R be a reduced commutative ring, and suppose that $AG(R) \neq C$ 172 $\Gamma(R)$. Then gr(AG(R)) = 3. Furthermore, there is a cycle C of length three in AG(R)173 such that each edge of C is not an edge of $\Gamma(R)$. 174 175 In view of Theorem 2.4, the following is an example of a nonreduced 176 commutative ring R where x - y is an edge of AG(R) that is not an edge of $\Gamma(R)$ 177 for some distinct $x, y \in Z(R)^*$, but every path in AG(R) of length two from x to y 178 is also a path in $\Gamma(R)$. 179 180 **Example 2.7.** Let $R = \mathbb{Z}_8$. Then 2 - 6 is an edge of AG(R) that is not an edge 181 of $\Gamma(R)$. Now 2-4-6 is the only path in AG(R) of length two from 2 to 6 182 and it is also a path in $\Gamma(R)$. Note that $AG(R) = K^3$, $\Gamma(R) = K^{1,2}$, $gr(\Gamma(R)) = \infty$, 183 gr(AG(R)) = 3, $diam(\Gamma(R)) = 2$, and diam(AG(R)) = 1. 185 The following is an example of a nonreduced commutative ring R such that 186 $AG(R) \neq \Gamma(R)$ and if x - y is an edge of AG(R) that is not an edge of $\Gamma(R)$ for some 187 distinct x, $y \in Z(R)^*$, then there is no path in AG(R) of length two from x to y. 188 189 Example 2.8. 190 191 (1) Let $R = \mathbb{Z}_2 \times \mathbb{Z}_4$ and let a = (0, 1), b = (1, 2), and c = (0, 3). Then a - b and 192 c-b are the only two edges of AG(R) that are not edges of $\Gamma(R)$, but there is

- 170

- 184

193

194

length two from c to b. Note that $AG(R) = K^{2,3}$, $\Gamma(R) = \overline{K}^{1,3}$, gr(AG(R)) = 4, 195 $gr(\Gamma(R)) = \infty$, diam(AG(R) = 2, and $diam(\Gamma(R)) = 3$. 196 (2) Let $R = \mathbb{Z}_2 \times \mathbb{Z}_2[X]/(X^2)$. Let $x = X + (X^2) \in \mathbb{Z}_2[X]/(X^2)$, a = (0, 1), b =197 (1, x), and c = (0, 1 + x). Then a - b and c - b are the only two edges of 198 AG(R) that are not edges of $\Gamma(R)$, but there is no path in AG(R) of length 199 two from a to b and there is no path in AG(R) of length two from c to b. Again, note that $AG(R) = K^{2,3}$, $\Gamma(R) = \overline{K}^{1,3}$, gr(AG(R)) = 4, $gr(\Gamma(R)) = \infty$, 200 201 $diam(AG(R) = 2, \text{ and } diam(\Gamma(R)) = 3.$ 202 203 **Theorem 2.9.** Let R be a commutative ring and suppose that $AG(R) \neq \Gamma(R)$. Then 204 the following statements are equivalent: 205 206 (1) gr(AG(R)) = 4;207 (2) $gr(AG(R)) \neq 3$; 208 (3) If x - y is an edge of AG(R) that is not an edge of $\Gamma(R)$ for some distinct $x, y \in \Gamma(R)$ 209 $Z(R)^*$, then there is no path in AG(R) of length two from x to y; 210 (4) There are some distinct $x, y \in Z(R)^*$ such that x - y is an edge of AG(R) that is 211 not an edge of $\Gamma(R)$ and there is no path in AG(R) of length two from x to y; 212 (5) *R* is ring-isomorphic to either $\mathbb{Z}_2 \times \mathbb{Z}_4$ or $\mathbb{Z}_2 \times \mathbb{Z}_2[X]/(X^2)$. 213 214 **Proof.** (1) \Rightarrow (2). No comments. 215 (2) \Rightarrow (3). Suppose that x - y is an edge of AG(R) that is not an edge of 216 $\Gamma(R)$ for some distinct $x, y \in Z(R)^*$. Since $gr(AG(R)) \neq 3$, there is no path in AG(R)217 of length two from x to y. 218 219 (3) \Rightarrow (4). Since AG(R) $\neq \Gamma(R)$ by hypothesis, there are some distinct $x, y \in \Gamma(R)$ 220 $Z(R)^*$ such that x - y is an edge of AG(R) that is not an edge of $\Gamma(R)$, and hence 221 there is no path in AG(R) of length two from x to y by (3). 222 (4) \Rightarrow (5). Suppose there are some distinct $x, y \in Z(R)^*$ such that x - y is 223 an edge of AG(R) that is not an edge of $\Gamma(R)$ and there is no path in AG(R) of 224 length two from x to y. Then $ann_{R}(x) \cap ann_{R}(y) = \{0\}$. Since $xy \neq 0$ and $ann_{R}(x) \cap$ 225 $ann_R(y) = \{0\}$, by Lemma 2.3 we conclude that $ann_R(xy) = ann_R(x) \cup ann_R(y) \cup$ 226 {y} such that $y^2 \neq 0$ or $ann_B(xy) = ann_B(x) \cup ann_B(y) \cup \{x\}$ such that $x^2 \neq 0$ (note 227 that if $\{x, y\} \subseteq ann_R(xy)$, then x - xy - y is a path in AG(R) of length two). 228 Without lost of generality, we may assume that $ann_R(xy) = ann_R(x) \cup ann_R(y) \cup \{y\}$ 229 and $y^2 \neq 0$. Let a be a nonzero element of $ann_R(x)$ and b be a nonzero element 230 of $ann_R(y)$. Since $ann_R(x) \cap ann_R(y) = \{0\}$, we have $a + b \in ann_R(xy) \setminus (ann_R(x) \cup ann_R(y))$ 231 $ann_{R}(y)$, and hence a + b = y. Thus $|ann_{R}(x)| = |ann_{R}(y)| = 2$. Since $xy^{2} = 0$, we 232 have $ann_R(x) = \{0, y^2\}$ and $ann_R(y) = \{0, xy\}$. Since $y^2 + xy = y$, we have $(y^2 + y^2) = \{0, xy\}$. 233 $xy)^2 = y^2$. Since $xy^3 = 0$ and $xy^2 = x^2y^2 = 0$, we have $(y^2 + xy)^2 = y^2$ implies that 234 $y^4 = y^2$. Since $y^2 \neq 0$ and $y^4 = y^2$, we have y^2 is a nonzero idempotent of R. Hence 235 $ann_R(xy) = ann_R(x) \cup ann_R(y) \cup \{y\} = \{0, y^2, xy, y\}$. Thus $ann_R(xy) \subseteq yR$ and since 236 $yR \subseteq ann_R(xy)$, we conclude $ann_R(xy) = yR = \{0, y^2, xy, y\}$. Since $y^2 + xy = y$ and 237 $y^4 = y^2$, we have $(y^2 + xy)^3 = y^3$ and hence $y^3 = y^2$. Thus $y^2R = y(yR) = \{0, y^2\}$. 238 239 Since y^2 is a nonzero idempotent of R and y^2R is a ring with two elements, we conclude that $y^2 R$ is ring-isomorphic to \mathbb{Z}_2 . Let $f \in ann_R(y^2)$. Then $y^2 f = y(yf) =$ 240

241	0, and thus $yf \in ann_R(y)$. Hence either $yf = 0$ or $yf = yx$. Suppose $yf = 0$. Since
242	$ann_R(y) = \{0, xy\}$, either $f = 0$ or $f = xy$. Suppose $yf = yx$. Then $y(f - x) = 0$,
243	and thus $f - x = 0$ or $f - x = xy$. Hence $f = x$ or $f = x + xy$. It is clear that
244	0, x, xy, $x + xy$ are distinct elements of R and thus $ann_R(y^2) = \{0, x, xy, x + xy\}$.
245	Since $ann_R(y^2) = (1 - y^2)R$, we have $(1 - y^2)R = \{0, x, xy, x + xy\}$. Since $(1 - y^2)R$
246	is a ring with four elements, we conclude that $(1 - y^2)R$ is ring-isomorphic to either
247	\mathbb{Z}_4 or $\mathbb{Z}_2 \times \mathbb{Z}_2$ or F_4 or $\mathbb{Z}_2[X]/(X^2)$. Since $x - y$ is an edge of $AG(R)$ that is not an
248	edge of $\Gamma(R)$ and there is no path in $AG(R)$ of length two from x to y by hypothesis,
249	we conclude that R is non-reduced by Corollary 2.5. Since R is ring-isomorphic to
250	$y^2 R \times (1 - y^2) R$ and non-reduced, we conclude that R is ring-isomorphic to either
251	$\mathbb{Z}_2 \times \mathbb{Z}_4$ or $\mathbb{Z}_2 \times \mathbb{Z}_2[X]/(X^2)$.
252	

 $(5) \Rightarrow (1)$. See Example 2.8.

Corollary 2.10. Let *R* be a commutative ring such that $AG(R) \neq \Gamma(R)$, and assume that *R* is not ring-isomorphic to $\mathbb{Z}_2 \times B$, where $B = \mathbb{Z}_4$ or $B = \mathbb{Z}_2[X]/(X^2)$. If *E* is an edge of AG(R) that is not an edge of $\Gamma(R)$, then *E* is an edge of a cycle of length three in AG(R).

259 260 **Corollary 2.11.** Let *R* be a commutative ring such that $AG(R) \neq \Gamma(R)$. Then 261 $gr(AG(R)) \in \{3, 4\}.$

Proof. This result is a direct implication of Theorem 2.9.

3. WHEN IS AG(R) IDENTICAL TO $\Gamma(R)$?

266 267 268 269 Let *R* be a commutative ring such that $|Z(R)^*| \ge 2$. Then $diam(\Gamma(R)) \in \{1, 2, 3\}$ by [3, Theorem 2.3]. Hence, if $\Gamma(R) = AG(R)$, then $diam(\Gamma(R)) \in \{1, 2\}$ by 269 Theorem 2.2. We recall the following results.

²⁷⁰₂₇₁ **Lemma 3.1**.

- (1) [3, the proof of Theorem 2.8] Let R be a reduced commutative ring that is not an integral domain. Then $\Gamma(R)$ is complete if and only if R is ring-isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.
- (2) [10, Theorem 2.6(3)] Let R be a commutative ring. Then $diam(\Gamma(R)) = 2$ if and only if either (i) R is reduced with exactly two minimal primes and at least three nonzero zero divisors, or (ii) Z(R) is an ideal whose square is not {0} and each pair of distinct zero divisors has a nonzero annihilator.

We first study the case when *R* is reduced.

Lemma 3.2. Let *R* be a reduced commutative ring that is not an integral domain, and let $z \in Z(R)^*$. Then:

285 (1) $ann_R(z) = ann_R(z^n)$ for each positive integer $n \ge 2$;

286 (2) If $c + z \in Z(R)$ for some $c \in ann_R(z) \setminus \{0\}$, then $ann_R(z + c)$ is properly contained 287 in $ann_R(z)$ (i.e., $ann_R(c + z) \subset ann_R(z)$). In particular, if Z(R) is an ideal of R288 and $c \in ann_R(z) \setminus \{0\}$, then $ann_R(z + c)$ is properly contained in $ann_R(z)$.

6

253

262

263 264 265

272

273

274

275

276

277

278

279 280

289 **Proof.** (1) Let $n \ge 2$. It is clear that $ann_R(z) \subseteq ann_R(z^n)$. Let $f \in ann_R(z^n)$. Since 290 $fz^n = 0$ and R is reduced, we have fz = 0. Thus $ann_R(z^n) = ann_R(z)$. 291 (2) Let $c \in ann_R(z) \setminus \{0\}$, and suppose hat $c + z \in Z(R)$. Since $z^2 \neq 0$, we have 292 $c + z \neq 0$, and hence $c + z \in Z(R)^*$. Since $c \in ann_R(z)$ and R is reduced, we have $c \notin z$ 293 $ann_R(c+z)$. Hence $ann_R(c+z) \neq ann_R(z)$. Since $ann_R(c+z) \subset ann_R(z(c+z)) =$ 294 $ann_R(z^2)$ and $ann_R(z^2) = ann_R(z)$ by (1), it follows that $ann_R(z+z) \subset ann_R(z)$. 295 296 297 **Theorem 3.3.** Let R be a reduced commutative ring that is not an integral domain. 298 Then the following statements are equivalent: 299 300 (1) AG(R) is complete; (2) $\Gamma(R)$ is complete (and hence $AG(R) = \Gamma(R)$); 301 (3) *R* is ring-isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$. 302 303 **Proof.** (1) \Rightarrow (2). Let $a \in Z(R)^*$. Suppose that $a^2 \neq a$. Since $ann_R(a^3) = ann_R(a)$ 304 by Lemma 3.2(1) and $a^3 \neq 0$, we have $a - a^2$ is not an edge of AG(R), a 305 contradiction. Thus $a^2 = a$ for each $a \in Z(R)$. Let x, y be distinct elements in $Z(R)^*$. 306 We show that x - y is an edge of $\Gamma(R)$. Suppose that $xy \neq 0$. Since x - y is an edge 307 308 of AG(R), we have $ann_R(xy) \neq ann_R(x)$, and thus $xy \neq x$. Since $x^2 = x$, we have $ann_R(x(xy)) = ann_R(x^2y) = ann_R(xy)$, and thus x - xy is not an edge of AG(R), a 309 310 contradiction. Hence xy = 0 and x - y is an edge of $\Gamma(R)$. 311 $(2) \Rightarrow (3)$. It follows from Lemma 3.1(1). 312 313 $(3) \Rightarrow (1)$. It is easily verified. 314 315 Let R be a reduced commutative ring with $|Min(R)| \ge 2$. If Z(R) is an 316 ideal of R, then Min(R) must be infinite, since $Z(R) = \bigcup \{Q \mid Q \in Min(R)\}$. For the 317 construction of a reduced commutative ring R with infinitely many minimal prime 318 ideals such that Z(R) is an ideal of R, see [10, Section 5 (Examples)] and [1, 319 Example 3.13]. 320 321 **Theorem 3.4.** Let R be a reduced commutative ring that is not an integral domain, 322 and assume that Z(R) is an ideal of R. Then $AG(R) \neq \Gamma(R)$ and gr(AG(R)) = 3. 323 324 **Proof.** Let $z \in Z(R)^*$, $c \in ann_R(z) \setminus \{0\}$, and $m \in ann_R(c+z) \setminus \{0\}$. Then $m \in C$ 325 $ann_R(c+z) \subset ann_R(z)$ by Lemma 3.2(2), and thus mc = 0. Since $c^2 \neq 0$, we have 326 $m \neq c$, and hence $c + z \neq m + z$. Since $\{c, m\} \subseteq ann_R(z)$ and $z^2 \neq 0$, we have c + z327 and m + z are nonzero distinct elements of Z(R). Since $(m + z)(c + z) = z^2 \neq 0$, we 328 have (c+z) - (m+z) is not an edge of $\Gamma(R)$. Since $c^2 \neq 0$ and $m^2 \neq 0$, it follows 329 that $(c+m) \in ann_R(z^2) \setminus (ann_R(c+z) \cup ann_R(m+z))$, and thus (c+z) - (m+z) is 330 an edge of AG(R). Since (c+z) - (m+z) is an edge of AG(R) that is not an edge 331

333 334 gr(AG(R)) = 3 by Theorem 2.6.

332

of $\Gamma(R)$, we have $AG(R) \neq \Gamma(R)$. Since R is reduced and $AG(R) \neq \Gamma(R)$, we have

 \square

Theorem 3.5. Let R be a reduced commutative ring with $|Min(R)| \ge 3$ (possibly 335 Min(R) is infinite). Then $AG(R) \neq \Gamma(R)$ and gr(AG(R)) = 3. 336

337 338 339 340 341	Proof. If $Z(R)$ is an ideal of R , then $AG(R) \neq \Gamma(R)$ by Theorem 3.4. Hence assume that $Z(R)$ is not an ideal of R . Since $ Min(R) \geq 3$, we have $diam(\Gamma(R)) = 3$ by Lemma 3.1(2), and thus $AG(R) \neq \Gamma(R)$ by Theorem 2.2. Since R is reduced and $AG(R) \neq \Gamma(R)$, we have $gr(AG(R)) = 3$ by Theorem 2.6.
342 343 344	Theorem 3.6. Let <i>R</i> be a reduced commutative ring that is not an integral domain. Then $AG(R) = \Gamma(R)$ if and only if $ Min(R) = 2$.
344 345 346 347 348 349 350 351 352 353 354	Proof. Suppose that $AG(R) = \Gamma(R)$. Since R is a reduced commutative ring that is not an integral domain, $ Min(R) = 2$ by Theorem 3.5. Conversely, suppose that $ Min(R) = 2$. Let P_1 , P_2 be the minimal prime ideals of R . Since R is reduced, we have $Z(R) = P_1 \cup P_2$ and $P_1 \cap P_2 = \{0\}$. Let $a, b \in Z(R)^*$. Assume that $a, b \in P_1$. Since $P_1 \cap P_2 = \{0\}$, neither $a \in P_2$ nor $b \in P_2$, and thus $ab \neq 0$. Since $P_1P_2 \subseteq P_1 \cap$ $P_2 = \{0\}$, it follows that $ann_R(ab) = ann_R(a) = ann_R(b) = P_2$. Thus $a - b$ is not an edge of $AG(R)$. Similarly, if $a, b \in P_2$, then $a - b$ is not an edge of $AG(R)$. If $a \in P_1$ and $b \in P_2$, then $ab = 0$, and thus $a - b$ is an edge of $AG(R)$. Hence each edge of $AG(R)$ is an edge of $\Gamma(R)$, and therefore, $AG(R) = \Gamma(R)$.
355 356	Theorem 3.7. Let <i>R</i> be a reduced commutative ring. Then the following statements are equivalent:
357 358 359 360 361 362 363 364	 gr(AG(R)) = 4; AG(R) = Γ(R) and gr(Γ(R)) = 4; gr(Γ(R)) = 4; T(R) is ring-isomorphic to K₁ × K₂, where each K_i is a field with K_i ≥ 3; Min(R) = 2 and each minimal prime ideal of R has at least three distinct elements; Γ(R) = K^{m,n} with m, n ≥ 2; AG(R) = K^{m,n} with m, n ≥ 2.
365 366 367 368 369 370	Proof. (1) \Rightarrow (2). Since $gr(AG(R)) = 4$, $AG(R) = \Gamma(R)$ by Theorem 2.6, and thus $gr(\Gamma(R)) = 4$. (2) \Rightarrow (3). No comments. (3) \Leftrightarrow (4) \Leftrightarrow (5) \Leftrightarrow (6) are clear by [2, Theorem 2.2]. (6) \Rightarrow (7). Since (6) implies $ Min(R) = 2$ by [2, Theorem 2.2], we conclude that $AG(R) = \Gamma(R)$ by Theorem 3.6, and thus $gr(AG(R)) = gr(\Gamma(R)) = 4$. (7) \Rightarrow (1). This is clear since $AG(R)$ is a complete bipartite graph and $n, m \ge 2$. \Box
371 372 373	Theorem 3.8. Let <i>R</i> be a reduced commutative ring that is not an integral domain. Then the following statements are equivalent:
374 375 376 377 378 379 380 381 382	 gr(AG(R)) = ∞; AG(R) = Γ(R) and gr(AG(R)) = ∞; gr(Γ(R)) = ∞; T(R) is ring-isomorphic to Z₂ × K, where K is a field; Min(R) = 2 and at least one minimal prime ideal ideal of R has exactly two distinct elements; Γ(R) = K^{1,n} for some n ≥ 1; AG(R) = K^{1,n} for some n ≥ 1.
383 384	Proof. (1) \Rightarrow (2). Since $gr(AG(R)) = \infty$, $AG(R) = \Gamma(R)$ by Theorem 2.6, and thus $gr(\Gamma(R)) = \infty$. (2) \Rightarrow (3). No comments. (3) \Leftrightarrow (4) \Leftrightarrow (5) \Leftrightarrow (6) are clear by

385 [2, Theorem 2.4]. (6) \Rightarrow (7). Since (6) implies |Min(R)| = 2 by [2, Theorem 2.4], we 386 conclude that $AG(R) = \Gamma(R)$ by Theorem 3.6, and thus $gr(AG(R)) = gr(\Gamma(R)) = \infty$. 387 $(7) \Rightarrow (1)$. It is clear. 388 In view of Theorem 3.7 and Theorem 3.8, we have the following result. 389 390 **Corollary 3.9.** Let R be a reduced commutative ring. Then $AG(R) = \Gamma(R)$ if and only 391 if $gr(AG(R)) = gr(\Gamma(R)) \in \{4, \infty\}.$ 392 393 394 For the remainder of this section, we study the case when R is nonreduced. 395 396 **Theorem 3.10.** Let R be a nonreduced commutative ring with $|Nil(R)^*| \ge 2$ and let 397 $AG_{N}(R)$ be the (induced) subgraph of AG(R) with vertices $Nil(R)^{*}$. Then $AG_{N}(R)$ is 398 complete. 399 400 **Proof.** Suppose there are nonzero distinct elements $a, b \in Nil(R)$ such that 401 $ab \neq 0$. Assume that $ann_R(ab) = ann_R(a) \cup ann_R(b)$. Hence $ann_R(ab) = ann_R(a)$ or $ann_R(ab) = ann_R(b)$. Without lost of generality, we may assume that $ann_R(ab) =$ 402 $ann_R(a)$. Let n be the least positive integer such that $b^n = 0$. Suppose that $ab^k \neq 0$ 403 for each k, $1 \le k < n$. Then $b^{n-1} \in ann_R(ab) \setminus ann_R(a)$, a contradiction. Hence assume 404 that k, $1 \le k < n$ is the least positive integer such that $ab^k = 0$. Since $ab \ne 0, 1 < 0$ 405 k < n. Hence $b^{k-1} \in ann_R(ab) \setminus ann_R(a)$, a contradiction. Thus a - b is an edge of 406 407 $AG_N(R)$. 408 In view of Theorem 3.10, we have the following result. 409 410 **Corollary 3.11.** Let R be a nonreduced quasi-local commutative ring with maximal 411 ideal Nil(R) such that $|Nil(R)^*| \geq 2$. Then AG(R) is complete. In particular, AG(\mathbb{Z}_{2^n}) 412 is complete for each $n \geq 3$ and if q > 2 is a positive prime number of \mathbb{Z} , then $AG(\mathbb{Z}_{q^n})$ 413 is complete for each $n \geq 2$. 414 415 The following is an example of a quasi-local commutative ring R with 416 maximal ideal Nil(R) such that $w^2 = 0$ for each $w \in Nil(R)$, $diam(\Gamma(R)) = 2$, 417 diam(AG(R)) = 1, and $gr(AG(R)) = gr(\Gamma(R)) = 3$. 418 419 **Example 3.12.** Let $R = \mathbb{Z}_{2}[X, Y]/(X^{2}, Y^{2}), x = X + (X^{2}, Y^{2}) \in R$, and $y = Y + (X^{2}, Y^{2}) \in R$ 420 $(X^2, Y^2) \in R$. Then R is a quasi-local commutative ring with maximal ideal Nil(R) =421 (x, y)R. It is clear that $w^2 = 0$ for each $w \in Nil(R)$ and diam(AG(R)) = 1 by 422 Corollary 3.11. Since $Nil(R)^2 \neq \{0\}$ and $xyNil(R) = \{0\}$, we have $diam(\Gamma(R)) = 2$ by 423 Lemma 3.1(2). Since x - xy - (xy + x) - x is a cycle of length three in $\Gamma(R)$, we have 424 425 $gr(AG(R)) = gr(\Gamma(R)) = 3.$ 426 427 **Theorem 3.13.** Let R be a nonreduced commutative ring with $|Nil(R)^*| \ge 2$, and let 428 $\Gamma_{N}(R)$ be the induced subgraph of $\Gamma(R)$ with vertices $Nil(R)^{*}$. Then $\Gamma_{N}(R)$ is complete 429 if and only if $Nil(R)^2 = \{0\}$. 430 431 **Proof.** If $Nil(R)^2 = \{0\}$, then it is clear that $\Gamma_N(R)$ is complete. Hence assume that $\Gamma_N(R)$ is complete. We need only show that $w^2 = 0$ for each $w \in Nil(R)^*$. 432

```
433
         Let w \in Nil(R)^* and assume that w^2 \neq 0. Let n be the least positive integer such
434
         that w^n = 0. Then n > 3. Thus w, w^{n-1} + w are distinct elements of Nil(R)^*. Since
435
         w(w^{n-1}+w) = 0 and w^n = 0, we have w^2 = 0, a contradiction. Thus w^2 = 0 for each
436
         w \in Nil(R).
                                                                                                     437
438
         Theorem 3.14. Let R be a nonreduced commutative ring, and suppose that Nil(R)^2 \neq R
439
         {0}. Then AG(R) \neq \Gamma(R) and gr(AG(R)) = 3.
440
441
         Proof. Since Nil(R)^2 \neq \{0\}, AG(R) \neq \Gamma(R) by Theorem 3.10 and Theorem 3.13.
442
         Thus gr(AG(R)) \in \{3, 4\} by Corollary 2.11. Let F = \mathbb{Z}_2 \times B, where B is \mathbb{Z}_4 or
443
         \mathbb{Z}_{2}[X]/(X^{2}). Since Nil(F)^{2} = \{0\} and Nil(F) \neq \{0\}, we have gr(AG(R)) \neq 4 by
444
         Theorem 2.9. Thus gr(AG(R)) = 3.
                                                                                                     \square
445
446
         Theorem 3.15. Let R be a nonreduced commutative ring such that Z(R) is not an
447
         ideal of R. Then AG(R) \neq \Gamma(R).
448
449
         Proof. Since R is nonreduced and Z(R) is not an ideal of R, diam(\Gamma(R)) = 3 by
450
         [10, Corollary 2.5]. Hence AG(R) \neq \Gamma(R) by Theorem 2.2.
451
         Theorem 3.16. Let R be a nonreduced commutative ring. Then the following
452
453
         statements are equivalent:
454
         (1) gr(AG(R)) = 4;
455
         (2) AG(R) \neq \Gamma(R) and gr(AG(R)) = 4;
456
         (3) R is ring-isomorphic to either \mathbb{Z}_2 \times \mathbb{Z}_4 or \mathbb{Z}_2 \times \mathbb{Z}_2[X]/(X^2);
457
         (4) \Gamma(R) = \overline{K}^{1,3};
458
         (5) AG(R) = K^{2,3}.
459
460
         Proof. (1) \Rightarrow (2). Suppose AG(R) = \Gamma(R). Then gr(\Gamma(R)) = 4, and R is ring-
461
         isomorphic to D \times B, where D is an integral domain with |D| \ge 3 and B = \mathbb{Z}_4
462
         or \mathbb{Z}_2[X]/(X^2) by [2, Theorem 2.3]. Assume that R is ring-isomorphic to D \times \mathbb{Z}_4.
463
         Since |D| \ge 3, there is an a \in D \setminus \{0, 1\}. Let x = (0, 1), y = (1, 2), w = (a, 2) \in R.
464
         Then x, y, w are distinct elements in Z(R)^*, w(xy) = (0, 0), wx \neq (0, 0), and wy \neq (0, 0)
465
         (0, 0). Thus x - w - y - x is a cycle of length three in AG(R) by Lemma 2.3,
466
         a contradiction. Similarly, assume that R is ring-isomorphic to D \times \mathbb{Z}_2[X]/(X^2).
467
         Again, since |D| \ge 3, there is an a \in D \setminus \{0, 1\}. Let x = X + (X^2) \in \mathbb{Z}_2[X]/(X^2). Then
468
         it is easily verified that (0, 1) - (a, x) - (1, x) - (0, 1) is a cycle of length three in
469
         AG(R), a contradiction. Thus AG(R) \neq \Gamma(R). (2) \Rightarrow (3). It is clear by Theorem 2.9.
470
         (3) \Leftrightarrow (4). It is clear by [2, Theorem 2.5]. (4) \Rightarrow (5). Since (4) implies (3) by [2,
471
         Theorem 2.5], it is easily verified that the annihilator graph of the two rings in (3)
472
         is K^{2,3}. (4) \Rightarrow (5). Since AG(R) is a K^{2,3}, it is clear that gr(AG(R)) = 4.
473
474
                We observe that gr(\Gamma(\mathbb{Z}_8)) = \infty, but gr(AG(\mathbb{Z}_8)) = 3. We have the following
475
         result.
476
477
         Theorem 3.17. Let R be a commutative ring such that AG(R) \neq \Gamma(R). Then the
478
         following statements are equivalent:
479
```

480 (1) $\Gamma(R)$ is a star graph;

481 (2) $\Gamma(R) = K^{1,2};$

482 (3) $AG(R) = K^3$.

483

484 **Proof.** (1) \Rightarrow (2). Since $gr(\Gamma(R)) = \infty$ and $\Gamma(R) \neq AG(R)$, we have R is non-485 reduced by Corollary 3.9 and $|Z(R)^*| \ge 3$. Since $\Gamma(R)$ is a star graph, there are two 486 sets A, B such that $Z(R)^* = A \cup B$ with |A| = 1, $A \cap B = \emptyset$, $AB = \{0\}$, and $b_1b_2 \neq A$ 487 0 for every $b_1, b_2 \in B$. Since |A| = 1, we may assume that $A = \{w\}$ for some $w \in A$ 488 $Z(R)^*$. Since each edge of $\Gamma(R)$ is an edge of AG(R) and $AG(R) \neq \Gamma(R)$, there 489 are some $x, y \in B$ such that x - y is an edge of AG(R) that is not an edge of 490 $\Gamma(R)$. Since $ann_R(c) = w$ for each $c \in B$ and $ann_R(xy) \neq ann_R(x) \cup ann_R(y)$, we 491 have $ann_{R}(xy) \neq w$. Thus $ann_{R}(xy) = B$ and xy = w. Since $A = \{xy\}$ and AB =492 {0}, we have $x(xy) = x^2y = 0$ and $y(xy) = y^2x = 0$. We show that $B = \{x, y\}$, and 493 hence |B| = 2. Thus assume there is a $c \in B$ such that $c \neq x$ and $c \neq y$. Then 494 wc = xyc = 0. We show that $(xc + xy) \neq x$ and $(xc + xy) \neq xy$ (note that xy = w). 495 Suppose that (xc + xy) = x. Then y(xc + xy) = yx. But $y(xc + xy) = yxc + xy^2 = yxc + xy^2$ 496 0 + 0 = 0 and $xy \neq 0$, a contradiction. Hence $x \neq (xc + xy)$. Since $x, c \in B$, we have 497 $xc \neq 0$ and thus $(xc + xy) \neq xy$. Thus x, (xc + xy), xy are distinct elements of $Z(R)^*$. 498 Since $x^2y = 0$ and $y \in B$, either $x^2 = 0$ or $x^2 = xy$ or $x^2 = y$. Suppose that $x^2 = y$. 499 Since $xy = w \neq 0$, we have $xy = x(x^2) = x^3 = w \neq 0$. Since $x^2y = 0$, we have $x^4 = 0$ 500 0. Since $x^4 = 0$ and $x^3 \neq 0$, we have $x^2, x^3, x^2 + x^3$ are distinct elements of $Z(R)^*$, 501 and thus $x^2 - x^3 - (x^2 + x^3) - x^2$ is a cycle of length three in $\Gamma(R)$, a contradiction. 502 Hence, we assume that either $x^2 = 0$ or $x^2 = xy = w$. In both cases, we have $x^2c = xy = w$. 503 0. Since x, (xc + xy), xy are distinct elements of $Z(R)^*$ and $xy^2 = yx^2 = x^2c = 0$, we 504 have x - (xc + xy) - xy - x is a cycle of length three in $\Gamma(R)$, a contradiction. Thus 505 $B = \{x, y\}$ and |B| = 2. Hence $\Gamma(R) = K^{1,2}$. (2) \Rightarrow (3). Since each edge of $\Gamma(R)$ is an 506 edge of AG(R) and $\Gamma(R) \neq AG(R)$ and $\Gamma(R) = K^{1,2}$, it is clear that AG(R) must be 507 K^3 . (3) \Rightarrow (1). Since $|Z(R)^*| = 3$ and $\Gamma(R)$ is connected and $AG(R) \neq \Gamma(R)$, exactly 508 one edge of AG(R) is not an edge of $\Gamma(R)$. Thus $\Gamma(R)$ is a star graph. \square

509

510 511 512 **Theorem 3.18.** Let *R* be a non-reduced commutative ring with $|Z(R)^*| \ge 2$. Then the following statements are equivalent:

- 513 (1) AG(R) is a star graph;
- 514 (2) $gr(AG(R)) = \infty;$
- 515 (3) $AG(R) = \Gamma(R)$ and $gr(\Gamma(R)) = \infty$;
- 516 (4) Nil(R) is a prime ideal of R and either $Z(R) = Nil(R) = \{0, -w, w\}$ $(w \neq -w)$ 517 for some nonzero $w \in R$ or $Z(R) \neq Nil(R)$ and $Nil(R) = \{0, w\}$ for some nonzero 518 $w \in R$ (and hence $wZ(R) = \{0\}$);
- 519 (5) Either $AG(R) = K^{1,1}$ or $AG(R) = K^{1,\infty}$;
- 520 (6) Either $\Gamma(R) = K^{1,1}$ or $\Gamma(R) = K^{1,\infty}$.
- 521

522 **Proof.** (1) \Rightarrow (2). It is clear by the definition of the star graph. (2) \Rightarrow (3). 523 Since $gr(AG(R)) = \infty$, $AG(R) = \Gamma(R)$ by Corollary 2.11, and thus $gr(\Gamma(R)) = \infty$. 524 (3) \Rightarrow (4). Suppose that $|Nil(R)^*| \ge 3$. Since $AG_N(R)$ is complete by Theorem 3.10 525 and $|Nil(R)^*| \ge 3$, we have $gr(AG(R)) = gr(\Gamma(R)) = 3$, a contradiction. Thus 526 $|Nil(R)^*| \in \{1, 2\}$. Suppose $|Nil(R)^*| = 2$. Then $Nil(R) = \{0, w, -w\}$ ($w \ne -w$) for 527 some nonzero $w \in R$. We show Z(R) = Nil(R). Assume there is a $k \in Z(R) \setminus Nil(R)$. 528 Suppose that wk = 0. Since $Nil(R)^2 = \{0\}$, w - k - (-w) - w is a cycle of length

529 three in $\Gamma(R)$, a contradiction. Thus assume that $wk \neq 0$. Hence there is an 530 $f \in Z(R)^* \setminus \{w, -w, k\}$, such that w - f - z is a path of length two in $\Gamma(R)$ by 531 Theorem 2.2 (note that we are assuming that $AG(R) = \Gamma(R)$). Thus w - f - (-w) - C(R)532 w is a cycle of length three in $\Gamma(R)$, a contradiction. Hence if $|Nil(R)^*| = 2$, then 533 Z(R) = Nil(R). Thus assume that $Nil(R) = \{0, w\}$ for some nonzero $w \in R$. We show 534 Nil(R) is a prime ideal of R. Since $gr(AG(R)) = gr(\Gamma(R)) = \infty$, we have AG(R) =535 $\Gamma(R)$ is a star graph by [2, Theorem 2.5] and Theorem 3.16. Since $|Z(R)^*| \ge 2$ by 536 hypothesis and $|Nil(R)^*| = 1$, we have $Z(R) \neq Nil(R)$. Let $c \in Z(R)^* \setminus Nil(R)^*$. We 537 show wc = 0. Suppose that $wc \neq 0$. Since $|Nil(R)^*| = 1$ and $wc \neq 0$, we have wc = 0538 w. Thus w(c-1) = 0. Since $w + 1 \in U(R)$ and $c \notin U(R)$, we have $c - 1 \neq w$. Since 539 $\Gamma(R)$ is a star graph and w(c-1) = 0 and $wc \neq 0$, we have (c-1)j = 0 for each $j \in C$ 540 $Z(R)^* \setminus \{c-1\}$. In particular, (c-1)[(c-1)+w] = 0, and therefore w - (c-1) - c541 (c-1+w)-w is a cycle of length three in $\Gamma(R)$, a contradiction. Hence wc=0. 542 Since $wZ(R) = \{0\}$ and $\Gamma(R)$ is a star graph, we have $Nil(R) = \{0, w\}$ is a prime 543 ideal of R. (4) \Rightarrow (5). Suppose that Nil(R) is a prime ideal of R. If Z(R) = Nil(R)544 and $|Nil(R)^*| = 2$, then $AG(R) = K^{1,1}$. Hence, assume that $Nil(R) = \{0, w\}$ for some 545 nonzero $w \in R$. We show that Z(R) is an infinite set. Let $c \in Z(R) \setminus Nil(R)$ and let 546 $n > m \ge 1$. We show that $c^m \ne c^n$. Suppose that $c^m = c^n$. Then $c^m(1 - c^{n-m}) = 0$. 547 548 Since $Nil(R) = \{0, w\}$ is a prime ideal of R, we have $(1 - c^{n-m}) = w$. Since $1 - w \in C$ 549 U(R), we have $1 - w = c^{n-m} \in U(R)$, a contradiction. Thus $c^m \neq c^n$, and hence Z(R)550 is an infinite set. Since $Nil(R) = \{0, w\}$ is a prime ideal of R and $wZ(R) = \{0\}$, we 551 have $AG(R) = K^{1,\infty}$. (5) \Rightarrow (6). It is clear. (6) \Rightarrow (1). Since $\Gamma(R)$ is a star graph and 552 $\Gamma(R) \neq K^{1,2}$, we have $AG(R) = \Gamma(R)$ by Theorem 3.17, and thus $gr(AG(R)) = \infty$. 553 554

555 **Corollary 3.19** ([3, Theorem 2.13], [2, Remark 2.6(a)], and [4, Theorem 3.9]). Let R be a nonreduced commutative ring with $|Z(R)^*| > 2$. Then $\Gamma(R)$ is a star graph if and only if $\Gamma(R) = K^{1,1}$, $\Gamma(R) = K^{1,2}$, or $\Gamma(R) = K^{1,\infty}$.

Proof. The proof is a direct implication of Theorems 3.17 and 3.18.

In the following example, we construct two nonreduced commutative rings say R_1 and R_2 , where $AG(R_1) = K^{1,1}$ and $AG(R_2) = K^{1,\infty}$.

564 565 566

563

556

557

558 559

560 561 562

Example 3.20.

- 567 (1) Let $R_1 = \mathbb{Z}_3[X]/(X^2)$, and let $x = X + (X^2) \in R_1$. Then $Z(R_1) = Nil(R_1) =$ 568 $\{0, -x, x\}$ and $AG(R_1) = \Gamma(R_1) = K^{1,1}$. Also note that $AG(\mathbb{Z}_9) = \Gamma(\mathbb{Z}_9) = K^{1,1}$. 569
 - (2) Let $R_2 = \mathbb{Z}_2[X, Y]/(XY, X^2)$. Then let $x = X + (XY + X^2)$ and $y = Y + (XY + X^2)$ $X^2 \in R_2$. Then $Z(R_2) = (x, y)R_2$, $Nil(R_2) = \{0, x\}$, and $Z(R_2) \neq Nil(R_2)$. It is clear that $AG(R_2) = \Gamma(R_2) = K^{1,\infty}$.
- 571 572 573

570

Remark 3.21. Let *R* be a nonreduced commutative ring. In view of Theorem 3.15, 574 Theorem 3.16, and Theorem 3.18, if $AG(R) = \Gamma(R)$, then Z(R) is an ideal of R and 575 $gr(AG(R)) = gr(\Gamma(R)) \in \{3, \infty\}$. The converse is true if $gr(AG(R)) = gr(\Gamma(R)) = \infty$ 576

(see Theorems 3.15 and 3.18). However, if Z(R) is an ideal of R and gr(AG(R)) =

577

578 $gr(\Gamma(R)) = 3$, then it is possible to have all the following cases: 579 (1) It is possible to have a commutative ring R such that Z(R) is an ideal of R, 580 $Z(R) \neq Nil(R), AG(R) = \Gamma(R), \text{ and } gr(AG(R)) = 3.$ See Example 3.22; 581 (2) It is possible to have a commutative ring R such that Z(R) is an ideal of R, 582 $Z(R) \neq Nil(R), Nil(R)^2 = \{0\}, AG(R) \neq \Gamma(R), diam(AG(R)) = diam(\Gamma(R)) = 2,$ 583 and $gr(AG(R)) = gr(\Gamma(R)) = 3$. See Example 3.23. 584 (3) It is possible to have a commutative ring R such that Z(R) is an 585 ideal of R, $Z(R) \neq Nil(R)$, $Nil(R)^2 = \{0\}$, AG(R) is a complete graph 586 (i.e., diam(AG(R)) = 1), $AG(R) \neq \Gamma(R)$, $diam(\Gamma(R)) = 2$, and gr(AG(R)) =587 $gr(\Gamma(R)) = 3$. See Theorem 3.24. 588 589 **Example 3.22.** Let $D = \mathbb{Z}_2[X, Y, W]$, $I = (X^2, Y^2, XY, XW)D$ be an ideal of D, and 590 let R = D/I. Then let x = X + I, y = Y + I, and w = W + I be elements of R. Then 591 Nil(R) = (x, y)R and Z(R) = (x, y, w)R is an ideal of R. By construction, we have 592 $Nil(R)^2 = \{0\}, AG(R) = \Gamma(R), diam(AG(R)) = diam(\Gamma(R)) = 2, and gr(AG(R)) = 0$ 593 594 $gr(\Gamma(R)) = 3$ (for example, x - (x + y) - y - x is a cycle of length three). 595 **Example 3.23.** Let $D = \mathbb{Z}_{2}[X, Y, W], I = (X^{2}, Y^{2}, XY, XW, YW^{3})D$ be an ideal 596 of D, and let R = D/I. Then let x = X + I, y = Y + I, and w = W + I be 597 elements of R. Then Nil(R) = (x, y)R and Z(R) = (x, y, w)R is an ideal of 598 R. By construction, $Nil(R)^2 = \{0\}$, $diam(AG(R)) = diam(\Gamma(R)) = 2$, gr(AG(R)) =599 $gr(\Gamma(R)) = 3$. However, since $w^3 \neq 0$ and $y \in ann_R(w^3) \setminus (ann_R(w) \cup ann_R(w^2))$, we 600 have $w - w^2$ is an edge of AG(R) that is not an edge of $\Gamma(R)$, and hence $AG(R) \neq 0$ 601 $\Gamma(R)$. 602 603 Given a commutative ring R and an R-module M, the *idealization* of M is 604 the ring $R(+)M = R \times M$ with addition defined by (r, m) + (s, n) = (r + s, m + n)605 and multiplication defined by (r, m)(s, n) = (rs, rn + sm) for all $r, s \in R$ and $m, n \in R$ 606 M. Note that $\{0\}(+)M \subseteq Nil(R(+)M)$ since $(\{0\}(+)M)^2 = \{(0,0)\}$. We have the 607 following result. 608 609 **Theorem 3.24.** Let D be a principal ideal domain that is not a field with quotient 610 field K (for example, let $D = \mathbb{Z}$ or D = F[X] for some field F), and let Q = (p) be a 611 nonzero prime ideal of D for some prime (irreducible) element $p \in D$. Set $M = K/D_0$ 612 and R = D(+)M. Then $Z(R) \neq Nil(R)$, AG(R) is a complete graph, $AG(R) \neq \Gamma(R)$, 613 614 and $gr(AG(R)) = gr(\Gamma(R)) = 3$. 615 **Proof.** By construction of R, Z(R) = O(+)M, $Nil(R) = \{0\}(+)M$, and $Nil(R)^2 =$ 616 $\{(0,0)\}$. Let x, y be distinct elements of $Z(R)^*$, and suppose that $xy \neq 0$. Since 617 $Nil(R)^2 = \{(0, 0)\}$, to show that AG(R) is complete, we consider two cases. Case I: 618 assume $x \in Nil(R)^*$ and $y \in Z(R) \setminus Nil(R)$. Then $x = (0, \frac{a}{cp^m} + D_Q)$ for some nonzero 619 620 $a \in D, c \in D \setminus Q$, and some positive integer $m \ge 1$ such that $gcd(a, cp^m) = 1$, and 621 $y = (hp^n, f)$ for some positive integer $n \ge 1$, a nonzero $h \in D$, and $f \in M$. Since $xy \neq 0$, we have n < m. Hence $xy = (0, \frac{ha}{cp^{m-n}} + D_Q) \in Nil(R)^*$. Since $(p^{m-n}, 0) \in Nil(R)$ 622 623 $ann_R(xy) \setminus (ann_R(x) \cup ann_R(y))$, we have x - y is an edge of AG(R). Case II: assume 624 that $x, y \in Z(R)^* \setminus Nil(R)^*$. Then $x = (dp^u, g)$ and $y = (vp^r, w)$ for some positive

625 integers $u, r \ge 1$, nonzero $d, v \in D \setminus Q$, and $g, w \in M$. Hence $xy = (dvp^{u+r}, dp^uw + Q)$ vp^rg). Since $(0, \frac{1}{p^{n+r}} + D_Q) \in ann_R(xy) \setminus (ann_R(x) \cup ann_R(y))$, we have x - y is an edge of AG(R). Since $(0, \frac{1}{p} + D_Q) - (0, \frac{1}{p^2} + D_Q) - (0, \frac{1}{p^3} + D_Q) - (0, \frac{1}{p} + D_Q)$ is a cycle of length three in $\Gamma(R)$, we have $gr(AG(R)) = gr(\Gamma(R)) = 3$. 626 627 628 629

630 The following example shows that the hypothesis "Q is principal" in the above 631 theorem is crucial. 632

633 **Example 3.25.** Let $D = \mathbb{Z}[X]$ with quotient field K and Q = (2, X)D. Then Q is 634 a nonprincipal prime ideal of D. Set $M = K/D_0$ and R = D(+)M. Then Z(R) =635 Q(+)M, $Nil(R) = \{0\}(+)M$, and $Nil(R)^2 = \{(0, 0)\}$. Let a = (2, 0) and $b = (0, \frac{1}{x} + 1)$ 636 D_0). Then $ab = (0, \frac{2}{x} + D_0) \in Nil(R)^*$. Since $ann_R(ab) = ann_R(b)$, we have a - b is 637 not an edge of AG(R). Thus AG(R) is not a complete graph.

638 639

641

642

643

646

ACKNOWLEDGMENTS 640

I would like to express my sincere gratitude to the referee for his (her) great effort in proofreading the manuscript and for the several comments.

644 REFERENCES 645

- [1] Anderson, D. F. (2008). On the diameter and girth of a zero-divisor graph, II. Houston J. Math. 34:361-371.
- 648 [2] Anderson, D. F., Mulay, S. B. (2007). On the diameter and girth of a zero-divisor 649 graph. J. Pure Appl. Algebra 210(2):543-550.
- 650 [3] Anderson, D. F., Livingston, P. S. (1999). The zero-divisor graph of a commutative 651 ring. J. Algebra 217:434-447.
- [4] Anderson, D. F., Levy, R., Shapiro, J. (2003). Zero-divisor graphs, von Neumann 652 regular rings, and boolean algebras. JPAA 180:221-241. 653
- Anderson, D. F., Axtell, M. C., Stickles, J. A. Jr. (2011). Zero-divisor graphs in [5] 654 commutative rings. In: Fontana, M., Kabbaj, S.-E., Olberding, B., Swanson, I., 655 eds. Commutative Algebra, Noetherian and Non-Noetherian Perspectives. New York: 656 Springer-Verlag, pp. 23–45.
- 657 [6] Beck, I. (1988). Coloring of commutative rings. J. Algebra 116:208–226. 658
 - [7] Bollaboás, B. (1998). Modern Graph Theory. New York: Springer-Verlag.
- 659 [8] Hung-Jen Chiang-Hsieh (2008). Classification of rings with projective zero-divisor 660 graphs. J. Algebra 319:2789–2802.
- 661 [9] Huckaba, J. A. (1988). Commutative Rings with Zero Divisors. New York/Basel: 662 Marcel Dekker.
- 663 Lucas, T. G. (2006). The diameter of a zero-divisor graph. J. Algebra 301:3533-3558. [10]
- [11] Hsin-Ju Wang (2006). Zero-divisor graphs of genus one. J. Algebra 304:666-678. 664
- Wickham, C. (2009). Rings whose zero-divisor graphs have positive genus. J. Algebra [12] 665 321:377-383. 666
- [13] Akbari, S., Maimani, H. R., Yassemi, S. (2003). When a zero-divisor graph is planar 667 or a complete r-partite graph. J. Algebra 270:169-180. 668
- Maimani, H. R., Pournaki, M. R., Tehranian, A., Yassemi, S. (2011). Graphs attached [14] 669 to rings revisited. Arab. J. Sci. Eng. 36:997-1012. 670
- 671
- 672

14