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ON THE ANNIHILATOR GRAPH OF A COMMUTATIVE RING
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Let R be a commutative ring with nonzero identity, Z4R5 be its set of zero-divisors, and

if a ∈ Z4R5, then let annR4a5 = 8d ∈ R �da = 09. The annihilator graph of R is the

(undirected) graph AG4R5 with vertices Z4R5∗ = Z4R5\809, and two distinct vertices

x and y are adjacent if and only if annR4xy5 6= annR4x5 ∪ annR4y5. It follows that

each edge (path) of the zero-divisor graph â4R5 is an edge (path) of AG4R5. In this

article, we study the graph AG4R5. For a commutative ring R, we show that AG4R5 is

connected with diameter at most two and with girth at most four provided that AG4R5

has a cycle. Among other things, for a reduced commutative ring R, we show that the

annihilator graph AG4R5 is identical to the zero-divisor graph â4R5 if and only if R

has exactly two minimal prime ideals.
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1. INTRODUCTION

Let R be a commutative ring with nonzero identity, and let Z4R5 be its set
of zero-divisors. Recently, there has been considerable attention in the literature
to associating graphs with algebraic structures (see [8, 11–14]). Probably the most
attention has been to the zero-divisor graph â4R5 for a commutative ring R. The
set of vertices of â4R5 is Z4R5∗, and two distinct vertices x and y are adjacent if
and only if xy = 0. The concept of a zero-divisor graph goes back to Beck [6],
who let all elements of R be vertices and was mainly interested in colorings. The
zero-divisor graph was introduced by David F. Anderson and Paul S. Livingston
in [3], where it was shown, among other things, that â4R5 is connected with
diam4â4R55 ∈ 801 11 21 39 and gr4â4R55 ∈ 831 41�9. For a recent survey article on
zero-divisor graphs, see [5]. In this article, we introduce the annihilator graph AG4R5
for a commutative ring R. Let a ∈ Z4R5 and let annR4a5 = 8r ∈ R � ra = 09. The
annihilator graph of R is the (undirected) graph AG4R5 with vertices Z4R5∗ =
Z4R5\809, and two distinct vertices x and y are adjacent if and only if annR4xy5 6=
annR4x5 ∪ annR4y5. It follows that each edge (path) of â4R5 is an edge (path) of
AG4R5.
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2 BADAWI

In the second section, we show that AG4R5 is connected with diameter at most
two (Theorem 2.2). If AG4R5 is not identical to â4R5, then we show that gr4AG4R55

(i.e., the length of a smallest cycle) is at most four (Corollary 2.11). In the third
section, we determine when AG4R5 is identical to â4R5. For a reduced commutative
ring R, we show that AG4R5 is identical to â4R5 if and only if R has exactly two
distinct minimal prime ideals (Theorem 3.6). Among other things, we determine
when AG4R5 is a complete graph, a complete bipartite graph, or a star graph.

Let â be a (undirected) graph. We say that â is connected if there is a path
between any two distinct vertices. For vertices x and y of â , we define d4x1 y5 to be
the length of a shortest path from x to y (d4x1 x5 = 0 and d4x1 y5 = � if there is no
path). Then the diameter of â is diam4â5 = sup8d4x1 y5 � x and y are vertices of â9.
The girth of â , denoted by gr4â5, is the length of a shortest cycle in â (gr4â5 = � if
â contains no cycles).

A graph â is complete if any two distinct vertices are adjacent. The complete
graph with n vertices will be denoted by Kn (we allow n to be an infinite cardinal).
A complete bipartite graph is a graph â which may be partitioned into two disjoint
nonempty vertex sets A and B such that two distinct vertices are adjacent if and only
if they are in distinct vertex sets. If one of the vertex sets is a singleton, then we call
â a star graph. We denote the complete bipartite graph by Km1n, where �A� = m and
�B� = n (again, we allow m and n to be infinite cardinals); so a star graph is a K11n

and K11� denotes a star graph with infinitely many vertices. Finally, let K
m13

be the
graph formed by joining â1 = Km13 (= A ∪ B with �A� = m and �B� = 3) to the star
graph â2 = K11m by identifying the center of â2 and a point of B.

Throughout, R will be a commutative ring with nonzero identity, Z4R5 its set
of zero-divisors, Nil4R5 its set of nilpotent elements, U4R5 its group of units, T4R5 its
total quotient ring, and Min4R5 its set of minimal prime ideals. For any A ⊆ R, let
A∗ = A\809. We say that R is reduced if Nil4R5 = 809 and that R is quasi-local if R
has a unique maximal ideal. The distance between two distinct vertices a1 b of â4R5
is denoted by dâ4R54a1 b5. If AG4R5 is identical to â4R5, then we write AG4R5 = â4R5;
otherwise, we write AG4R5 6= â4R5. As usual, ú and ún will denote the integers and
integers modulo n, respectively. Any undefined notation or terminology is standard,
as in [9] or [7].

2. BASIC PROPERTIES OF AG4R5

In this section, we show that AG4R5 is connected with diameter at most two. If
AG4R5 6= â4R5, we show that gr4AG4R55 ∈ 831 49. If �Z4R5∗� = 1 for a commutative
ring R, then R is ring-isomorphic to either Z4 or Z26X7/4X

25 and hence AG4R5 =

â4R5. Since commutative rings with exactly one nonzero zero-divisor are studied in
[2, 3, 10], throughout this article we only consider commutative rings with at least
two nonzero zero-divisors.

We begin with a lemma containing several useful properties of AG4R5.

Lemma 2.1. Let R be a commutative ring.

(1) Let x1 y be distinct elements of Z4R5∗. Then x − y is not an edge of AG4R5 if and

only if annR4xy5 = annR4x5 or annR4xy5 = annR4y5.
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(2) If x − y is an edge of â4R5 for some distinct x1 y ∈ Z4R5∗, then x − y is an edge of
AG4R5. In particular, if P is a path in â4R5, then P is a path in AG4R5.

(3) If x − y is not an edge of AG4R5 for some distinct x1 y ∈ Z4R5∗, then annR4x5 ⊆
annR4y5 or annR4y5 ⊆ annR4x5.

(4) If annR4x5 * annR4y5 and annR4y5 * annR4x5 for some distinct x1 y ∈ Z4R5∗, then
x − y is an edge of AG4R5.

(5) If dâ4R54x1 y5 = 3 for some distinct x1 y ∈ Z4R5∗, then x − y is an edge of AG4R5.
(6) If x − y is not an edge of AG4R5 for some distinct x1 y ∈ Z4R5∗, then there is a

w ∈ Z4R5∗\8x1 y9 such that x − w − y is a path in â4R5, and hence x − w − y is also
a path in AG4R5.

Proof. (1) Suppose that x − y is not an edge of AG4R5. Then annR4xy5 =

annR4x5 ∪ annR4y5 by definition. Since annR4xy5 is a union of two ideals, we have
annR4xy5 = annR4x5 or annR4xy5 = annR4y5. Conversely, suppose that annR4xy5 =
annR4x5 or annR4xy5 = annR4y5. Then annR4xy5 = annR4x5 ∪ annR4y5, and thus x −
y is not an edge of AG4R5.

(2) Suppose that x − y is an edge of â4R5 for some distinct x1 y ∈ Z4R5∗. Then
xy = 0 and hence annR4xy5 = R. Since x 6= 0 and y 6= 0, annR4x5 6= R and annR4y5 6=
R. Thus x − y is an edge of AG4R5. The “in particular” statement is now clear.

(3) Suppose that x − y is not an edge of AG4R5 for some distinct x1 y ∈

Z4R5∗. Then annR4x5 ∪ annR4y5 = annR4xy5. Since annR4xy5 is a union of two ideals,
we have annR4x5 ⊆ annR4y5 or annR4y5 ⊆ annR4x5.

(4) This statement is now clear by (3).

(5) Suppose that dâ4R54x1 y5 = 3 for some distinct x1 y ∈ Z4R5∗. Then
annR4x5 * annR4y5 and annR4y5 * annR4x5. Hence x − y is an edge of AG4R5 by (4).

(6) Suppose that x − y is not an edge of AG4R5 for some distinct x1 y ∈

Z4R5∗. Then there is a w ∈ annR4x5 ∩ annR4y5 such that w 6= 0 by (3). Since xy 6= 0,
we have w ∈ Z4R5∗\8x1 y9. Hence x − w − y is a path in â4R5, and thus x − w − y is
a path in AG4R5 by (2). �

In view of (6) in the preceding lemma, we have the following result.

Theorem 2.2. Let R be a commutative ring with �Z4R5∗� ≥ 2. Then AG4R5 is
connected and diam4AG4R55 ≤ 2.

Lemma 2.3. Let R be a commutative ring, and let x1 y be distinct nonzero elements.
Suppose that x − y is an edge of AG4R5 that is not an edge of â4R5 for some distinct
x1 y ∈ Z4R5∗. If there is a w ∈ annR4xy5\8x1 y9 such that wx 6= 0 and wy 6= 0, then x −
w − y is a path in AG4R5 that is not a path in â4R5, and hence C 2 x − w − y − x is a
cycle in AG4R5 of length three and each edge of C is not an edge of â4R5.

Proof. Suppose that x − y is an edge of AG4R5 that is not an edge of â4R5. Then
xy 6= 0. Assume there is a w ∈ annR4xy5\8x1 y9 such that wx 6= 0 and wy 6= 0. Since
y ∈ annR4xw5\4annR4x5 ∪ annR4w55, we conclude that x − w is an edge of AG4R5.
Since x ∈ annR4yw5\4annR4y5 ∪ annR4w55, we conclude that y − w is an edge of
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4 BADAWI

AG4R5. Hence x − w − y is a path in AG4R5. Since xw 6= 0 and yw 6= 0, we have
x − w − y is not a path in â4R5. It is clear that x − w − y − x is a cycle in AG4R5 of
length three and each edge of C is not an edge of â4R5. �

Theorem 2.4. Let R be a commutative ring. Suppose that x − y is an edge of AG4R5
that is not an edge of â4R5 for some distinct x1 y ∈ Z4R5∗. If xy2 6= 0 and x2y 6= 0, then
there is a w ∈ Z4R5∗ such that x − w − y is a path in AG4R5 that is not a path in â4R5,
and hence C 2 x − w − y − x is a cycle in AG4R5 of length three and each edge of C is
not an edge of â4R5.

Proof. Suppose that x − y is an edge of AG4R5 that is not an edge of â4R5.
Then xy 6= 0 and there is a w ∈ annR4xy5\4annR4x5 ∪ annR4y55. We show w y 8x1 y9.
Assume w ∈ 8x1 y9. Then either x2y = 0 or y2x = 0, which is a contradiction. Thus
w y 8x1 y9. Hence x − w − y is the desired path in AG4R5 by Lemma 2.3. �

Corollary 2.5. Let R be a reduced commutative ring. Suppose that x − y is an edge
of AG4R5 that is not an edge of â4R5 for some distinct x1 y ∈ Z4R5∗. Then there is a
w ∈ annR4xy5\8x1 y9 such that x − w − y is a path in AG4R5 that is not a path in â4R5,
and hence C 2 x − w − y − x is a cycle in AG4R5 of length three and each edge of C is
not an edge of â4R5.

Proof. Suppose that x − y is an edge of AG4R5 that is not an edge of â4R5 for
some distinct x1 y ∈ Z4R5∗. Since R is reduced, we have 4xy52 6= 0. Hence xy2 6= 0
and x2y 6= 0, and thus the claim is now clear by Theorem 2.4. �

In light of Corollary 2.5, we have the following result.

Theorem 2.6. Let R be a reduced commutative ring, and suppose that AG4R5 6=
â4R5. Then gr4AG4R55 = 3. Furthermore, there is a cycle C of length three in AG4R5
such that each edge of C is not an edge of â4R5.

In view of Theorem 2.4, the following is an example of a nonreduced
commutative ring R where x − y is an edge of AG4R5 that is not an edge of â4R5
for some distinct x1 y ∈ Z4R5∗, but every path in AG4R5 of length two from x to y
is also a path in â4R5.

Example 2.7. Let R = ú8. Then 2− 6 is an edge of AG4R5 that is not an edge
of â4R5. Now 2− 4− 6 is the only path in AG4R5 of length two from 2 to 6
and it is also a path in â4R5. Note that AG4R5 = K3, â4R5 = K112, gr4â4R55 = �,
gr4AG4R55 = 3, diam4â4R55 = 2, and diam4AG4R55 = 1.

The following is an example of a nonreduced commutative ring R such that
AG4R5 6= â4R5 and if x − y is an edge of AG4R5 that is not an edge of â4R5 for some
distinct x1 y ∈ Z4R5∗, then there is no path in AG4R5 of length two from x to y.

Example 2.8.

(1) Let R = ú2 × ú4 and let a = 401 151 b = 411 25, and c = 401 35. Then a− b and
c − b are the only two edges of AG4R5 that are not edges of â4R5, but there is
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no path in AG4R5 of length two from a to b and there is no path in AG4R5 of

length two from c to b. Note that AG4R5 = K213, â4R5 = K
113
, gr4AG4R55 = 4,

gr4â4R55 = �, diam4AG4R5 = 2, and diam4â4R55 = 3.
(2) Let R = ú2 × ú26X7/4X

25. Let x = X + 4X25 ∈ ú26X7/4X
25, a = 401 151 b =

411 x5, and c = 401 1+ x5. Then a− b and c − b are the only two edges of
AG4R5 that are not edges of â4R5, but there is no path in AG4R5 of length
two from a to b and there is no path in AG4R5 of length two from c to b.

Again, note that AG4R5 = K213, â4R5 = K
113
, gr4AG4R55 = 4, gr4â4R55 = �,

diam4AG4R5 = 2, and diam4â4R55 = 3.

Theorem 2.9. Let R be a commutative ring and suppose that AG4R5 6= â4R5. Then

the following statements are equivalent:

(1) gr4AG4R55 = 4;
(2) gr4AG4R55 6= 3;
(3) If x − y is an edge of AG4R5 that is not an edge of â4R5 for some distinct x1 y ∈

Z4R5∗, then there is no path in AG4R5 of length two from x to y;

(4) There are some distinct x1 y ∈ Z4R5∗ such that x − y is an edge of AG4R5 that is

not an edge of â4R5 and there is no path in AG4R5 of length two from x to y;

(5) R is ring-isomorphic to either ú2 × ú4 or ú2 × ú26X7/4X
25.

Proof. 415 ⇒ 425. No comments.

425 ⇒ 435. Suppose that x − y is an edge of AG4R5 that is not an edge of
â4R5 for some distinct x1 y ∈ Z4R5∗. Since gr4AG4R55 6= 3, there is no path in AG4R5

of length two from x to y.

435 ⇒ 445. Since AG4R55 6= â4R5 by hypothesis, there are some distinct x1 y ∈

Z4R5∗ such that x − y is an edge of AG4R5 that is not an edge of â4R5, and hence
there is no path in AG4R5 of length two from x to y by (3).

445 ⇒ 455. Suppose there are some distinct x1 y ∈ Z4R5∗ such that x − y is
an edge of AG4R5 that is not an edge of â4R5 and there is no path in AG4R5 of
length two from x to y. Then annR4x5 ∩ annR4y5 = 809. Since xy 6= 0 and annR4x5 ∩
annR4y5 = 809, by Lemma 2.3 we conclude that annR4xy5 = annR4x5 ∪ annR4y5 ∪
8y9 such that y2 6= 0 or annR4xy5 = annR4x5 ∪ annR4y5 ∪ 8x9 such that x2 6= 0 (note
that if 8x1 y9 ⊆ annR4xy5, then x − xy − y is a path in AG4R5 of length two).
Without lost of generality, we may assume that annR4xy5 = annR4x5 ∪ annR4y5 ∪ 8y9
and y2 6= 0. Let a be a nonzero element of annR4x5 and b be a nonzero element
of annR4y5. Since annR4x5 ∩ annR4y5 = 809, we have a+ b ∈ annR4xy5\4annR4x5 ∪

annR4y55, and hence a+ b = y. Thus �annR4x5� = �annR4y5� = 2. Since xy2 = 0, we
have annR4x5 = 801 y29 and annR4y5 = 801 xy9. Since y2 + xy = y, we have 4y2 +
xy52 = y2. Since xy3 = 0 and xy2 = x2y2 = 0, we have 4y2 + xy52 = y2 implies that
y4 = y2. Since y2 6= 0 and y4 = y2, we have y2 is a nonzero idempotent of R. Hence
annR4xy5 = annR4x5 ∪ annR4y5 ∪ 8y9 = 801 y21 xy1 y9. Thus annR4xy5 ⊆ yR and since
yR ⊆ annR4xy5, we conclude annR4xy5 = yR = 801 y21 xy1 y9. Since y2 + xy = y and
y4 = y2, we have 4y2 + xy53 = y3 and hence y3 = y2. Thus y2R = y4yR5 = 801 y29.
Since y2 is a nonzero idempotent of R and y2R is a ring with two elements, we
conclude that y2R is ring-isomorphic to ú2. Let f ∈ annR4y

25. Then y2f = y4yf5 =
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6 BADAWI

0, and thus yf ∈ annR4y5. Hence either yf = 0 or yf = yx. Suppose yf = 0. Since
annR4y5 = 801 xy9, either f = 0 or f = xy. Suppose yf = yx. Then y4f − x5 = 0,
and thus f − x = 0 or f − x = xy. Hence f = x or f = x + xy. It is clear that
01 x1 xy1 x + xy are distinct elements of R and thus annR4y

25 = 801 x1 xy1 x + xy9.
Since annR4y

25 = 41− y25R, we have 41− y25R = 801 x1 xy1 x + xy9. Since 41− y25R
is a ring with four elements, we conclude that 41− y25R is ring-isomorphic to either
ú4 or ú2 × ú2 or F4 or ú26X7/4X

25. Since x − y is an edge of AG4R5 that is not an
edge of â4R5 and there is no path in AG4R5 of length two from x to y by hypothesis,
we conclude that R is non-reduced by Corollary 2.5. Since R is ring-isomorphic to
y2R× 41− y25R and non-reduced, we conclude that R is ring-isomorphic to either
ú2 × ú4 or ú2 × ú26X7/4X

25.

455 ⇒ 415. See Example 2.8. �

Corollary 2.10. Let R be a commutative ring such that AG4R5 6= â4R5, and assume
that R is not ring-isomorphic to ú2 × B, where B = ú4 or B = ú26X7/4X

25. If E is an
edge of AG4R5 that is not an edge of â4R5, then E is an edge of a cycle of length three
in AG4R5.

Corollary 2.11. Let R be a commutative ring such that AG4R5 6= â4R5. Then
gr4AG4R55 ∈ 831 49.

Proof. This result is a direct implication of Theorem 2.9. �

3. WHEN IS AG4R5 IDENTICAL TO â 4R5?

Let R be a commutative ring such that �Z4R5∗� ≥ 2. Then diam4â4R55 ∈
811 21 39 by [3, Theorem 2.3]. Hence, if â4R5 = AG4R5, then diam4â4R55 ∈ 811 29 by
Theorem 2.2. We recall the following results.

Lemma 3.1.

(1) [3, the proof of Theorem 2.8] Let R be a reduced commutative ring that is not an
integral domain. Then â4R5 is complete if and only if R is ring-isomorphic to ú2 ×

ú2.
(2) [10, Theorem 2.6(3)] Let R be a commutative ring. Then diam4â4R55 = 2 if and

only if either (i) R is reduced with exactly two minimal primes and at least three
nonzero zero divisors, or (ii) Z4R5 is an ideal whose square is not {0} and each
pair of distinct zero divisors has a nonzero annihilator.

We first study the case when R is reduced.

Lemma 3.2. Let R be a reduced commutative ring that is not an integral domain, and
let z ∈ Z4R5∗. Then:

(1) annR4z5 = annR4z
n5 for each positive integer n ≥ 2;

(2) If c + z ∈ Z4R5 for some c ∈ annR4z5\809, then annR4z+ c5 is properly contained
in annR4z5 (i.e., annR4c + z5 ⊂ annR4z5). In particular, if Z4R5 is an ideal of R
and c ∈ annR4z5\809, then annR4z+ c5 is properly contained in annR4z5.
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Proof. (1) Let n ≥ 2. It is clear that annR4z5 ⊆ annR4z
n5. Let f ∈ annR4z

n5. Since
fzn = 0 and R is reduced, we have fz = 0. Thus annR4z

n5 = annR4z5.

(2) Let c ∈ annR4z5\809, and suppose hat c + z ∈ Z4R5. Since z2 6= 0, we have
c + z 6= 0, and hence c + z ∈ Z4R5∗. Since c ∈ annR4z5 and R is reduced, we have c y

annR4c + z5. Hence annR4c + z5 6= annR4z5. Since annR4c + z5 ⊂ annR4z4c + z55 =
annR4z

25 and annR4z
25 = annR4z5 by (1), it follows that annR4c + z5 ⊂ annR4z5. �

Theorem 3.3. Let R be a reduced commutative ring that is not an integral domain.

Then the following statements are equivalent:

(1) AG4R5 is complete;

(2) â4R5 is complete (and hence AG4R5 = â4R5);

(3) R is ring-isomorphic to ú2 × ú2.

Proof. 415 ⇒ 425. Let a ∈ Z4R5∗. Suppose that a2 6= a. Since annR4a
35 = annR4a5

by Lemma 3.2(1) and a3 6= 0, we have a− a2 is not an edge of AG4R5, a
contradiction. Thus a2 = a for each a ∈ Z4R5. Let x1 y be distinct elements in Z4R5∗.
We show that x − y is an edge of â4R5. Suppose that xy 6= 0. Since x − y is an edge
of AG4R5, we have annR4xy5 6= annR4x5, and thus xy 6= x. Since x2 = x, we have
annR4x4xy55 = annR4x

2y5 = annR4xy5, and thus x − xy is not an edge of AG4R5, a
contradiction. Hence xy = 0 and x − y is an edge of â4R5.

425 ⇒ 435. It follows from Lemma 3.1(1).

435 ⇒ 415. It is easily verified. �

Let R be a reduced commutative ring with �Min4R5� ≥ 2. If Z4R5 is an
ideal of R, then Min4R5 must be infinite, since Z4R5 = ∪8Q �Q ∈ Min4R59. For the
construction of a reduced commutative ring R with infinitely many minimal prime
ideals such that Z4R5 is an ideal of R, see [10, Section 5 (Examples)] and [1,
Example 3.13].

Theorem 3.4. Let R be a reduced commutative ring that is not an integral domain,

and assume that Z4R5 is an ideal of R. Then AG4R5 6= â4R5 and gr4AG4R55 = 3.

Proof. Let z ∈ Z4R5∗, c ∈ annR4z5\809, and m ∈ annR4c + z5\809. Then m ∈

annR4c + z5 ⊂ annR4z5 by Lemma 3.2(2), and thus mc = 0. Since c2 6= 0, we have
m 6= c, and hence c + z 6= m+ z. Since 8c1m9 ⊆ annR4z5 and z2 6= 0, we have c + z

and m+ z are nonzero distinct elements of Z4R5. Since 4m+ z54c + z5 = z2 6= 0, we
have 4c + z5− 4m+ z5 is not an edge of â4R5. Since c2 6= 0 and m2 6= 0, it follows
that 4c +m5 ∈ annR4z

25\4annR4c + z5 ∪ annR4m+ z55, and thus 4c + z5− 4m+ z5 is
an edge of AG4R5. Since 4c + z5− 4m+ z5 is an edge of AG4R5 that is not an edge
of â4R5, we have AG4R5 6= â4R5. Since R is reduced and AG4R5 6= â4R5, we have
gr4AG4R55 = 3 by Theorem 2.6. �

Theorem 3.5. Let R be a reduced commutative ring with �Min4R5� ≥ 3 (possibly

Min4R5 is infinite). Then AG4R5 6= â4R5 and gr4AG4R55 = 3.
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Proof. If Z4R5 is an ideal of R, then AG4R5 6= â4R5 by Theorem 3.4. Hence assume
that Z4R5 is not an ideal of R. Since �Min4R5� ≥ 3, we have diam4â4R55 = 3 by
Lemma 3.1(2), and thus AG4R5 6= â4R5 by Theorem 2.2. Since R is reduced and
AG4R5 6= â4R5, we have gr4AG4R55 = 3 by Theorem 2.6. �

Theorem 3.6. Let R be a reduced commutative ring that is not an integral domain.
Then AG4R5 = â4R5 if and only if �Min4R5� = 2.

Proof. Suppose that AG4R5 = â4R5. Since R is a reduced commutative ring that
is not an integral domain, �Min4R5� = 2 by Theorem 3.5. Conversely, suppose that
�Min4R5� = 2. Let P1, P2 be the minimal prime ideals of R. Since R is reduced, we
have Z4R5 = P1 ∪ P2 and P1 ∩ P2 = 809. Let a1 b ∈ Z4R5∗. Assume that a1 b ∈ P1.
Since P1 ∩ P2 = 809, neither a ∈ P2 nor b ∈ P2, and thus ab 6= 0. Since P1P2 ⊆ P1 ∩
P2 = 809, it follows that annR4ab5 = annR4a5 = annR4b5 = P2. Thus a− b is not an
edge of AG4R5. Similarly, if a1 b ∈ P2, then a− b is not an edge of AG4R5. If a ∈ P1

and b ∈ P2, then ab = 0, and thus a− b is an edge of AG4R5. Hence each edge of
AG4R5 is an edge of â4R5, and therefore, AG4R5 = â4R5. �

Theorem 3.7. Let R be a reduced commutative ring. Then the following statements
are equivalent:

(1) gr4AG4R55 = 4;
(2) AG4R5 = â4R5 and gr4â4R55 = 4;
(3) gr4â4R55 = 4;
(4) T4R5 is ring-isomorphic to K1 × K2, where each Ki is a field with �Ki� ≥ 3;
(5) �Min4R5� = 2 and each minimal prime ideal of R has at least three distinct elements;
(6) â4R5 = Km1n with m1n ≥ 2;
(7) AG4R5 = Km1n with m1n ≥ 2.

Proof. 415 ⇒ 425. Since gr4AG4R55 = 4, AG4R5 = â4R5 by Theorem 2.6, and thus
gr4â4R55 = 4. 425 ⇒ 435. No comments. 435 ⇔ 445 ⇔ 455 ⇔ 465 are clear by [2,
Theorem 2.2]. 465 ⇒ 475. Since (6) implies �Min4R5� = 2 by [2, Theorem 2.2], we
conclude that AG4R5 = â4R5 by Theorem 3.6, and thus gr4AG4R55 = gr4â4R55 = 4.
475 ⇒ 415. This is clear since AG4R5 is a complete bipartite graph and n1m ≥ 2. �

Theorem 3.8. Let R be a reduced commutative ring that is not an integral domain.
Then the following statements are equivalent:

(1) gr4AG4R55 = �;
(2) AG4R5 = â4R5 and gr4AG4R55 = �;
(3) gr4â4R55 = �;
(4) T4R5 is ring-isomorphic to Z2 × K, where K is a field;
(5) �Min4R5� = 2 and at least one minimal prime ideal ideal of R has exactly two

distinct elements;
(6) â4R5 = K11n for some n ≥ 1;
(7) AG4R5 = K11n for some n ≥ 1.

Proof. 415 ⇒ 425. Since gr4AG4R55 = �, AG4R5 = â4R5 by Theorem 2.6, and
thus gr4â4R55 = �. 425 ⇒ 435. No comments. 435 ⇔ 445 ⇔ 455 ⇔ 465 are clear by
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[2, Theorem 2.4]. 465 ⇒ 475. Since (6) implies �Min4R5� = 2 by [2, Theorem 2.4], we
conclude that AG4R5 = â4R5 by Theorem 3.6, and thus gr4AG4R55 = gr4â4R55 = �.
475 ⇒ 415. It is clear. �

In view of Theorem 3.7 and Theorem 3.8, we have the following result.

Corollary 3.9. Let R be a reduced commutative ring. Then AG4R5 = â4R5 if and only
if gr4AG4R55 = gr4â4R55 ∈ 841�9.

For the remainder of this section, we study the case when R is nonreduced.

Theorem 3.10. Let R be a nonreduced commutative ring with �Nil4R5∗� ≥ 2 and let
AGN 4R5 be the (induced) subgraph of AG4R5 with vertices Nil4R5∗. Then AGN 4R5 is
complete.

Proof. Suppose there are nonzero distinct elements a1 b∈Nil4R5 such that
ab 6= 0. Assume that annR4ab5= annR4a5 ∪ annR4b5. Hence annR4ab5 = annR4a5 or
annR4ab5 = annR4b5. Without lost of generality, we may assume that annR4ab5 =
annR4a5. Let n be the least positive integer such that bn = 0. Suppose that abk 6= 0
for each k, 1≤ k<n. Then bn−1 ∈ annR4ab5\annR4a5, a contradiction. Hence assume
that k, 1 ≤ k < n is the least positive integer such that abk = 0. Since ab 6= 0, 1 <
k < n. Hence bk−1 ∈ annR4ab5\annR4a5, a contradiction. Thus a− b is an edge of
AGN 4R5. �

In view of Theorem 3.10, we have the following result.

Corollary 3.11. Let R be a nonreduced quasi-local commutative ring with maximal
ideal Nil4R5 such that �Nil4R5∗� ≥ 2. Then AG4R5 is complete. In particular, AG4ú2n5
is complete for each n ≥ 3 and if q > 2 is a positive prime number of ú, then AG4úqn5
is complete for each n ≥ 2.

The following is an example of a quasi-local commutative ring R with
maximal ideal Nil4R5 such that w2 = 0 for each w ∈ Nil4R5, diam4â4R55= 2,
diam4AG4R55= 1, and gr4AG4R55 = gr4â4R55 = 3.

Example 3.12. Let R = ú26X1 Y7/4X
21 Y 25, x = X + 4X21 Y 25 ∈ R, and y = Y +

4X21 Y 25 ∈ R. Then R is a quasi-local commutative ring with maximal ideal Nil4R5 =
4x1 y5R. It is clear that w2 = 0 for each w ∈ Nil4R5 and diam4AG4R55 = 1 by
Corollary 3.11. Since Nil4R52 6= 809 and xyNil4R5 = 809, we have diam4â4R55 = 2 by
Lemma 3.1(2). Since x − xy − 4xy + x5− x is a cycle of length three in â4R5, we have
gr4AG4R55 = gr4â4R55 = 3.

Theorem 3.13. Let R be a nonreduced commutative ring with �Nil4R5∗� ≥ 2, and let
âN 4R5 be the induced subgraph of â4R5 with vertices Nil4R5∗. Then âN 4R5 is complete
if and only if Nil4R52 = 809.

Proof. If Nil4R52 = 809, then it is clear that âN 4R5 is complete. Hence assume
that âN 4R5 is complete. We need only show that w2 = 0 for each w∈Nil4R5∗.
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Let w∈Nil4R5∗ and assume that w2 6= 0. Let n be the least positive integer such
that wn = 0. Then n ≥ 3. Thus w1wn−1 + w are distinct elements of Nil4R5∗. Since
w4wn−1 + w5 = 0 and wn = 0, we have w2 = 0, a contradiction. Thus w2 = 0 for each
w ∈ Nil4R5. �

Theorem 3.14. Let R be a nonreduced commutative ring, and suppose that Nil4R52 6=
809. Then AG4R5 6= â4R5 and gr4AG4R55 = 3.

Proof. Since Nil4R52 6= 809, AG4R5 6= â4R5 by Theorem 3.10 and Theorem 3.13.
Thus gr4AG4R55 ∈ 831 49 by Corollary 2.11. Let F = ú2 × B, where B is ú4 or
ú26X7/4X

25. Since Nil4F52 = 809 and Nil4F5 6= 809, we have gr4AG4R55 6= 4 by
Theorem 2.9. Thus gr4AG4R55 = 3. �

Theorem 3.15. Let R be a nonreduced commutative ring such that Z4R5 is not an
ideal of R. Then AG4R5 6= â4R5.

Proof. Since R is nonreduced and Z4R5 is not an ideal of R, diam4â4R55 = 3 by
[10, Corollary 2.5]. Hence AG4R5 6= â4R5 by Theorem 2.2. �

Theorem 3.16. Let R be a nonreduced commutative ring. Then the following
statements are equivalent:

(1) gr4AG4R55 = 4;
(2) AG4R5 6= â4R5 and gr4AG4R55 = 4;
(3) R is ring-isomorphic to either ú2 × ú4 or ú2 × ú26X7/4X

25;

(4) â4R5 = K
113
;

(5) AG4R5 = K213.

Proof. 415 ⇒ 425. Suppose AG4R5 = â4R5. Then gr4â4R55 = 4, and R is ring-
isomorphic to D× B, where D is an integral domain with �D� ≥ 3 and B = ú4

or ú26X7/4X
25 by [2, Theorem 2.3]. Assume that R is ring-isomorphic to D× ú4.

Since �D� ≥ 3, there is an a ∈ D\801 19. Let x = 401 151 y = 411 251 w = 4a1 25 ∈ R.
Then x1 y1 w are distinct elements in Z4R5∗, w4xy5 = 401 05, wx 6= 401 05, and wy 6=
401 05. Thus x − w − y − x is a cycle of length three in AG4R5 by Lemma 2.3,
a contradiction. Similarly, assume that R is ring-isomorphic to D× ú26X7/4X

25.
Again, since �D� ≥ 3, there is an a ∈ D\801 19. Let x = X + 4X25 ∈ ú26X7/4X

25. Then
it is easily verified that 401 15− 4a1 x5− 411 x5− 401 15 is a cycle of length three in
AG4R5, a contradiction. Thus AG4R5 6= â4R5. 425 ⇒ 435. It is clear by Theorem 2.9.
435 ⇔ 445. It is clear by [2, Theorem 2.5]. 445 ⇒ 455. Since (4) implies (3) by [2,
Theorem 2.5], it is easily verified that the annihilator graph of the two rings in (3)
is K213. 445 ⇒ 455. Since AG4R5 is a K213, it is clear that gr4AG4R55 = 4. �

We observe that gr4â4ú855 = �, but gr4AG4ú855 = 3. We have the following
result.

Theorem 3.17. Let R be a commutative ring such that AG4R5 6= â4R5. Then the
following statements are equivalent:

(1) â4R5 is a star graph;
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(2) â4R5 = K112;
(3) AG4R5 = K3.

Proof. 415 ⇒ 425. Since gr4â4R55 = � and â4R5 6= AG4R5, we have R is non-
reduced by Corollary 3.9 and �Z4R5∗� ≥ 3. Since â4R55 is a star graph, there are two
sets A1B such that Z4R5∗ = A ∪ B with �A� = 1, A ∩ B = ∅, AB = 809, and b1b2 6=
0 for every b11 b2 ∈ B. Since �A� = 1, we may assume that A = 8w9 for some w ∈

Z4R5∗. Since each edge of â4R5 is an edge of AG4R5 and AG4R5 6= â4R5, there
are some x1 y ∈ B such that x − y is an edge of AG4R5 that is not an edge of
â4R5. Since annR4c5 = w for each c ∈ B and annR4xy5 6= annR4x5 ∪ annR4y5, we
have annR4xy5 6= w. Thus annR4xy5 = B and xy = w. Since A = 8xy9 and AB =

809, we have x4xy5 = x2y = 0 and y4xy5 = y2x= 0. We show that B = 8x1 y9, and
hence �B� = 2. Thus assume there is a c ∈ B such that c 6= x and c 6= y. Then
wc = xyc= 0. We show that 4xc + xy5 6= x and 4xc + xy5 6= xy (note that xy = w).
Suppose that 4xc + xy5 = x. Then y4xc + xy5 = yx. But y4xc + xy5 = yxc + xy2 =
0+ 0 = 0 and xy 6= 0, a contradiction. Hence x 6= 4xc + xy5. Since x1 c ∈ B, we have
xc 6= 0 and thus 4xc + xy5 6= xy. Thus x1 4xc + xy51 xy are distinct elements of Z4R5∗.
Since x2y = 0 and y ∈ B, either x2 = 0 or x2 = xy or x2 = y. Suppose that x2 = y.
Since xy = w 6= 0, we have xy = x4x25 = x3 = w 6= 0. Since x2y = 0, we have x4 =
0. Since x4 = 0 and x3 6= 0, we have x21 x31 x2 + x3 are distinct elements of Z4R5∗,
and thus x2 − x3 − 4x2 + x35− x2 is a cycle of length three in â4R5, a contradiction.
Hence, we assume that either x2 = 0 or x2 = xy = w. In both cases, we have x2c =

0. Since x1 4xc + xy51 xy are distinct elements of Z4R5∗ and xy2 = yx2 = x2c = 0, we
have x − 4xc + xy5− xy − x is a cycle of length three in â4R5, a contradiction. Thus
B = 8x1 y9 and �B� = 2. Hence â4R5 = K112. 425 ⇒ 435. Since each edge of â4R5 is an
edge of AG4R5 and â4R5 6= AG4R5 and â4R5 = K112, it is clear that AG4R5 must be
K3. 435 ⇒ 415. Since �Z4R5∗� = 3 and â4R5 is connected and AG4R5 6= â4R5, exactly
one edge of AG4R5 is not an edge of â4R5. Thus â4R5 is a star graph. �

Theorem 3.18. Let R be a non-reduced commutative ring with �Z4R5∗� ≥ 2. Then the
following statements are equivalent:

(1) AG4R5 is a star graph;
(2) gr4AG4R55 = �;
(3) AG4R5 = â4R5 and gr4â4R55 = �;
(4) Nil4R5 is a prime ideal of R and either Z4R5 = Nil4R5 = 801−w1w9 (w 6= −w)

for some nonzero w ∈ R or Z4R5 6= Nil4R5 and Nil4R5 = 801 w9 for some nonzero
w ∈ R (and hence wZ4R5 = 809);

(5) Either AG4R5 = K111 or AG4R5 = K11�;
(6) Either â4R5 = K111 or â4R5 = K11�.

Proof. 415 ⇒ 425. It is clear by the definition of the star graph. 425 ⇒ 435.
Since gr4AG4R55 = �, AG4R5 = â4R5 by Corollary 2.11, and thus gr4â4R55 = �.
435 ⇒ 445. Suppose that �Nil4R5∗� ≥ 3. Since AGN 4R5 is complete by Theorem 3.10
and �Nil4R5∗� ≥ 3, we have gr4AG4R55 = gr4â4R55 = 3, a contradiction. Thus
�Nil4R5∗� ∈ 811 29. Suppose �Nil4R5∗� = 2. Then Nil4R5 = 801 w1−w9 (w 6= −w) for
some nonzero w ∈ R. We show Z4R5 = Nil4R5. Assume there is a k ∈ Z4R5\Nil4R5.
Suppose that wk = 0. Since Nil4R52 = 809, w − k− 4−w5− w is a cycle of length
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three in â4R5, a contradiction. Thus assume that wk 6= 0. Hence there is an

f ∈ Z4R5∗\8w1−w1 k9, such that w − f − z is a path of length two in â4R5 by

Theorem 2.2 (note that we are assuming that AG4R5 = â4R5). Thus w − f − 4−w5−

w is a cycle of length three in â4R5, a contradiction. Hence if �Nil4R5∗� = 2, then

Z4R5 = Nil4R5. Thus assume that Nil4R5 = 801 w9 for some nonzero w ∈ R. We show

Nil4R5 is a prime ideal of R. Since gr4AG4R55 = gr4â4R55 = �, we have AG4R5 =

â4R5 is a star graph by [2, Theorem 2.5] and Theorem 3.16. Since �Z4R5∗� ≥ 2 by

hypothesis and �Nil4R5∗� = 1, we have Z4R5 6= Nil4R5. Let c ∈ Z4R5∗\Nil4R5∗. We

show wc = 0. Suppose that wc 6= 0. Since �Nil4R5∗� = 1 and wc 6= 0, we have wc =

w. Thus w4c − 15 = 0. Since w + 1 ∈ U4R5 and c y U4R5, we have c − 1 6= w. Since

â4R5 is a star graph and w4c − 15 = 0 and wc 6= 0, we have 4c − 15j = 0 for each j ∈

Z4R5∗\8c − 19. In particular, 4c − 1564c − 15+ w7 = 0, and therefore w − 4c − 15−

4c − 1+ w5− w is a cycle of length three in â4R5, a contradiction. Hence wc = 0.

Since wZ4R5 = 809 and â4R5 is a star graph, we have Nil4R5 = 801 w9 is a prime

ideal of R. 445 ⇒ 455. Suppose that Nil4R5 is a prime ideal of R. If Z4R5 = Nil4R5

and �Nil4R5∗� = 2, then AG4R5 = K111. Hence, assume that Nil4R5 = 801 w9 for some

nonzero w ∈ R. We show that Z4R5 is an infinite set. Let c ∈ Z4R5\Nil4R5 and let

n > m ≥ 1. We show that cm 6= cn. Suppose that cm = cn. Then cm41− cn−m5 = 0.

Since Nil4R5 = 801 w9 is a prime ideal of R, we have 41− cn−m5 = w. Since 1− w ∈

U4R5, we have 1− w = cn−m ∈ U4R5, a contradiction. Thus cm 6= cn, and hence Z4R5

is an infinite set. Since Nil4R5 = 801 w9 is a prime ideal of R and wZ4R5 = 809, we

have AG4R5 = K11�. 455 ⇒ 465. It is clear. 465 ⇒ 415. Since â4R5 is a star graph and

â4R5 6= K112, we have AG4R5 = â4R5 by Theorem 3.17, and thus gr4AG4R55 = �.

�

Corollary 3.19 ([3, Theorem 2.13], [2, Remark 2.6(a)], and [4, Theorem 3.9]). Let

R be a nonreduced commutative ring with �Z4R5∗� ≥ 2. Then â4R5 is a star graph if

and only if â4R5 = K111, â4R5 = K112, or â4R5 = K11�.

Proof. The proof is a direct implication of Theorems 3.17 and 3.18. �

In the following example, we construct two nonreduced commutative rings say

R1 and R2, where AG4R15 = K111 and AG4R25 = K11�.

Example 3.20.

(1) Let R1 = ú36X7/4X
25, and let x = X + 4X25 ∈ R1. Then Z4R15 = Nil4R15 =

801−x1 x9 and AG4R15 = â4R15 = K111. Also note that AG4ú95 = â4ú95 = K111.

(2) Let R2 = ú26X1 Y7/4XY1X
25. Then let x = X + 4XY + X25 and y = Y + 4XY +

X25 ∈ R2. Then Z4R25 = 4x1 y5R2, Nil4R25 = 801 x9, and Z4R25 6= Nil4R25. It is

clear that AG4R25 = â4R25 = K11�.

Remark 3.21. Let R be a nonreduced commutative ring. In view of Theorem 3.15,

Theorem 3.16, and Theorem 3.18, if AG4R5 = â4R5, then Z4R5 is an ideal of R and

gr4AG4R55 = gr4â4R55 ∈ 831�9. The converse is true if gr4AG4R5 = gr4â4R55 = �
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(see Theorems 3.15 and 3.18). However, if Z4R5 is an ideal of R and gr4AG4R55 =
gr4â4R55 = 3, then it is possible to have all the following cases:

(1) It is possible to have a commutative ring R such that Z4R5 is an ideal of R,
Z4R5 6= Nil4R5, AG4R5 = â4R5, and gr4AG4R55 = 3. See Example 3.22;

(2) It is possible to have a commutative ring R such that Z4R5 is an ideal of R,
Z4R5 6= Nil4R5, Nil4R52 = 809, AG4R5 6= â4R5, diam4AG4R55 = diam4â4R55 = 2,
and gr4AG4R55 = gr4â4R55 = 3. See Example 3.23.

(3) It is possible to have a commutative ring R such that Z4R5 is an
ideal of R, Z4R5 6= Nil4R5, Nil4R52 = 809, AG4R5 is a complete graph
(i.e., diam4AG4R55 = 1), AG4R5 6= â4R5, diam4â4R55 = 2, and gr4AG4R55 =
gr4â4R55 = 3. See Theorem 3.24.

Example 3.22. Let D = ú26X1 Y1W7, I = 4X21 Y 21 XY1XW5D be an ideal of D, and
let R = D/I . Then let x = X + I1 y = Y + I , and w = W + I be elements of R. Then
Nil4R5 = 4x1 y5R and Z4R5 = 4x1 y1 w5R is an ideal of R. By construction, we have
Nil4R52 = 809, AG4R5 = â4R5, diam4AG4R55 = diam4â4R55 = 2, and gr4AG4R55 =
gr4â4R55 = 3 (for example, x − 4x + y5− y − x is a cycle of length three).

Example 3.23. Let D = ú26X1 Y1W7, I = 4X21 Y 21 XY1XW1 YW 35D be an ideal
of D, and let R = D/I . Then let x = X + I1 y = Y + I , and w = W + I be
elements of R. Then Nil4R5 = 4x1 y5R and Z4R5 = 4x1 y1 w5R is an ideal of
R. By construction, Nil4R52 = 809, diam4AG4R55 = diam4â4R55 = 2, gr4AG4R55 =
gr4â4R55 = 3. However, since w3 6= 0 and y ∈ annR4w

35\4annR4w5 ∪ annR4w
255, we

have w − w2 is an edge of AG4R5 that is not an edge of â4R5, and hence AG4R5 6=
â4R5.

Given a commutative ring R and an R-module M , the idealization of M is
the ring R4+5M = R×M with addition defined by 4r1m5+ 4s1 n5 = 4r + s1m+ n5
and multiplication defined by 4r1m54s1 n5 = 4rs1 rn+ sm5 for all r1 s ∈ R and m1n ∈

M . Note that 8094+5M ⊆ Nil4R4+5M5 since 48094+5M52 = 8401 059. We have the
following result.

Theorem 3.24. Let D be a principal ideal domain that is not a field with quotient
field K (for example, let D = ú or D = F6X7 for some field F), and let Q = 4p5 be a
nonzero prime ideal of D for some prime (irreducible) element p ∈ D. Set M = K/DQ

and R = D4+5M . Then Z4R5 6= Nil4R5, AG4R5 is a complete graph, AG4R5 6= â4R5,
and gr4AG4R55 = gr4â4R55 = 3.

Proof. By construction of R, Z4R5 = Q4+5M , Nil4R5 = 8094+5M , and Nil4R52 =
8401 059. Let x1 y be distinct elements of Z4R5∗, and suppose that xy 6= 0. Since
Nil4R52 = 8401 059, to show that AG4R5 is complete, we consider two cases. Case I:
assume x ∈ Nil4R5∗ and y ∈ Z4R5\Nil4R5. Then x = 401 a

cpm
+DQ5 for some nonzero

a ∈ D, c ∈ D\Q, and some positive integer m ≥ 1 such that gcd4a1 cpm5 = 1, and
y = 4hpn1 f5 for some positive integer n ≥ 1, a nonzero h ∈ D, and f ∈ M . Since
xy 6= 0, we have n < m. Hence xy = 401 ha

cpm−n +DQ5 ∈ Nil4R5∗. Since 4pm−n1 05 ∈
annR4xy5\4annR4x5 ∪ annR4y55, we have x − y is an edge of AG4R5. Case II: assume
that x1 y ∈ Z4R5∗\Nil4R5∗. Then x = 4dpu1 g5 and y = 4vpr1 w5 for some positive
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integers u1 r ≥ 1, nonzero d1 v ∈ D\Q, and g1 w ∈ M . Hence xy = 4dvpu+r1 dpuw +

vprg5. Since 401 1
pu+r +DQ5 ∈ annR4xy5\4annR4x5 ∪ annR4y55, we have x − y is an

edge of AG4R5. Since 401 1
p
+DQ5− 401 1

p2
+DQ5− 401 1

p3
+DQ5− 401 1

p
+DQ5 is a

cycle of length three in â4R5, we have gr4AG4R55 = gr4â4R55 = 3. �

The following example shows that the hypothesis “Q is principal” in the above
theorem is crucial.

Example 3.25. Let D = ú6X7 with quotient field K and Q = 421 X5D. Then Q is
a nonprincipal prime ideal of D. Set M = K/DQ and R = D4+5M . Then Z4R5 =

Q4+5M , Nil4R5 = 8094+5M , and Nil4R52 = 8401 059. Let a = 421 05 and b = 401 1
X
+

DQ5. Then ab = 401 2
X
+DQ5 ∈ Nil4R5∗. Since annR4ab5 = annR4b5, we have a− b is

not an edge of AG4R5. Thus AG4R5 is not a complete graph.
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