MTH 313, Number Theory, Fall 2024, 1–2 © copyright Ayman Badawi 2024

HW I

Ayman Badawi

QUESTION 1. 1) Let $x \in Z_{15}$. Solve $6x = 9$ over planet Z_{15} (i.e., Find $x \in Z_{12}$ such that $6x \equiv 9 \pmod{15}$) (HINT: you must have exactly 3 solutions)

2) Let $x \in Z$. Solve $6x = 9$ over planet Z (i.e., Find $x \in Z$ such that $6x \equiv 9 \pmod{15}$) (HINT: 4 is the smallest solution to (1) above and $d(gap \quad between \ two \ consecutive \ solutions) = 5$. Hence $x \in \{4 + 5k \mid k \in Z\}$

3) Let $x \in Z$ such that $x \pmod{11} = 2$, $x \pmod{7} = 3$, and $x \pmod{10} = 1$. Find all values of x over Planet Z.

(HINT: by CRT, 101 is the smallest positive solution and $m = m_1 m_2 m_3 (gap \ between \ two \ consecutive \ solution)$ 770. Hence $x \in \{101 + 770k \mid k \in Z\}$

4) Let $x \in Z$ such that (a) $2x \pmod{12} = 4$, (b) $x \pmod{8} = 4$. Find all values of x over planet Z.

(HINT: CRT is not applicable, see class notes. First we solve for x over Z using (a): $x \in \{2+6m \mid m \in Z\}$ and $\mathbf{6} = d_1 = 12/gcd(2, 12)(gap \ between \ two \ consecutive \ solutions)$. Now we substitute $2+6m$ for x in (b), and we solve for m. So we solve for m where $2+6m \ (mod8) = 4$. Hence we solve for m where $6m \ (mod8) = 2$. $m \in \{3+4n \mid n \in \mathbb{Z}\}\,$, where $4 = d_2 = 8/gcd(6,8)(gap \, between \, two \, consecutive \, solutions)$. Since $m = 3$ is the smallest postive integer and $x = 2 + 6m$, we conclude $x = 2 + 6(3) = 20$. Now let us think about the gap d between two consecutive solutions (two consecutive values of x). From (a) d must be multiple of $d_1 = 12/gcd(2, 12) = 6$. From (b) d must be a multiple of $8/gcd(1, 8) = 8$. Thus $d = LCM[6, 8] = 24$. Thus the solution set over PLANET Z is $\{20 + 24k \mid k \in \mathbb{Z}\}\)$.

5) Let $x \in Z$ such that (a) $6x \pmod{9} = 3$, (b) $x \pmod{15} = 7$. Find all values of x over planet Z. (HINT: CRT is not applicable, see class notes. As in (4), you will end up trying to solve for m where $3m \ (mod 15) = 5$ Since gcd(3, 15) is not a factor of 5, we have no solutions for m. Thus no such $x \in Z$ exists.) 6) Find $\phi(150)$.

7) Let $M = \{1 \le a < 210 \mid \gcd(a, 210) = 1\}$. Find $|M|$. (HINT: $|M| = \phi(210)$. So calculate $\phi(210)$.)

8) (Nice Question) Find all ordered pairs (x, y) over Z_{12} such that $9x + 2y = 5$ in Z_{12} (i.e., $x, y \in Z_{12}$) (HINT: I believe that you will end up with 12 ordered pairs (x, y). Process of thinking is nice!)

8) (Nice Question) Find all ordered pairs (x, y) over Z such that $9x + 2y = 5$ in Z_{12} (i.e., $x, y \in Z$ such that $9x + 2y \equiv 5 \pmod{12}$

(HINT: The solution $\{(3+4m_1, 1+6m_2) | m_1, m_2 \in Z\} \cup \{(1+4n_1, 2+6n_2) | n_1, n_2 \in Z\})$

9) Find all $x \in Z_{21}$ such that $x^3 - x = x^3 + 20x = 0$ in Z_{21} .

(HINT: You will be able to find Exactly 9 different roots in Z_{21} , note that you may view Z_{21} as Z_3XZ_7 , see class notes)

10) Find all triplets (x, y, x) over Z_6 such that $4x + 2y + 3z = 5$. (hint: There are 24 different triplets, see class notes)

11) Find all x values over Z where $x \pmod{6} = 2$, $x \pmod{12} = 2$, $x \pmod{5} = 3$, and $x \pmod{7} = 2$.

(hint: Note that $12 | (x - 2)$ implies that $6 | (x - 2)$. Thus we only need to find x where $x | (mod 12) = 2$, $x \pmod{5} = 3$, and $x \pmod{7} = 2$. Clearly the CRT is applicable, find the smallest positive integer solution x_0 , where $1 \le x_0 < 420$. Hence the solution set over Z is $\{x_0 + 420k \mid k \in Z\}$.

12) Let *n* be an odd positive integer. Prove that $\phi(2n) = \phi(n)$. (hint: Note that $gcd(2, n) = 1$. Hence by class notes, $\phi(2n) = \phi(2)\phi(n) = 1 \cdot \phi(n) = \phi(n)$.)

13) Find 5^{4803} (*mod* 42) (I guess the answer is 41)

14) Let p be a prime positive integer. Prove that $\sum_{d|p^n} \phi(d) = p^n$ for every $n \ge 1$.

(hint: Abstract algebra is not needed here. Note $\phi(p^k)=p^k-p^{k-1}=p^{k-1}(p-1).$ Use Math induction on n . Let $n=1$. T Hence $\sum_{d|p}\phi(d)=\phi(1)+\phi(p)=1+p-1=p$. Assume $\sum_{d|p^n}\phi(d)=p^n$ for some $n\geq 1$. We prove that $\sum_{d|p^{(n+1)}}\phi(d)=p^{(n+1)}$. Note that $\sum_{d|p^{(n+1)}}\phi(d)=\sum_{d|p^n}\phi(d)+\phi(p^{(n+1)})$. Since $\sum_{d|p^n}\phi(d)=p^n,$ we conclude $\sum_{d|p^{(n+1)}} \phi(d) = \sum_{d|p^n} \phi(d) + \phi(p^{(n+1)}) = p^n + p^{(n+1)} - p^n = p^{(n+1)}$)

15) Let $n \geq 2$ be a positive integer. Prove there are n consecutive numbers such that none of them is prime. (hint: Let $N_2 = (n+1)! + 2$, is not prime since 2 is a factor of N_2 ; $N_3 = (n+1)! + 3$, is not prime since 3 is a factor of N_3 ; $N_4 = (n + 1)! + 4$, is not prime since 4 is a factor of N_4 ; $N_5 = (n + 1)! + 5$, is not prime since 5 is a factor of N_5 ; ..., $N_{n+1} = (n+1)! + (n+1)$, is not prime since $(n+1)$ is a factor of N_{n+1} . Hence $N_2, ..., N_{n+1}$ are consecutive *n* integers and none of them is prime.)

16) Find two consecutive integers x, y such that $125 = x^2 - y^2$. Can you find two integers w, v such that $w - v = 5$ and $125 = w^2 - v^2$. (Hint: Let $x = (125 + 1)/2$), $y = (125 - 1)/2$. Let $w = (25 + 5)/2$, $v = (25 - 5)/2$)

17) Find two integers x, y such that $64 = x^2 - y^2$. Can you find two integers w, vy such that $w - v = 4$ and

 $64 = w^2 - v^2$.

(Hint: Let $x = 16 + 1 = 17$, $y = 16 - 1 = 15$. Let $w = (16 + 4)/2 = 10$, $v = (16 - 4)/2 = 6$)

18) Make sure you know the proofs in your class notes (just the one LABELED: Exams)

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.

E-mail: abadawi@aus.edu, www.ayman-badawi.com