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Abstract Let R be a commutative ring with identity 1 # 0 and let I be a proper ideal
of R.D. D. Anderson and E. Smith called I weakly primeifa,b € Rand 0 # ab € I
implies a € I or b € 1. In this paper, we define I to be weakly semiprime if a € R
and 0 # a® € I implies a € I. For example, every proper ideal of a quasilocal ring
(R, M) with M? = 0 is weakly semiprime. We give examples of weakly semiprime
ideals that are neither semiprime nor weakly prime. We show that a weakly semiprime
ideal of R that is not semiprime is a nil ideal of R. We show that if I is a weakly
semiprime ideal of R that is not semiprime and 2 is not a zero-divisor of of R, then
I? = {0} (and hence i> = O for every i € I). We give an example of a ring R that
admits a weakly semiprime ideal / that is not semiprime where i> # 0 for some i € I.
If R = Ry x R for some rings Rp, R», then we characterize all weakly semiprime
ideals of R that are not semiprime. We characterize all weakly semiprime ideals of of
Z, that are not semiprime. We show that every proper ideal of R is weakly semiprime
if and only if either R is von Neumann regular or R is quasilocal with maximal ideal
Nil(R) such that w? = 0 for every w € Nil(R).
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1 Introduction

Throughout this paper let R be a commutative ring with identity 1 # 0. Recall that
a proper ideal / (i.e., an ideal different from R) of R is called semiprime if a € R
and a®> € I implies a € I. In this paper, we define a proper ideal I of R to be
weakly semiprime if a € R and 0 # a* € I implies a € I. Recall from (Anderson
and Smith 2003) that an ideal I of R is said to be weakly prime if a,b € R and
0 # ab e I impliesa € I or b € I. Hence every weakly prime ideal of R is weakly
semiprime. However, the converse is not true. For example, the ideal I = {0, 8} of Z1¢
is weakly semiprime that is neither semiprime nor weakly prime. Recently, various
generalizations of (weakly) prime ideals are studied in (Anderson and Badawi 2011;
Anderson and Smith 2003; Badawi 2007; Badawi and Darani 2013).

Let R be a ring. Then Nil(R) denotes the ideal of nilpotent elements of R. An
ideal I of R is said to be a proper ideal of R if I # R. As usual, Z, and Z, will
denote integers, and integers modulo n, respectively. Some of our examples use the
R(+)M construction as in (Huckaba 1988). Let R be aring and M an R-module. Then
R(+)M = R x M is a ring with identity (1, 0) under addition defined by (r, m) +
(s,n) = (r +s, m + n) and multiplication defined by (r, m)(s, n) = (rs, rn + sm).
Note that (0(+)M)* = 0; s0 0(+)M < Nil(R(+)M).

Among many results in this paper, we show that if / is a weakly semiprime ideal of
R that is not semiprime, then / € Nil(R) (Theorem 2.4). It is shown that if /, J are
weakly semiprime ideals of R that are not semiprime and 2 is not a zero-divisor of R,
then /2> = IJ = {0} (Theorem 2.8). It is shown that if I is a weakly semiprime ideal
of R that is not semiprime and 2 is not a zero-divisor of R, then every ideal J C [ of
R is weakly semiprime (and hence Nil(R)I is weakly semiprime) (Theorem 2.11). It
is shown that if I is a weakly semiprime ideal of R that is not semiprime and i%> # 0
for some i € I, then 2i2 = i® = 0 and there is an ideal H of R where {0} # H2cCI
but H ¢ I (Theorem 2.12). We give an example of a ring R that admits a weakly
semiprime ideal / that is not semiprime where i> # 0 for some i € I (and hence
1? # {0}) (Example 2.13). If R = R; x Ry where R;, R, are commutative rings
with 1, then a complete description of all weakly semiprime ideals of R that are not
semiprime is given in Theorems 2.15 and 2.16. If R = Z,» where p is a positive
prime number and n > 1 is a positive integer, then it is shown that R admits a weakly
semiprime ideal that is not semiprime if and only if n > 4 is an even integer (Theorem
2.21). Itis shown that every proper ideal of R is weakly semiprime if and only if either
R is von Neumman regular or R is quasilocal with maximal ideal Nil(R) where
w? = 0 for every w € Nil(R) (Theorem 2.18).

2 Properties of weakly semiprime ideals

It is clear that every weakly prime ideal of a ring R is semiprime. The following is an
example of an infinite ideal / of a commutative ring R such that / is weakly semiprime
but 7 is neither semiprime nor weakly prime.

Example 2.1 Let M = {0, 8} and X be an indeterminate. Then M[X] is an ideal of
Zi16[X]. Let R = Zi6(+)M[X] and let I = {0, 8}(+)M[X]. Observe that If y € R
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and y% € I, then y?> = (0, 0). Hence I is weakly semiprime by definition. Since
4,0)2 = (0,0) € I and (4, 0) ¢ I, Iisnotsemiprime. Since (2,0)(4,0) = (8,0) € I
and neither (2, 0) € I nor (4,0) € I, I is not weakly prime.

One can easily verify that the ideal M[X] of Z6[X] is weakly semiprime but it is
neither semiprime nor weakly prime.

Definition 2.2 Let / be a weakly semiprime ideal of aring R and a € R. We say a is
an unbreakable-zero element of I if a> =0anda ¢ 1.

Theorem 2.3 Let I be a weakly semiprime ideal of a ring R and suppose that a is an
unbreakable-zero element of I. Then (a + i)* = (a — i)? = 0.

Proof Leti € I.Since (a+i)? = a®>+2ai+i> = 0+2ai+i*> € I anda ¢ I, we have
a+i ¢ 1.Thus (a+i)? = 0. Similarly, since (a—i)* = a*>—2ai+i?> = 0—2ai+i%> € I
anda ¢ I, wehavea —i ¢ I. Thus (a —i)> = 0. O

Theorem 2.4 Let I be a weakly semiprime ideal of a ring R that is not semiprime.
Then I € Nil(R).

Proof Since I is weakly semiprime that is not semiprime, we conclude that / has an
unbreakable-zero element, say a. Leti € I. Then (a +i)*> = 0 by Theorem 2.3. Since
a € Nil(R) and (a + i) € Nil(R), we have i € Nil(R). Thus I < Nil(R). O

Theorem 2.5 Let I be a weakly semiprime ideal of a ring R that is not semiprime. If
char(R) =2 (i.e, 1 +1 =0 € R) or 2 is not a zero-divisor of R, then i = 0 for
everyi € I.

Proof Since I is weakly semiprime that is not semiprime, we conclude that / has
an unbreakable-zero element, say a. Let i € I. Suppose that char(R) = 2. Since
(a+i)?=0 by Theorem 2.3, we have (a + NNl=a*+i2=0+i2=0. Suppose
that char(R) # 2 and 2 is not a zero-divisor of R. Then (a + i)> + (a — i)*> = 0 by
Theorem 2.3. Hence (a + i) + (a — i)* = 2i%? = 0. Since 2 is not a zero-divisor of
R, we conclude that i = 0. O

Theorem 2.6 Let J be a proper ideal of R and suppose that char(R) = 2 or 2 is not
a zero-divisor of R. The following statements are equivalent:

(1) I is weakly semiprime that is not semiprime.
(2) If x* € I for some x € R, then x* = 0.

Proof (1) = (2). Let x € R and suppose that x2 € I. Then eitherx> = Qorx € I.If
xe€l, thenx2=0 by Theorem 2.5. (2) = (1). Itis clear by the definition of weakly
semiprime. O

Theorem 2.7 Let I be a weakly semiprime ideal of a ring R that is not semiprime
and suppose that 2 is not a zero-divisor of R. If b is an unbreakable-zero element of
I, then bl = {0}.

Proof Leti € I. Since (b +i)?> = 0 by Theorem 2.3 and i> = 0 by Theorem 2.7, we
have (b +i)> = b? 4+ 2bi +i> = 0 + 2bi + 0 = 0. Hence 2bi = 0. Since 2 is not a
zero-divisor of R, we conclude that bi = 0. |
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Theorem 2.8 Let J, I be weakly semiprime ideals of a ring R that are not semiprime
and suppose that 2 is not a zero-divisor of R. Then J*> = I* = IJ = {0}.

Proof Leta,b € I. Since a + b € I and 2 is not a zero-divisor of R, (a + b)? =
a® + 2ab 4+ b* = 0 by Theorem 2.5. Since a> = b* = 0 by Theorem 2.5, we have
2ab = 0. Since 2 is not a zero-divisor element of R, ab = 0. Thus I? = {0}. Similarly,
J? = {0}. Now, leta € J and b € I. Then a®> = b> = 0 by Theorem 2.5. Suppose
thata € I. Since I% = {0} and a, b € I, we have ab = 0. Suppose thata ¢ I. Thena
is an unbreakable-zero element of /. Hence ab = 0 by Theorem 2.7. Thus JI = {0}.

O

The following is an example of an ideal I of a ring R where 1> = {0} but / is not
weakly semiprime.

Example 2.9 Let I = {0, 4,8, 12} C R = Z1¢. Then [ is an ideal of R and 1> = {0}.
Since 22 € I and 2 ¢ I, I is not weakly semiprime.

Theorem 2.10 Let I be a weakly semiprime ideal of a ring R that is not semiprime
and suppose that 2 is not a zero-divisor of R. Let J be an ideal of R. Then J* C I if
and only if J* = {0}.

Proof Leta,b € J. Since a®, b*, (a +b)? € I. We have a®> = b> = (a +b)> = 0 by
Theorem 2.6. Thus (a + b)? = 2ab = 0. Since 2 is not a zero-divisor element of R,
we have ab = 0. Thus J2 = {0}. o

Theorem 2.11 Let I be a weakly semiprime ideal of a ring R that is not semiprime
and suppose that char(R) = 2 or 2 is not a zero-divisor of R. Let J be an ideal of
R such that J C I. Then J is a weakly semiprime ideal of R. Thus if K is an ideal
of R, then K I is a weakly semiprime ideal of R. In particular, Nil(R)I is a weakly
semiprime ideal of R.

Proof Let x € R and suppose that x> € J. Then x? € I. Hence x> = 0 by Theorem
2.6. O

Example 2.13 shows that the hypothesis “2 is not a zero-divisor element” in the
previous Theorems is crucial. But first we have the following result.

Theorem 2.12 Let I be a weakly semiprime ideal of a ring R that is not semiprime
and suppose that i*> # 0 for some i € I. Then:

(1) 2 is a nonzero zero-divisor of R, 2i2=0andi?*=0.

(2) If a is an unbreakable-zero element of 1, then 2a € I, 2ai # 0 (and hence
al #{0}), and 4ai = 0.

(3) There is an ideal H of R where {0} = H* C I but H Q I.

Proof (1) Since i # 0, 2 is a nonzero zero-divisor of R by Theorem 2.5. Since I is
weakly semiprime that is not semiprime, we conclude that 7 has an unbreakable-
zero element, say b. Hence (b + N+ b—i)2=2%=0 by Theorem 2.3. Since
(b+i)? = 2bi+i? = 0and 2i* = 0, wehave i (b+i)*> = 2bi>+i3 = 0+i> = 0.
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(2) Let a be an unbreakable-zero element of /. Since (a + i)? = 2ai +i2 = 0
and 2i> = 0, we have 2(a + i)? = 4ai + 2i> = 4ai = 0. Since (a +i)> =
2ai +i% = 0and i> # 0, we have 2ai # 0. Since 4ai = 0 and i> # 0, we have
0+# Qa+i)>=i*ec.Thus 2a +i) € I.Sincei € I and 2a + i) € I, we
have 2a € I.

(3) Let a be an unbreakable-zero element of / and consider the ideal H = (a, 2i) of
R.Since a*> = 0and 2i> = 0, H? = (a, 2i)> = (2ai) C I. Since 2ai # 0 by (1),
H? = (2ai) is a nonzero ideal of R that is contained in /. Since a ¢ I, H g 1.

O

In the following example, we show that the hypothesis “2 is not a zero-divisor
element” in the previous Theorems is crucial.

Example 2.13 Let A = Z16[X]. Then J = (X2 + 8X) and L = (X, 8) are ideals of
AandJ CL.LetR=A/J,I =L/J,andx = X 4+ J € [. Then:

(1) Nil(R) =(2,X)/J.

(2) 2x2=0,x2#0,and x> = 0.

(3) I is a weakly semiprime ideal of R that is nether semiprime nor weakly prime.

(4) If b € R is an unbreakable-zero element of 7, then 2b € I, 2bx # 0 (and hence
bl # {0}), and 4bx = 0.

(5) H = (J + (4,2x))/J is an ideal of R where {0} # H> = (J + (8X))/J C I but
H ¢ I (see Theorem 2.12).

(6) 1> # {0} and I?> C I is not a weakly semiprime ideal of R (compare it with
Theorem 2.8 and Theorem 2.11).

(7) Nil(R)I is not a weakly semiprime ideal of R (compare it with Theorem 2.11).

Proof (1) Itis clear by construction of R.

(2) By construction of 7, X> ¢ J. Thus x> # 0 in R. It is clear that 2(8X + X?) =
2X? € J. Thus 2x?> = 0 in R. Since 2X? € J, bX? € J for every b € Nil(Zis).
Since 8X2 € J and X(8X + X?) = 8X2 + X3 € J, we have X3 € J. Hence
x3=0inR.

(3) Observe that I C Nil(R) by construction. Suppose that m? e I and m? # 0.
Hencem = (aX +2b)+J € Nil(R) forsomea, b € Z¢.Since Z16NL = {0, 8}
and d? = 8 has no solutions in Z 6, we conclude that m? = [(a X +2b)+J]? € I if
and only if (a X +2b)? € Lifand only if (2b)> = 0inZ¢. Thus 2b € {0, 4, 8, 12}.
Suppose that a € Nil(Zg). If a = 0, then (aX + 2b)> = (2b)> = 0.1f a # 0,
then it is easily verified that (aX + 2b)> = a®>X? € J. Hence if a € Nil(Z1s),
then m?> = 0. Thus if m®> # 0, then a ¢ Nil(Zg). Thus suppose that a ¢
Nil(Z16).1f2b € {4, 12}, then (a X +2b)* = a>X? +8X in A. Since the element
(X2 +8X) € J,a’X? 4+ 8X = a%(X? + 8X) € J (note that a>8 = 8 in Zj¢).
Thus if 2b € {4, 12}, then m?> = 0 in R. Hence suppose that 2b € {0, 8}. Then
(aX +2b)> = a’X?in A. Since X? ¢ J and a” is a unit of Z16, a>X> ¢ J. Thus
0# m? el if and only if a is a unit of Z¢ and 2b € {0, 8}. Sincea X, aX+8 € L
for every unit a of Z14, we conclude that O # m?> € I implies m € I. Thus [ is a
weakly semiprime ideal of R. Since (4 4+ J)> = 0in Rand 4 + J ¢ I, I is not
semiprime. Since 0 #= (4 4+ J)(2 4+ J) = 8 + J € I but neither (4 4+ J) € I nor
2+ J) € 1, I is not weakly prime.
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(4) Ttis clear by Theorem 2.12(2).

(5) Since x2 # 0in R and 4 + J is an unbreakable-zero element of 7, the claim is
clear by Theorem 2.12(3).

(6) Ttisclearthat I = (8X, X2)/J # {0}. Since x*> € I* = (8X, X?)/J and x ¢ I?,
I? is not weakly semiprime.

(7) K = Nil(R)I = (2X,X?)/J. Since 0 # x> € K and x ¢ K, K is not weakly
semiprime. O

Let I be a weakly semiprime ideal of a ring R and J be a weakly semiprime ideal
of R>. Then I x J needs not be a weakly semiprime ideal of R; x R, as we will show
in the following example.

Example 2.14 Let R and I be asinExample2.13andlet A = RxZ¢. Then J = {0, 8}
is a weakly semiprime ideal of Z16. We show that / x J is not a weakly semiprime
ideal of A. For0 # (X +J,4)> = (X?>+J,00 eI x Jbut (X +J,4) ¢ I x J.

Theorem 2.15 Let R = R; X Ry where Ry, Ry are commutative rings with identity
and let J be a proper ideal of R. The following statements are equivalent:

(1) J is a weakly semiprime ideal of R that is not semiprime such that x> = (0, 0)
for every x € J.

(2) J = I x Iy where I, I, are weakly semiprime ideals of R1, Ry respectively and
I} is not semiprime or I is not semiprime and a®> = b> = 0 for every a € Iy and
for every b € I.

Proof (1) = (2). We know that J = I x I, for some ideals /1, I> of Ry, R, respec-
tively. Suppose that 0 # a? € I for some a € Ry and 0 # b? € I, for some b € R;.
Then (0, 0) # (a®,b?) € J. Since J is weakly semiprime, we have (a, b) € J. Thus
a € Iy and b € I,. Thus I; is a weakly semiprime ideal of R; and I, is a weakly
semiprime ideal of R;. Since x2 = (0, 0) for every x € J, we have a? = b? =0 for
every a € I and for every b € I. Since J is not semiprime, J has an unbreakable-
zero element, say (¢, d) € R. Hence c is an unbreakable-zero element of 11 or d is
an unbreakable-zero element of I5. Thus I; is not semiprime or /5 is not semiprime.
(2) = (1). It can be easily verified and it is left to the reader. ]

Theorem 2.16 Let R = Ry X Ry where R, Ry are commutative rings and let J be
a proper ideal of R. The following statements are equivalent:

(1) J is a weakly semiprime ideal of R that is not semiprime such that x> # (0, 0)
for some x € J.

(2) J = I} x I, where (I is a weakly semiprime ideal of Ry that is not semiprime
such that a* # 0 for some a € I and I is a semiprime ideal of Ry such that
b? = 0 for every b € I ) or (I is a weakly semiprime ideal of Ry that is not
semiprime such that b*> # 0 for some b € I and I, is a semiprime ideal of Ry
such that a* = 0 for every a € I).

Proof (1) = (2). We know that J = I x I for some ideals I, I> of Ry, R, respec-
tively. Then I7, I are weakly semiprime ideals of R;, R respectively by the first part
proof of Theorem 2.15. Since J is a weakly semiprime ideal of R that is not semiprime,
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we conclude that 77 a weakly semiprime ideal of R; that is not semiprime or I, is
a weakly semiprime ideal of R» that is not semiprime. We consider two cases. Case
one Suppose that /1 a weakly semiprime ideal of R; that is not semiprime. We show
that I, is a semiprime ideal of R, such that b? = 0 for every b € I,. Hence I has
unbreakable-zero element ¢ € Ry. Let b € I». Since (c, b)? = (%, b%) = (0,b?) € J
and ¢ ¢ I, we conclude that b? = 0. Since x2 # (0, 0) for some x € J and 2 =0
for every b € I, we conclude that there is an 4 € I; such that k> # 0. Let f € Ry
and suppose that f> € I». Since (0, 0) # (h, f)*> = (h*, f?) € J and J is a weakly
semiprime of R, we conclude that f € I. Thus I, is a semiprime ideal of R such
that 5> = 0 for every b € I,. Case two Suppose that I, a weakly semiprime ideal of
R; that is not semiprime. Then by similar argument as in case one, we conclude that
I} is a semiprime ideal of R; such that a®> = 0 for every a € I1. (2) = (1). It can be
easily verified and it is left to the reader. O

Theorem 2.17 Every nil ideal of R is weakly semiprime if and only if w> = 0 for
every w € Nil(R).

Proof Suppose that every nil ideal of R is weakly semiprime. Let w € Nil(R) and
suppose that w? # 0 for some w € Nil(R). Since J = w?R is weakly semiprime and
0# w? e J,w e J. Hence w>a = w for some a € R. Thus w(wa — 1) = 0. Since
aw — 1 is a unit of R, w = 0, a contradiction. Thus w? = 0 for every w € Nil(R).
Conversely, suppose that w? = 0 for every w € Nil(R). Let I be a nil ideal of R.
Then I is weakly semiprime by Theorem 2.6. O

Recall that an element x € R is said to be von Neumann regular if ux> = x for
some u € R. If each element of R is von Neumann regular, then R is called von
Neumann regular . For a recent article on von Neumann regular elements of a ring R
see (Anderson and Badawi 2012). If R has exactly one maximal ideal, then we say
that R is quasilocal. A ring R is said to be reduced if Nil(R) = {0}. It is known that
if R is von Neumann regular, then R is reduced. We have the following result.

Theorem 2.18 The following statements are equivalent:

(1) Every proper ideal of R is weakly semiprime.
(2) Either R is von Neumann regular (and hence R is reduced) or R is quasilocal
with maximal ideal Nil(R) such that w?* = 0 for every w € Nil(R).

Proof (1) = (2). Since every nil ideal of R is weakly semiprime, we have w? = 0
for every w € Nil(R) by Theorem 2.17. Hence let x € R\Nil(R). If x is a unit
of R, then x is von Neumann regular. Hence assume that x is not a unit of R. Since
I = x?R is weakly semiprime and 0 # x> € I, x € I. Thus x = ux? for some u € R.
Hence x is a von Neumann regular element of R. Since each element y of R is either
nilpotent with y> = 0 or y is von Neumann regular, we conclude that either R is von
Neumann regular or R is quasilocal with maximal ideal Nil(R) such that w? = 0 for
every w € Nil(R) by [Anderson and Badawi (2012), Theorem 2.4(1)]. (2) = (1). It
is clear by the definition of von Neumann regular and by Theorem 2.17. O

In view of Theorem 2.18, we have the following result.
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Corollary 2.19 Let R be a reduced ring. The following statements are equivalent:

(1) Every proper ideal of R is weakly semiprime.
(2) Every proper ideal of R is semiprime.
(3) R is von Neumann regular.

Recall that and ideal I of R is said to be nontrivial if I # {0}.

Theorem 2.20 Assume that either n = 2 or n > 3 is an odd integer and let R = Zpn
where p is a positive prime integer. Then a nontrivial proper ideal I of R is weakly
prime if and only if I is prime.

Proof Assume n = 2. Since pR is the only nontrivial ideal of R. The claim is clear.
Hence assume that n > 3 is an odd integer. Suppose that / is a nontrivial weakly
prime ideal of R. Then I = ka for some integer k, 1 < k <n — 1. Suppose that k
is even. Then 0 # (p*/?) e I but p*/? ¢ I, a contradiction. Thus assume that k is
odd. Since n is odd, we have 1 < k < n — 2. Since 0 # (p(k“)/Z)2 e I, we have
p*tD/2 e 1 But p**t1D/2 ¢ [ if and only if k = 1. Hence I = pR is a prime ideal
of R. The converse is clear. O

Theorem 2.21 Let n > 2 be a positive integer, p be a positive prime integer, and let
R = Zyn. The following statements are equivalent:

(1) n > 4 is an even integer.
(2) R has a nontrivial weakly semiprime ideal that is not semiprime.
(3) R has a unique nontrivial weakly semiprime ideal that is not semiprime.
(4) I = p"~'R is the only nontrivial weakly semiprime ideal of R that is not semi-
prime.
Proof (1) = (2). Let I = p"'R. Then let x € R. Since n > 4 is an even integer,
x? € I if and only if x> = 0 in R. Thus / is weakly semiprime by definition. Since
n > 4 is an even integer, (p"/?)?> = 0in R but p"/?> ¢ I. Hence I is not semiprime.
(2) = (3). Since R has a nontrivial weakly semiprime ideal that is not semiprime,
we conclude that n > 4 is an even integer by Theorem 2.20. Let 1 < k < n. Since
(R, +) is a cyclic group under addition, there is exactly one ideal of order p¥, namely
p"*R. Thus suppose that I = p"~*R is weakly semiprime that is not semiprime for
some 2 < k < n. Then either n — k is an even integer or n — k is an odd integer. If
n — k is an even integer, then 0 # (p*=0/2)2 ¢ [ but p"=%/2 ¢ I a contradiction.
If m = n — k is an odd integer, then 0 # (p™TD/2)2 ¢ [ but p™+D/2 ¢ I (note that
(m + 1)/2 < n — k), a contradiction again. Hence / = p"~!R is the only nontrivial
weakly semiprime ideal of R thatis not semiprime. (3) = (4). Since R has a nontrivial
weakly semiprime ideal that is not semiprime, we conclude that n > 4 by Theorem
2.20. It is shown earlier in the proof that I = p"~!'R is the only nontrivial weakly
semiprime ideal of R that is not semiprime. (4) = (1). It is clear by Theorem 2.20.
O

Corollary 2.22 Letn > 2 be apositive integer, p be a positive prime integer, R = Zn,
and let I be a nontrivial proper ideal of R. The following statements are equivalent:

(1) n =2orn > 3isan odd integer.
(2) I is weakly semiprime if and only if I is prime.
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Proof In view of Theorem 2.20 and Theorem 2.21, the claim is clear. m}

Remark 2.23 Assume that R = Ry X --- X Ry, where Ry, ..., R, are commutative
rings with 1 and k > 2. It should be clear thatif / = I] x - - - x I} is a weakly semiprime
ideal of R that is not semiprime where each [; is an ideal of R;, then I; # R; for each
i,1<i<k.

Theorem 2.24 Let m = p'f‘ ey pZ" where the pis are distinct positive prime inte-
gers, the ngs > 1 are positive integers, and k > 2. Let R = Z,, = Ry X --- X Ry
where each R; = Zp{zi. Then R admits a nontrivial weakly prime ideal that is not

semiprime if and onlytif one of the following two conditions holds:

(1) Thereisani, 1 <i <k such that n; > 4 is an even integer.
(2) There are distincti, j, 1 <i, j < k suchthatn; =2andn; > 2.

Proof Suppose that R admits a nontrivial weakly prime ideal, say I, that is not
semiprime. Hence I = I} x --- x [ where each [; is a weakly semiprime ideal
of R;. Assume that the n}s are all odd integers. Then each nontrivial /; is a prime
ideal of R; by Theorem 2.20 and Remark 2.23. Assume that n; = 1 for every i,
1 <i < k. Then R is von Neumann regular, and hence every nontrivial weakly semi-
prime ideal of R is semiprime, a contradiction. Since [ is not semiprime, one of the
Is, say Iy, is weakly semiprime that is not semiprime. Since n; is odd, I} = {0}
and n; > 3. Since [ is nontrivial, one of the Il.’ s, say I, is nontrivial prime ideal.
Hence I, = pyRy and ny > 3. Now (0,0, ...,0) # (p\"" "2 py0,...,002 1

but (pinl—H)/z, p2,0,...,0) ¢ I,acontradiction. Now assume exactly one of the n;s,

saynp = 2,and eachn; = 1,2 < i < k. Then it is easily verified that every weakly
semiprime of R is semiprime, a contradiction. Thus one of the two given conditions
must hold.

Conversely, assume that one of the ngs, say n1 > 4 1is an even integer. Then I} =

p?‘_l R; is a weakly semiprime ideal of R; that is not semiprime by Theorem 2.21.

Hence I = I} x {0} x --- x {0} is a nontrivial weakly semiprime ideal of R that is
not semiprime. Assume that n;y = 2 andny > 2. Then I = pi Ry x {0} x --- x {0} is
a nontrivial weakly semiprime ideal of R that is not semiprime. O
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