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Abstract Let R be a commutative ring with identity 1 �= 0 and let I be a proper ideal
of R. D. D. Anderson and E. Smith called I weakly prime if a, b ∈ R and 0 �= ab ∈ I
implies a ∈ I or b ∈ I . In this paper, we define I to be weakly semiprime if a ∈ R
and 0 �= a2 ∈ I implies a ∈ I . For example, every proper ideal of a quasilocal ring
(R, M) with M2 = 0 is weakly semiprime. We give examples of weakly semiprime
ideals that are neither semiprime nor weakly prime. We show that a weakly semiprime
ideal of R that is not semiprime is a nil ideal of R. We show that if I is a weakly
semiprime ideal of R that is not semiprime and 2 is not a zero-divisor of of R, then
I 2 = {0} (and hence i2 = 0 for every i ∈ I ). We give an example of a ring R that
admits a weakly semiprime ideal I that is not semiprime where i2 �= 0 for some i ∈ I .
If R = R1 × R2 for some rings R1, R2, then we characterize all weakly semiprime
ideals of R that are not semiprime. We characterize all weakly semiprime ideals of of
Zm that are not semiprime. We show that every proper ideal of R is weakly semiprime
if and only if either R is von Neumann regular or R is quasilocal with maximal ideal
Nil(R) such that w2 = 0 for every w ∈ Nil(R).
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1 Introduction

Throughout this paper let R be a commutative ring with identity 1 �= 0. Recall that
a proper ideal I (i.e., an ideal different from R) of R is called semiprime if a ∈ R
and a2 ∈ I implies a ∈ I . In this paper, we define a proper ideal I of R to be
weakly semiprime if a ∈ R and 0 �= a2 ∈ I implies a ∈ I . Recall from (Anderson
and Smith 2003) that an ideal I of R is said to be weakly prime if a, b ∈ R and
0 �= ab ∈ I implies a ∈ I or b ∈ I . Hence every weakly prime ideal of R is weakly
semiprime. However, the converse is not true. For example, the ideal I = {0, 8} of Z16
is weakly semiprime that is neither semiprime nor weakly prime. Recently, various
generalizations of (weakly) prime ideals are studied in (Anderson and Badawi 2011;
Anderson and Smith 2003; Badawi 2007; Badawi and Darani 2013).

Let R be a ring. Then Nil(R) denotes the ideal of nilpotent elements of R. An
ideal I of R is said to be a proper ideal of R if I �= R. As usual, Z, and Zn will
denote integers, and integers modulo n, respectively. Some of our examples use the
R(+)M construction as in (Huckaba 1988). Let R be a ring and M an R-module. Then
R(+)M = R × M is a ring with identity (1, 0) under addition defined by (r, m) +
(s, n) = (r + s, m + n) and multiplication defined by (r, m)(s, n) = (rs, rn + sm).
Note that (0(+)M)2 = 0; so 0(+)M ⊆ Nil(R(+)M).

Among many results in this paper, we show that if I is a weakly semiprime ideal of
R that is not semiprime, then I ⊆ Nil(R) (Theorem 2.4). It is shown that if I, J are
weakly semiprime ideals of R that are not semiprime and 2 is not a zero-divisor of R,
then I 2 = I J = {0} (Theorem 2.8). It is shown that if I is a weakly semiprime ideal
of R that is not semiprime and 2 is not a zero-divisor of R, then every ideal J ⊆ I of
R is weakly semiprime (and hence Nil(R)I is weakly semiprime) (Theorem 2.11). It
is shown that if I is a weakly semiprime ideal of R that is not semiprime and i2 �= 0
for some i ∈ I , then 2i2 = i3 = 0 and there is an ideal H of R where {0} �= H2 ⊆ I
but H � I (Theorem 2.12). We give an example of a ring R that admits a weakly
semiprime ideal I that is not semiprime where i2 �= 0 for some i ∈ I (and hence
I 2 �= {0}) (Example 2.13). If R = R1 × R2 where R1, R2 are commutative rings
with 1, then a complete description of all weakly semiprime ideals of R that are not
semiprime is given in Theorems 2.15 and 2.16. If R = Zpn where p is a positive
prime number and n ≥ 1 is a positive integer, then it is shown that R admits a weakly
semiprime ideal that is not semiprime if and only if n ≥ 4 is an even integer (Theorem
2.21). It is shown that every proper ideal of R is weakly semiprime if and only if either
R is von Neumman regular or R is quasilocal with maximal ideal Nil(R) where
w2 = 0 for every w ∈ Nil(R) (Theorem 2.18).

2 Properties of weakly semiprime ideals

It is clear that every weakly prime ideal of a ring R is semiprime. The following is an
example of an infinite ideal I of a commutative ring R such that I is weakly semiprime
but I is neither semiprime nor weakly prime.

Example 2.1 Let M = {0, 8} and X be an indeterminate. Then M[X ] is an ideal of
Z16[X ]. Let R = Z16(+)M[X ] and let I = {0, 8}(+)M[X ]. Observe that If y ∈ R
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and y2 ∈ I , then y2 = (0, 0). Hence I is weakly semiprime by definition. Since
(4, 0)2 = (0, 0) ∈ I and (4, 0) /∈ I , I is not semiprime. Since (2, 0)(4, 0) = (8, 0) ∈ I
and neither (2, 0) ∈ I nor (4, 0) ∈ I , I is not weakly prime.

One can easily verify that the ideal M[X ] of Z16[X ] is weakly semiprime but it is
neither semiprime nor weakly prime.

Definition 2.2 Let I be a weakly semiprime ideal of a ring R and a ∈ R. We say a is
an unbreakable-zero element of I if a2 = 0 and a /∈ I .

Theorem 2.3 Let I be a weakly semiprime ideal of a ring R and suppose that a is an
unbreakable-zero element of I . Then (a + i)2 = (a − i)2 = 0.

Proof Let i ∈ I . Since (a+i)2 = a2+2ai +i2 = 0+2ai +i2 ∈ I and a /∈ I , we have
a+i /∈ I . Thus (a+i)2 = 0. Similarly, since (a−i)2 = a2−2ai+i2 = 0−2ai+i2 ∈ I
and a /∈ I , we have a − i /∈ I . Thus (a − i)2 = 0. ��
Theorem 2.4 Let I be a weakly semiprime ideal of a ring R that is not semiprime.
Then I ⊆ Nil(R).

Proof Since I is weakly semiprime that is not semiprime, we conclude that I has an
unbreakable-zero element, say a. Let i ∈ I . Then (a + i)2 = 0 by Theorem 2.3. Since
a ∈ Nil(R) and (a + i) ∈ Nil(R), we have i ∈ Nil(R). Thus I ⊆ Nil(R). ��
Theorem 2.5 Let I be a weakly semiprime ideal of a ring R that is not semiprime. If
char(R) = 2 (i.e., 1 + 1 = 0 ∈ R) or 2 is not a zero-divisor of R, then i2 = 0 for
every i ∈ I .

Proof Since I is weakly semiprime that is not semiprime, we conclude that I has
an unbreakable-zero element, say a. Let i ∈ I . Suppose that char(R) = 2. Since
(a + i)2 = 0 by Theorem 2.3, we have (a + i)2 = a2 + i2 = 0 + i2 = 0. Suppose
that char(R) �= 2 and 2 is not a zero-divisor of R. Then (a + i)2 + (a − i)2 = 0 by
Theorem 2.3. Hence (a + i)2 + (a − i)2 = 2i2 = 0. Since 2 is not a zero-divisor of
R, we conclude that i2 = 0. ��
Theorem 2.6 Let J be a proper ideal of R and suppose that char(R) = 2 or 2 is not
a zero-divisor of R. The following statements are equivalent:

(1) I is weakly semiprime that is not semiprime.
(2) If x2 ∈ I for some x ∈ R, then x2 = 0.

Proof (1) ⇒ (2). Let x ∈ R and suppose that x2 ∈ I . Then either x2 = 0 or x ∈ I . If
x ∈ I , then x2 = 0 by Theorem 2.5. (2) ⇒ (1). It is clear by the definition of weakly
semiprime. ��
Theorem 2.7 Let I be a weakly semiprime ideal of a ring R that is not semiprime
and suppose that 2 is not a zero-divisor of R. If b is an unbreakable-zero element of
I , then bI = {0}.
Proof Let i ∈ I . Since (b + i)2 = 0 by Theorem 2.3 and i2 = 0 by Theorem 2.7, we
have (b + i)2 = b2 + 2bi + i2 = 0 + 2bi + 0 = 0. Hence 2bi = 0. Since 2 is not a
zero-divisor of R, we conclude that bi = 0. ��
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Theorem 2.8 Let J, I be weakly semiprime ideals of a ring R that are not semiprime
and suppose that 2 is not a zero-divisor of R. Then J 2 = I 2 = I J = {0}.
Proof Let a, b ∈ I . Since a + b ∈ I and 2 is not a zero-divisor of R, (a + b)2 =
a2 + 2ab + b2 = 0 by Theorem 2.5. Since a2 = b2 = 0 by Theorem 2.5, we have
2ab = 0. Since 2 is not a zero-divisor element of R, ab = 0. Thus I 2 = {0}. Similarly,
J 2 = {0}. Now, let a ∈ J and b ∈ I . Then a2 = b2 = 0 by Theorem 2.5. Suppose
that a ∈ I . Since I 2 = {0} and a, b ∈ I , we have ab = 0. Suppose that a /∈ I . Then a
is an unbreakable-zero element of I . Hence ab = 0 by Theorem 2.7. Thus J I = {0}.

��
The following is an example of an ideal I of a ring R where I 2 = {0} but I is not
weakly semiprime.

Example 2.9 Let I = {0, 4, 8, 12} ⊂ R = Z16. Then I is an ideal of R and I 2 = {0}.
Since 22 ∈ I and 2 /∈ I , I is not weakly semiprime.

Theorem 2.10 Let I be a weakly semiprime ideal of a ring R that is not semiprime
and suppose that 2 is not a zero-divisor of R. Let J be an ideal of R. Then J 2 ⊆ I if
and only if J 2 = {0}.
Proof Let a, b ∈ J . Since a2, b2, (a + b)2 ∈ I . We have a2 = b2 = (a + b)2 = 0 by
Theorem 2.6. Thus (a + b)2 = 2ab = 0. Since 2 is not a zero-divisor element of R,
we have ab = 0. Thus J 2 = {0}. ��
Theorem 2.11 Let I be a weakly semiprime ideal of a ring R that is not semiprime
and suppose that char(R) = 2 or 2 is not a zero-divisor of R. Let J be an ideal of
R such that J ⊆ I . Then J is a weakly semiprime ideal of R. Thus if K is an ideal
of R, then K I is a weakly semiprime ideal of R. In particular, Nil(R)I is a weakly
semiprime ideal of R.

Proof Let x ∈ R and suppose that x2 ∈ J . Then x2 ∈ I . Hence x2 = 0 by Theorem
2.6. ��

Example 2.13 shows that the hypothesis “2 is not a zero-divisor element” in the
previous Theorems is crucial. But first we have the following result.

Theorem 2.12 Let I be a weakly semiprime ideal of a ring R that is not semiprime
and suppose that i2 �= 0 for some i ∈ I . Then:

(1) 2 is a nonzero zero-divisor of R, 2i2 = 0 and i3 = 0.
(2) If a is an unbreakable-zero element of I , then 2a ∈ I , 2ai �= 0 (and hence

aI �= {0}), and 4ai = 0.
(3) There is an ideal H of R where {0} �= H2 ⊆ I but H � I .

Proof (1) Since i2 �= 0, 2 is a nonzero zero-divisor of R by Theorem 2.5. Since I is
weakly semiprime that is not semiprime, we conclude that I has an unbreakable-
zero element, say b. Hence (b + i)2 + (b − i)2 = 2i2 = 0 by Theorem 2.3. Since
(b+i)2 = 2bi +i2 = 0 and 2i2 = 0, we have i(b+i)2 = 2bi2 +i3 = 0+i3 = 0.
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(2) Let a be an unbreakable-zero element of I . Since (a + i)2 = 2ai + i2 = 0
and 2i2 = 0, we have 2(a + i)2 = 4ai + 2i2 = 4ai = 0. Since (a + i)2 =
2ai + i2 = 0 and i2 �= 0, we have 2ai �= 0. Since 4ai = 0 and i2 �= 0, we have
0 �= (2a + i)2 = i2 ∈ I . Thus (2a + i) ∈ I . Since i ∈ I and (2a + i) ∈ I , we
have 2a ∈ I .

(3) Let a be an unbreakable-zero element of I and consider the ideal H = (a, 2i) of
R. Since a2 = 0 and 2i2 = 0, H2 = (a, 2i)2 = (2ai) ⊂ I . Since 2ai �= 0 by (1),
H2 = (2ai) is a nonzero ideal of R that is contained in I . Since a /∈ I , H � I .

��
In the following example, we show that the hypothesis “2 is not a zero-divisor

element” in the previous Theorems is crucial.

Example 2.13 Let A = Z16[X ]. Then J = (X2 + 8X) and L = (X, 8) are ideals of
A and J ⊂ L . Let R = A/J , I = L/J , and x = X + J ∈ I . Then:

(1) Nil(R) = (2, X)/J .
(2) 2x2 = 0, x2 �= 0, and x3 = 0 .
(3) I is a weakly semiprime ideal of R that is nether semiprime nor weakly prime.
(4) If b ∈ R is an unbreakable-zero element of I , then 2b ∈ I , 2bx �= 0 (and hence

bI �= {0}), and 4bx = 0.
(5) H = (J + (4, 2x))/J is an ideal of R where {0} �= H2 = (J + (8X))/J ⊂ I but

H � I (see Theorem 2.12).
(6) I 2 �= {0} and I 2 ⊆ I is not a weakly semiprime ideal of R (compare it with

Theorem 2.8 and Theorem 2.11).
(7) Nil(R)I is not a weakly semiprime ideal of R (compare it with Theorem 2.11).

Proof (1) It is clear by construction of R.
(2) By construction of I , X2 /∈ J . Thus x2 �= 0 in R. It is clear that 2(8X + X2) =

2X2 ∈ J . Thus 2x2 = 0 in R. Since 2X2 ∈ J , bX2 ∈ J for every b ∈ Nil(Z16).
Since 8X2 ∈ J and X (8X + X2) = 8X2 + X3 ∈ J , we have X3 ∈ J . Hence
x3 = 0 in R.

(3) Observe that I ⊂ Nil(R) by construction. Suppose that m2 ∈ I and m2 �= 0.
Hence m = (aX +2b)+ J ∈ Nil(R) for some a, b ∈ Z16. Since Z16 ∩L = {0, 8}
and d2 = 8 has no solutions in Z16, we conclude that m2 = [(aX+2b)+J ]2 ∈ I if
and only if (aX+2b)2 ∈ L if and only if (2b)2 = 0 in Z16. Thus 2b ∈ {0, 4, 8, 12}.
Suppose that a ∈ Nil(Z16). If a = 0, then (aX + 2b)2 = (2b)2 = 0. If a �= 0,
then it is easily verified that (aX + 2b)2 = a2 X2 ∈ J . Hence if a ∈ Nil(Z16),
then m2 = 0. Thus if m2 �= 0, then a /∈ Nil(Z16). Thus suppose that a /∈
Nil(Z16). If 2b ∈ {4, 12}, then (aX +2b)2 = a2 X2 +8X in A. Since the element
(X2 + 8X) ∈ J , a2 X2 + 8X = a2(X2 + 8X) ∈ J (note that a28 = 8 in Z16).
Thus if 2b ∈ {4, 12}, then m2 = 0 in R. Hence suppose that 2b ∈ {0, 8}. Then
(aX + 2b)2 = a2 X2 in A. Since X2 /∈ J and a2 is a unit of Z16, a2 X2 /∈ J . Thus
0 �= m2 ∈ I if and only if a is a unit of Z16 and 2b ∈ {0, 8}. Since aX, aX +8 ∈ L
for every unit a of Z16, we conclude that 0 �= m2 ∈ I implies m ∈ I . Thus I is a
weakly semiprime ideal of R. Since (4 + J )2 = 0 in R and 4 + J /∈ I , I is not
semiprime. Since 0 �= (4 + J )(2 + J ) = 8 + J ∈ I but neither (4 + J ) ∈ I nor
(2 + J ) ∈ I , I is not weakly prime.
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(4) It is clear by Theorem 2.12(2).
(5) Since x2 �= 0 in R and 4 + J is an unbreakable-zero element of I , the claim is

clear by Theorem 2.12(3).
(6) It is clear that I 2 = (8X, X2)/J �= {0}. Since x2 ∈ I 2 = (8X, X2)/J and x /∈ I 2,

I 2 is not weakly semiprime.
(7) K = Nil(R)I = (2X, X2)/J . Since 0 �= x2 ∈ K and x /∈ K , K is not weakly

semiprime. ��
Let I be a weakly semiprime ideal of a ring R1 and J be a weakly semiprime ideal

of R2. Then I × J needs not be a weakly semiprime ideal of R1 × R2 as we will show
in the following example.

Example 2.14 Let R and I be as in Example 2.13 and let A = R×Z16. Then J = {0, 8}
is a weakly semiprime ideal of Z16. We show that I × J is not a weakly semiprime
ideal of A. For 0 �= (X + J, 4)2 = (X2 + J, 0) ∈ I × J but (X + J, 4) /∈ I × J .

Theorem 2.15 Let R = R1 × R2 where R1, R2 are commutative rings with identity
and let J be a proper ideal of R. The following statements are equivalent:

(1) J is a weakly semiprime ideal of R that is not semiprime such that x2 = (0, 0)

for every x ∈ J .
(2) J = I1 × I2 where I1, I2 are weakly semiprime ideals of R1, R2 respectively and

I1 is not semiprime or I2 is not semiprime and a2 = b2 = 0 for every a ∈ I1 and
for every b ∈ I2.

Proof (1) ⇒ (2). We know that J = I1 × I2 for some ideals I1, I2 of R1, R2 respec-
tively. Suppose that 0 �= a2 ∈ I1 for some a ∈ R1 and 0 �= b2 ∈ I2 for some b ∈ R2.
Then (0, 0) �= (a2, b2) ∈ J . Since J is weakly semiprime, we have (a, b) ∈ J . Thus
a ∈ I1 and b ∈ I2. Thus I1 is a weakly semiprime ideal of R1 and I2 is a weakly
semiprime ideal of R2. Since x2 = (0, 0) for every x ∈ J , we have a2 = b2 = 0 for
every a ∈ I1 and for every b ∈ I2. Since J is not semiprime, J has an unbreakable-
zero element, say (c, d) ∈ R. Hence c is an unbreakable-zero element of I1 or d is
an unbreakable-zero element of I2. Thus I1 is not semiprime or I2 is not semiprime.
(2) ⇒ (1). It can be easily verified and it is left to the reader. ��
Theorem 2.16 Let R = R1 × R2 where R1, R2 are commutative rings and let J be
a proper ideal of R. The following statements are equivalent:

(1) J is a weakly semiprime ideal of R that is not semiprime such that x2 �= (0, 0)

for some x ∈ J .
(2) J = I1 × I2 where (I1 is a weakly semiprime ideal of R1 that is not semiprime

such that a2 �= 0 for some a ∈ I1 and I2 is a semiprime ideal of R2 such that
b2 = 0 for every b ∈ I2 ) or (I2 is a weakly semiprime ideal of R2 that is not
semiprime such that b2 �= 0 for some b ∈ I2 and I1 is a semiprime ideal of R1
such that a2 = 0 for every a ∈ I1).

Proof (1) ⇒ (2). We know that J = I1 × I2 for some ideals I1, I2 of R1, R2 respec-
tively. Then I1, I2 are weakly semiprime ideals of R1, R2 respectively by the first part
proof of Theorem 2.15. Since J is a weakly semiprime ideal of R that is not semiprime,
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we conclude that I1 a weakly semiprime ideal of R1 that is not semiprime or I2 is
a weakly semiprime ideal of R2 that is not semiprime. We consider two cases. Case
one Suppose that I1 a weakly semiprime ideal of R1 that is not semiprime. We show
that I2 is a semiprime ideal of R2 such that b2 = 0 for every b ∈ I2. Hence I1 has
unbreakable-zero element c ∈ R1. Let b ∈ I2. Since (c, b)2 = (c2, b2) = (0, b2) ∈ J
and c /∈ I1, we conclude that b2 = 0. Since x2 �= (0, 0) for some x ∈ J and b2 = 0
for every b ∈ I2, we conclude that there is an h ∈ I1 such that h2 �= 0. Let f ∈ R2
and suppose that f 2 ∈ I2. Since (0, 0) �= (h, f )2 = (h2, f 2) ∈ J and J is a weakly
semiprime of R, we conclude that f ∈ I2. Thus I2 is a semiprime ideal of R2 such
that b2 = 0 for every b ∈ I2. Case two Suppose that I2 a weakly semiprime ideal of
R2 that is not semiprime. Then by similar argument as in case one, we conclude that
I1 is a semiprime ideal of R1 such that a2 = 0 for every a ∈ I1. (2) ⇒ (1). It can be
easily verified and it is left to the reader. ��
Theorem 2.17 Every nil ideal of R is weakly semiprime if and only if w2 = 0 for
every w ∈ Nil(R).

Proof Suppose that every nil ideal of R is weakly semiprime. Let w ∈ Nil(R) and
suppose that w2 �= 0 for some w ∈ Nil(R). Since J = w2 R is weakly semiprime and
0 �= w2 ∈ J , w ∈ J . Hence w2a = w for some a ∈ R. Thus w(wa − 1) = 0. Since
aw − 1 is a unit of R, w = 0, a contradiction. Thus w2 = 0 for every w ∈ Nil(R).

Conversely, suppose that w2 = 0 for every w ∈ Nil(R). Let I be a nil ideal of R.
Then I is weakly semiprime by Theorem 2.6. ��

Recall that an element x ∈ R is said to be von Neumann regular if ux2 = x for
some u ∈ R. If each element of R is von Neumann regular, then R is called von
Neumann regular . For a recent article on von Neumann regular elements of a ring R
see (Anderson and Badawi 2012). If R has exactly one maximal ideal, then we say
that R is quasilocal. A ring R is said to be reduced if Nil(R) = {0}. It is known that
if R is von Neumann regular, then R is reduced. We have the following result.

Theorem 2.18 The following statements are equivalent:

(1) Every proper ideal of R is weakly semiprime.
(2) Either R is von Neumann regular (and hence R is reduced) or R is quasilocal

with maximal ideal Nil(R) such that w2 = 0 for every w ∈ Nil(R).

Proof (1) ⇒ (2). Since every nil ideal of R is weakly semiprime, we have w2 = 0
for every w ∈ Nil(R) by Theorem 2.17. Hence let x ∈ R\Nil(R). If x is a unit
of R, then x is von Neumann regular. Hence assume that x is not a unit of R. Since
I = x2 R is weakly semiprime and 0 �= x2 ∈ I , x ∈ I . Thus x = ux2 for some u ∈ R.
Hence x is a von Neumann regular element of R. Since each element y of R is either
nilpotent with y2 = 0 or y is von Neumann regular, we conclude that either R is von
Neumann regular or R is quasilocal with maximal ideal Nil(R) such that w2 = 0 for
every w ∈ Nil(R) by [Anderson and Badawi (2012), Theorem 2.4(1)]. (2) ⇒ (1). It
is clear by the definition of von Neumann regular and by Theorem 2.17. ��
In view of Theorem 2.18, we have the following result.
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Corollary 2.19 Let R be a reduced ring. The following statements are equivalent:

(1) Every proper ideal of R is weakly semiprime.
(2) Every proper ideal of R is semiprime.
(3) R is von Neumann regular.

Recall that and ideal I of R is said to be nontrivial if I �= {0}.
Theorem 2.20 Assume that either n = 2 or n ≥ 3 is an odd integer and let R = Zpn

where p is a positive prime integer. Then a nontrivial proper ideal I of R is weakly
prime if and only if I is prime.

Proof Assume n = 2. Since pR is the only nontrivial ideal of R. The claim is clear.
Hence assume that n ≥ 3 is an odd integer. Suppose that I is a nontrivial weakly
prime ideal of R. Then I = pk R for some integer k, 1 ≤ k ≤ n − 1. Suppose that k
is even. Then 0 �= (pk/2)2 ∈ I but pk/2 /∈ I , a contradiction. Thus assume that k is
odd. Since n is odd, we have 1 ≤ k ≤ n − 2. Since 0 �= (p(k+1)/2)2 ∈ I , we have
p(k+1)/2 ∈ I . But p(k+1)/2 ∈ I if and only if k = 1. Hence I = pR is a prime ideal
of R. The converse is clear. ��
Theorem 2.21 Let n ≥ 2 be a positive integer, p be a positive prime integer, and let
R = Zpn . The following statements are equivalent:

(1) n ≥ 4 is an even integer.
(2) R has a nontrivial weakly semiprime ideal that is not semiprime.
(3) R has a unique nontrivial weakly semiprime ideal that is not semiprime.
(4) I = pn−1 R is the only nontrivial weakly semiprime ideal of R that is not semi-

prime.

Proof (1) ⇒ (2). Let I = pn−1 R. Then let x ∈ R. Since n ≥ 4 is an even integer,
x2 ∈ I if and only if x2 = 0 in R. Thus I is weakly semiprime by definition. Since
n ≥ 4 is an even integer, (pn/2)2 = 0 in R but pn/2 /∈ I . Hence I is not semiprime.
(2) ⇒ (3). Since R has a nontrivial weakly semiprime ideal that is not semiprime,
we conclude that n ≥ 4 is an even integer by Theorem 2.20. Let 1 ≤ k < n. Since
(R,+) is a cyclic group under addition, there is exactly one ideal of order pk , namely
pn−k R. Thus suppose that I = pn−k R is weakly semiprime that is not semiprime for
some 2 ≤ k < n. Then either n − k is an even integer or n − k is an odd integer. If
n − k is an even integer, then 0 �= (p(n−k)/2)2 ∈ I but p(n−k)/2 /∈ I , a contradiction.
If m = n − k is an odd integer, then 0 �= (p(m+1)/2)2 ∈ I but p(m+1)/2 /∈ I (note that
(m + 1)/2 < n − k), a contradiction again. Hence I = pn−1 R is the only nontrivial
weakly semiprime ideal of R that is not semiprime. (3) ⇒ (4). Since R has a nontrivial
weakly semiprime ideal that is not semiprime, we conclude that n ≥ 4 by Theorem
2.20. It is shown earlier in the proof that I = pn−1 R is the only nontrivial weakly
semiprime ideal of R that is not semiprime. (4) ⇒ (1). It is clear by Theorem 2.20.

��
Corollary 2.22 Let n ≥ 2 be a positive integer, p be a positive prime integer, R = Zpn ,
and let I be a nontrivial proper ideal of R. The following statements are equivalent:

(1) n = 2 or n ≥ 3 is an odd integer.
(2) I is weakly semiprime if and only if I is prime.
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Proof In view of Theorem 2.20 and Theorem 2.21, the claim is clear. ��
Remark 2.23 Assume that R = R1 × · · · × Rk , where R1, . . . , Rk are commutative
rings with 1 and k ≥ 2. It should be clear that if I = I1×· · ·× Ik is a weakly semiprime
ideal of R that is not semiprime where each Ii is an ideal of Ri , then Ii �= Ri for each
i , 1 ≤ i ≤ k.

Theorem 2.24 Let m = pn1
1 , . . . , pnk

k where the p′
i s are distinct positive prime inte-

gers, the n′
i s ≥ 1 are positive integers, and k ≥ 2. Let R = Zm = R1 × · · · × Rk

where each Ri = Zp
ni
i

. Then R admits a nontrivial weakly prime ideal that is not

semiprime if and only if one of the following two conditions holds:

(1) There is an i , 1 ≤ i ≤ k such that ni ≥ 4 is an even integer.
(2) There are distinct i, j , 1 ≤ i, j ≤ k such that ni = 2 and n j ≥ 2.

Proof Suppose that R admits a nontrivial weakly prime ideal, say I , that is not
semiprime. Hence I = I1 × · · · × Ik where each Ii is a weakly semiprime ideal
of Ri . Assume that the n′

i s are all odd integers. Then each nontrivial Ii is a prime
ideal of Ri by Theorem 2.20 and Remark 2.23. Assume that ni = 1 for every i ,
1 ≤ i ≤ k. Then R is von Neumann regular, and hence every nontrivial weakly semi-
prime ideal of R is semiprime, a contradiction. Since I is not semiprime, one of the
I ′
i s, say I1, is weakly semiprime that is not semiprime. Since n1 is odd, I1 = {0}

and n1 ≥ 3. Since I is nontrivial, one of the I ′
i s, say I2, is nontrivial prime ideal.

Hence I2 = p2 R2 and n2 ≥ 3. Now (0, 0, . . . , 0) �= (p(n1+1)/2
1 , p2, 0, . . . , 0)2 ∈ I

but (p(n1+1)/2
1 , p2, 0, . . . , 0) /∈ I , a contradiction. Now assume exactly one of the n′

i s,
say n1 = 2, and each ni = 1, 2 ≤ i ≤ k. Then it is easily verified that every weakly
semiprime of R is semiprime, a contradiction. Thus one of the two given conditions
must hold.

Conversely, assume that one of the n′
i s, say n1 ≥ 4 is an even integer. Then I1 =

pn1−1
1 R1 is a weakly semiprime ideal of R1 that is not semiprime by Theorem 2.21.

Hence I = I1 × {0} × · · · × {0} is a nontrivial weakly semiprime ideal of R that is
not semiprime. Assume that n1 = 2 and n2 ≥ 2. Then I = p1 R1 × {0} × · · · × {0} is
a nontrivial weakly semiprime ideal of R that is not semiprime. ��
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