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Historical Note

• Peter Ludvig Mejdell Sylow, a Norwegian

Mathematician that lived between 1832 and 1918.

• He published the Sylow theorems in a brief paper in

1872.

• Sylow stated them in terms of permutation groups.

• Georg Frobenius re-proved the theorems for

abstract groups in 1887.

• Sylow applied the theorems to the question of

solving algebraic equations and showed that any

equation whose Galois group has order a power of a

prime 𝑝 is solvable by radicals.

• Sylow spent most of his professional life as a high

school teacher in Halden, Norway, and only

appointed to a position at Christiana University in

1898. He devoted 8 years of his life to the project of

editing the mathematical works of his countryman

Niels Henrik Abel. [1]

Role Mathematician



Example 1:

𝐴5 is a simple group of 𝑆5,
How can we find 𝑛𝑝 for each prime factor say 𝑝

of 𝐴5



Sylow’s Theorem
𝑫,∗ is a group, 𝑫 = 𝒑𝒌𝒎, where 𝒑 is prime and 𝐠𝐜𝐝 𝒑,𝒎 = 𝟏;
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∀ 𝑖, 1 ≤ 𝑖 ≤ 𝑘, ∃ at least one subgroup of order 𝑝𝑖.

A subgroup of 𝐷 with 𝑝𝑘 elements, we call it a Sylow 𝑝-subgroup.

If 𝐻 is a 𝑝-subgroup, then 𝐻 is a subgroup of a Sylow 𝑝-subgroup.

A subgroup of 𝐷 with 𝑝𝑖 elements, 1 ≤ 𝑖 ≤ 𝑘, we call it 𝑝-subgroup.

Let 𝑛𝑝 = # of distinct Sylow 𝑝-subgroups. Then 𝑛𝑝|𝑚 and 𝑝|(𝑛𝑝−1).

A Sylow 𝑝-subgroup is normal in 𝐷 iff 𝑛𝑝 = 1.

𝐷,∗ is called simple group if {e} and 𝐷 are the only normal 

subgroups of 𝐷.



• First, compute the size of 𝐴5:

𝐴5 =
5!

2
=
5 ∗ 4 ∗ 3 ∗ 2 ∗ 1

2
= 5 ∗ 4 ∗ 3

= 5 ∗ 22 ∗ 3 = 60

• Let,

𝑛5 = # of distinct Sylow 5-subgroups

𝑛3 = # of distinct Sylow 3-subgroups

𝑛2 = # of distinct Sylow 2-subgroups

Solution



Find 𝑛5
• Let, 𝐴5 = 5 ∗ 12

Using Syl 5, we have:

𝑛5|12 and 5|(𝑛5 − 1)

∴ 𝑛5 ∈ {1, 6}

• Since 𝐴5 is a simple group using Syl 6 and Syl 7 we have 𝑛5 ≠ 1
→ 𝑛5 = 6

• Let 𝐾1, 𝐾2, … , 𝐾6 be distinct Sylow 5-subgroups, where each consists 

of 5 elements.

• We have 𝑖=1
6 𝐾𝑖 = (1) and the intersection between every pair of 

Sylow 5-subgroups is (1), since they have a prime order, hence 

 𝑖=1
6 𝐾𝑖 = 6 ∗ 4 + 1 = 25 elements



Find 𝑛3

• Let, 𝐴5 = 3 ∗ 20

Using Syl 5, we have:

𝑛3|20 and 3|(𝑛3 − 1)

∴ 𝑛3 ∈ {1, 4, 10}

• Since 𝐴5 is a simple group using Syl 6 and Syl 7 we have 𝑛3 ≠ 1

→ 𝑛3 ∈ {4, 10}



Find 𝑛3

Remark

Note

Any element of odd order in 𝑆5 is an even permutation.

Thus all 3-cycle and 5-cycle elements are in 𝐴5.

Each distinct Sylow 3-subgroup, consists of 3 elements.

So we need to find the number of 3-cycles in 𝐴5, and distribute

them into distinct Sylow 3-subgroups.



I: 3-cycles in 𝐴5

•
(1 2 3)
(3 2 1)

} → 1 , 1 2 3 , 3 2 1 = (1 2 3) = 𝐻1

•
(1 2 4)
(4 2 1)

} → 1 , 1 2 4 , 4 2 1 = (1 2 4) = 𝐻2

•
(1 2 5)
(5 2 1)

} → 1 , 1 2 5 , 5 2 1 = (1 2 5) = 𝐻3

•
(1 3 4)
(4 3 1)

} → 1 , 1 3 4 , 4 3 1 = (1 3 4) = 𝐻4

•
(1 3 5)
(5 3 1)

} → 1 , 1 3 5 , 5 3 1 = (1 3 5) = 𝐻5



II: 3-cycles in 𝐴5

•
(1 4 5)
(5 4 1)

} → 1 , 1 4 5 , 5 4 1 = (1 4 5) = 𝐻6

•
(2 3 4)
(4 3 2)

} → 1 , 2 3 4 , 4 3 2 = (2 3 4) = 𝐻7

•
(2 3 5)
(5 3 2)

} → 1 , 2 3 5 , 5 3 2 = (2 3 5) = 𝐻8

•
(2 4 5)
(5 4 2)

} → 1 , 2 4 5 , 5 4 2 = (2 4 5) = 𝐻9

•
(3 4 5)
(5 4 3)

} → 1 , 3 4 5 , 5 4 3 = (3 4 5) = 𝐻10



III: 3-cycles in 𝐴5

• The number of 3-cycles in 𝐴5 is 20, and these come in inverse pairs, 

giving us 10 subgroups of size 3

• Since  𝑖=1
10 𝐻𝑖 = (1) and the intersection between every pair of Sylow

3-subgroups is (1), since they have a prime order,

→ we have 10 distinct subgroups of  size 3 

→ we have 10 Sylow-3 subgroups

∴ 𝑛3 = 10

• In addition,

 𝑖=1
10 𝐻𝑖 = 10 ∗ 2 + 1 = 21 elements



Find 𝑛2

• Let, 𝐴5 = 2
2 ∗ 15

Using Syl 5, we have:

𝑛2|15 and 2|(𝑛2 − 1)

∴ 𝑛2 ∈ {1, 3, 5, 15}

• Since 𝐴5 is a simple group using Syl 6 and Syl 7 we have 𝑛2 ≠ 1

→ 𝑛2 ∈ {3, 5, 15}



Find 𝑛2
Remark:

What are the remaining non-identity elements in 𝐴5?

 𝑖=1
6 𝐾𝑖 +  𝑗=1

10 𝐻𝑗/(1) = 25 + 20 = 45

𝐴5 − 45 = 60 − 45 = 15

• So we have 15 non-identity elements left, of the form 𝑎 𝑏 (𝑐 𝑑), such 
that each has order 2

• Let 𝑁𝑟 be distinct Sylow 2-subgroups, where 𝑟 = 1…𝑛2 and  𝑟=1
𝑛2 𝑁𝑟 = (1)

• We have  3 non-identity elements in every Sylow 2-subgroup

∴ 𝑛2 =
15

3
= 5

𝐴5 has no 2-cycle or 4-cycle elements, since these are 

odd permutations.  



Subgroups of size 4 in 𝐴5 where each of their non-

identity elements has an order of 2

•

(1 2)(3 4)
(1 3)(2 4)
(1 4)(2 3)

} → 1 , 1 2 3 4 , 1 3 2 4 , (1 4)(2 3) = 𝑁1

•

(1 2)(4 5)
(1 4)(2 5)
(1 5)(2 4)

} → 1 , 1 2 4 5 , 1 4 2 5 , (1 5)(2 4) = 𝑁2

•

(1 2)(3 5)
(1 3)(2 5)
(1 5)(2 3)

} → 1 , 1 2 3 5 , 1 3 2 5 , (1 5)(2 3) = 𝑁3

•

(1 3)(4 5)
(1 4)(3 5)
(1 5)(3 4)

} → 1 , 1 3 4 5 , 1 4 3 5 , (1 5)(3 4) = 𝑁4

•

(2 3)(4 5)
(2 4)(3 5)
(2 5)(3 4)

} → 1 , 2 3 4 5 , 2 4 3 5 , (2 5)(3 4) = 𝑁5



Example 2:

Let 𝐷,∗ be an abelian group with 72 elements,

Prove that D has only one subgroup of order 8,

say𝐻, and one subgroup of order 9, say𝐾.

Up to isomorphism, classify all abelian groups

of order 72.



Solution

• First, let, 𝐷 = 72 = 8 ∗ 9 = 23 ∗ 32

• Using Syl 1:

∃ a Sylow 2-subgroup, 𝐻 of size 8

∃ a Sylow 3-subgroup, 𝐾 of size 9

• Since 𝐷 is an abelian group, we have:

𝐻 ⊲ 𝐷 and 𝐾 ⊲ 𝐷

• Using Syl 6, since 𝐻 and 𝐾 are both Sylow 𝑝-subgroups (where 𝑝 is 
prime) and they are both normal, we have:

𝑛2 = 1 and 𝑛3 = 1

• Thus we have a unique subgroup 𝐻of size 8 and a unique subgroup 
𝐾 of size 9



Up to isomorphism classification of all abelian 

groups of order 72

Partitions of 3 Isomorphism

3 𝑍23 = 𝑍8

1 + 2 𝑍2 × 𝑍22 = 𝑍2 × 𝑍4

1 + 1 + 1 𝑍2 × 𝑍2 × 𝑍2

Partitions of 2 Isomorphism

2 𝑍32 = 𝑍9

1 + 1 𝑍3 × 𝑍3



Up to isomorphism classification of all abelian 

groups of order 72

𝐷 ≅ 𝑍8 × 𝑍9

𝐷 ≅ 𝑍8 × 𝑍3 × 𝑍3

𝐷 ≅ 𝑍2 × 𝑍4 × 𝑍9

𝐷 ≅ 𝑍2 × 𝑍4 × 𝑍3 × 𝑍3

𝐷 ≅ 𝑍2 × 𝑍2 × 𝑍2 × 𝑍9

𝐷 ≅ 𝑍2 × 𝑍2 × 𝑍2 × 𝑍3 × 𝑍3



Conclusion

• The fundamental theorem for finitely generated abelian groups gives 
us complete information about all finite abelian groups.

• The study of finite non-abelian groups is much more complicated. 

• For non-abelian group 𝐺, the “converse of Lagrange theorem” does 
not hold.

• The Sylow theorems give a weak converse. Namely, they show that if 
𝑑 is a power of a prime and 𝑑| |G|, then 𝐺 does contain a subgroup of 
order 𝑑.

• The Sylow theorems also give some information on the number of 
such groups and their relationship to each other, which can be very 
useful in studying finite non-abelian groups.[1]  
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