MTH 530

SYLOW THEOREM APPLICATION EXAMPLES

By: Yasmine A. El-Ashi

Outline

- Peter Sylow
- Example 1
- Example 2
- Conclusion

Historical Note

- Peter Ludvig Mejdell Sylow, a Norwegian Mathematician that lived between 1832 and 1918.
- He published the Sylow theorems in a brief paper in 1872.
- Sylow stated them in terms of permutation groups.
- Georg Frobenius re-proved the theorems for abstract groups in 1887.
- Sylow applied the theorems to the question of solving algebraic equations and showed that any equation whose Galois group has order a power of a prime p is solvable by radicals.
- Sylow spent most of his professional life as a high school teacher in Halden, Norway, and only appointed to a position at Christiana University in 1898. He devoted 8 years of his life to the project of editing the mathematical works of his countryman Niels Henrik Abel. [1]

Example 1:

A_{5} is a simple group of S_{5}, How can we find n_{p} for each prime factor say p of $\left|A_{5}\right|$

Sylow's Theorem

$(D, *)$ is a group, $|D|=p^{k} m$, where p is prime and $\operatorname{gcd}(p, m)=1$;
Syl 1
$\forall i, 1 \leq i \leq k, \exists$ at least one subgroup of order p^{i}.
Syl 2
A subgroup of D with p^{k} elements, we call it a Sylow p-subgroup.

Syl 3
A subgroup of D with p^{i} elements, $1 \leq i \leq k$, we call it p-subgroup.
Syl 4
If H is a p-subgroup, then H is a subgroup of a Sylow p-subgroup.
Let $n_{p}=\#$ of distinct Sylow p-subgroups. Then $n_{p} \mid m$ and $p \mid\left(n_{p}-1\right)$.

A Sylow p-subgroup is normal in D iff $n_{p}=1$.

Syl 7
$(D, *)$ is called simple group if $\{e\}$ and D are the only normal subgroups of D.

Solution

- First, compute the size of A_{5} :

$$
\begin{aligned}
\left|A_{5}\right|=\frac{5!}{2} & =\frac{5 * 4 * 3 * 2 * 1}{2}=5 * 4 * 3 \\
& =5 * 2^{2} * 3=60
\end{aligned}
$$

- Let,
$n_{5}=\#$ of distinct Sylow 5-subgroups
$n_{3}=\#$ of distinct Sylow 3-subgroups
$n_{2}=\#$ of distinct Sylow 2-subgroups

Find n_{5}

- Let, $\left|A_{5}\right|=5 * 12$

Using Syl 5, we have:

$$
\begin{array}{ccc}
n_{5} \mid 12 & \text { and } & 5 \mid\left(n_{5}-1\right) \\
\therefore n_{5} \in\{1,6\} &
\end{array}
$$

- Since A_{5} is a simple group using Syl 6 and Syl 7 we have $n_{5} \neq 1$ $\rightarrow n_{5}=6$
- Let $K_{1}, K_{2}, \ldots, K_{6}$ be distinct Sylow 5 -subgroups, where each consists of 5 elements.
- We have $\cap_{i=1}^{6} K_{i}=(1)$ and the intersection between every pair of Sylow 5 -subgroups is (1), since they have a prime order, hence $\left|\cup_{i=1}^{6} K_{i}\right|=(6 * 4)+1=25$ elements

Find n_{3}

- Let, $\left|A_{5}\right|=3 * 20$

Using Syl 5, we have:

$$
\begin{array}{ll}
\quad n_{3} \mid 20 & \text { and } \\
\therefore n_{3} \in\{1,4,10\} &
\end{array}
$$

- Since A_{5} is a simple group using Syl 6 and Syl 7 we have $n_{3} \neq 1$ $\rightarrow n_{3} \in\{4,10\}$

Find n_{3}

Remark

Any element of odd order in S_{5} is an even permutation. Thus all 3-cycle and 5-cycle elements are in A_{5}.

Note

Each distinct Sylow 3-subgroup, consists of 3 elements. So we need to find the number of 3 -cycles in A_{5}, and distribute them into distinct Sylow 3-subgroups.

I: 3-cycles in A_{5}

$\left(\begin{array}{l}\left(\begin{array}{lll}1 & 2 & 3\end{array}\right) \\ \left(\begin{array}{ll}2 & 2\end{array}\right)\end{array}\right\} \rightarrow\left\{(1),\left(\begin{array}{lll}1 & 2 & 3\end{array}\right),\left(\begin{array}{lll}3 & 2 & 1\end{array}\right)\right\}=\left\langle\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right\rangle=H_{1}$
$\left.\begin{array}{l}\left(\begin{array}{lll}1 & 2 & 4\end{array}\right) \\ \left(\begin{array}{ll}4 & 2\end{array}\right)\end{array}\right\} \rightarrow\left\{(1),\left(\begin{array}{lll}1 & 2 & 4\end{array}\right),\left(\begin{array}{lll}4 & 2 & 1\end{array}\right)\right\}=\left\langle\left(\begin{array}{lll}1 & 2 & 4\end{array}\right)\right\rangle=H_{2}$
$\left.\begin{array}{l}\left(\begin{array}{lll}1 & 2 & 5\end{array}\right) \\ \left(\begin{array}{lll}2 & 2\end{array}\right)\end{array}\right\} \rightarrow\left\{(1),\left(\begin{array}{lll}1 & 2 & 5\end{array}\right),\left(\begin{array}{lll}5 & 2 & 1\end{array}\right)\right\}=\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right)\right\rangle=H_{3}$
$\left.\begin{array}{l}\left(\begin{array}{lll}1 & 3 & 4\end{array}\right) \\ \left(\begin{array}{lll}4 & 3 & 1\end{array}\right)\end{array}\right\} \rightarrow\left\{(1),\left(\begin{array}{lll}1 & 3 & 4\end{array}\right),\left(\begin{array}{lll}4 & 3 & 1\end{array}\right)\right\}=\left\langle\left(\begin{array}{lll}1 & 3 & 4\end{array}\right)\right\rangle=H_{4}$
$\left.\begin{array}{l}\left(\begin{array}{lll}1 & 3 & 5\end{array}\right) \\ \left(\begin{array}{lll}5 & 3 & 1\end{array}\right)\end{array}\right\} \rightarrow\left\{(1),\left(\begin{array}{lll}1 & 3 & 5\end{array}\right),\left(\begin{array}{lll}5 & 3 & 1\end{array}\right)\right\}=\left\langle\left(\begin{array}{lll}1 & 3 & 5\end{array}\right)\right\rangle=H_{5}$

II: 3-cycles in A_{5}

$\left.\left.\begin{array}{l}\left(\begin{array}{lll}1 & 3 & 4\end{array}\right) \\ \left(\begin{array}{ll}4 & 3\end{array}\right)\end{array}\right)\right\} \rightarrow\left\{(1),\left(\begin{array}{lll}2 & 3 & 4\end{array}\right),\left(\begin{array}{lll}4 & 3 & 2\end{array}\right)\right\}=\left\langle\left(\begin{array}{lll}2 & 3 & 4\end{array}\right)\right\rangle=H_{7}$
$\left.\begin{array}{l}\left(\begin{array}{lll}2 & 3 & 5\end{array}\right) \\ \left(\begin{array}{ll}5 & 3\end{array}\right)\end{array}\right\} \rightarrow\left\{(1),\left(\begin{array}{lll}2 & 3 & 5\end{array}\right),\left(\begin{array}{lll}5 & 3 & 2\end{array}\right)\right\}=\left\langle\left(\begin{array}{lll}2 & 3 & 5\end{array}\right)\right\rangle=H_{8}$

$\left.\left.\begin{array}{l}\left(\begin{array}{ll}(& 4\end{array}\right)\end{array}\right)\right\} \rightarrow\left\{(1),\left(\begin{array}{ll}3 & 4\end{array}\right),\left(\begin{array}{ll}5 & 4\end{array}\right)\right\}=\left\langle\left(\begin{array}{ll}3 & 4\end{array}\right)\right\rangle=H_{10}$

III: 3-cycles in A_{5}

- The number of 3-cycles in A_{5} is 20 , and these come in inverse pairs, giving us 10 subgroups of size 3
- Since $\bigcap_{i=1}^{10} H_{i}=(1)$ and the intersection between every pair of Sylow 3 -subgroups is (1), since they have a prime order,
\rightarrow we have 10 distinct subgroups of size 3
\rightarrow we have 10 Sylow-3 subgroups
$\therefore n_{3}=10$
- In addition,

$$
\left|\cup_{i=1}^{10} H_{i}\right|=(10 * 2)+1=21 \text { elements }
$$

Find n_{2}

- Let, $\left|A_{5}\right|=2^{2} * 15$

Using Syl 5, we have:

$$
\begin{array}{ccc}
n_{2} \mid 15 & \text { and } & 2 \mid\left(n_{2}-1\right) \\
\therefore n_{2} \in\{1,3,5,15\} &
\end{array}
$$

- Since A_{5} is a simple group using Syl 6 and Syl 7 we have $n_{2} \neq 1$ $\rightarrow n_{2} \in\{3,5,15\}$

Find n_{2}

Remark:

A_{5} has no 2-cycle or 4-cycle elements, since these are odd permutations.

What are the remaining non-identity elements in A_{5} ?

$$
\begin{aligned}
& \left|\cup_{i=1}^{6} K_{i}\right|+\left|\cup_{j=1}^{10} H_{j} /(1)\right|=25+20=45 \\
& \left|A_{5}\right|-45=60-45=15
\end{aligned}
$$

- So we have 15 non-identity elements left, of the form ($a b$) (c d), such that each has order 2
- Let N_{r} be distinct Sylow 2-subgroups, where $r=1 \ldots n_{2}$ and $\cap_{r=1}^{n_{2}} N_{r}=(1)$
- We have 3 non-identity elements in every Sylow 2-subgroup

$$
\therefore n_{2}=\frac{15}{3}=5
$$

Subgroups of size 4 in A_{5} where each of their nonidentity elements has an order of 2
(12)(3 4)

- (13)(2 4) $\} \rightarrow\{(1),(12)(34),(13)(24),(14)(23)\}=N_{1}$
(14)(23)
(12)(45)
- (1 4)(2 5) $\} \rightarrow\{(1),(12)(45),(14)(25),(15)(24)\}=N_{2}$
(15)(2 4)
(1 2)(35)
- (1 3) (2 5) $\} \rightarrow\{(1),(12)(35),(13)(25),(15)(23)\}=N_{3}$
(15)(2 3)
(13)(45)
- (1 4)(3 5) $\} \rightarrow\{(1),(13)(45),(14)(35),(15)(34)\}=N_{4}$
(15)(3 4)
(2 3)(45)
- 24$)(35)\} \rightarrow\{(1),(23)(45),(24)(35),(25)(34)\}=N_{5}$
(25)(34)

Example 2:

Let ($D, *$) be an abelian group with 72 elements, Prove that D has only one subgroup of order 8, say H, and one subgroup of order 9 , say K.

Up to isomorphism, classify all abelian groups of order 72.

Solution

- First, let, $|D|=72=8 * 9=2^{3} * 3^{2}$
- Using Syl 1 :
\exists a Sylow 2-subgroup, H of size 8
\exists a Sylow 3 -subgroup, K of size 9
- Since D is an abelian group, we have:

$$
H \triangleleft D \text { and } K \triangleleft D
$$

- Using Syl 6, since H and K are both Sylow p-subgroups (where p is prime) and they are both normal, we have:

$$
n_{2}=1 \text { and } n_{3}=1
$$

- Thus we have a unique subgroup H of size 8 and a unique subgroup K of size 9

Up to isomorphism classification of all abelian groups of order 72

Partitions of 3

$$
\begin{array}{|c|c|}
\hline \text { artitions of } 3 & \text { Isomorphism } \\
\hline 3 & Z_{2^{3}}=Z_{8} \\
\hline 1+2 & Z_{2} \times Z_{2^{2}}=Z_{2} \times Z_{4} \\
\hline 1+1+1 & Z_{2} \times Z_{2} \times Z_{2} \\
\hline
\end{array}
$$

Partitions of 2

$$
\begin{array}{c|c}
2 & Z_{3^{2}}=Z_{9} \\
\hline 1+1 & Z_{3} \times Z_{3}
\end{array}
$$

Isomorphism

Up to isomorphism classification of all abelian groups of order 72

$$
\begin{gathered}
D \cong Z_{8} \times Z_{9} \\
D \cong Z_{8} \times Z_{3} \times Z_{3} \\
D \cong Z_{2} \times Z_{4} \times Z_{9} \\
D \cong Z_{2} \times Z_{4} \times Z_{3} \times Z_{3} \\
D \cong Z_{2} \times Z_{2} \times Z_{2} \times Z_{9} \\
D \cong Z_{2} \times Z_{2} \times Z_{2} \times Z_{3} \times Z_{3}
\end{gathered}
$$

Conclusion

- The fundamental theorem for finitely generated abelian groups gives us complete information about all finite abelian groups.
- The study of finite non-abelian groups is much more complicated.
- For non-abelian group G, the "converse of Lagrange theorem" does not hold.
- The Sylow theorems give a weak converse. Namely, they show that if d is a power of a prime and $d||G|$, then G does contain a subgroup of order d.
- The Sylow theorems also give some information on the number of such groups and their relationship to each other, which can be very useful in studying finite non-abelian groups.[1]

References

[1] J. B. Fraleigh, A First Course in Abstract Algebra, $7^{\text {th }}$ edition, 2003.

