MTH 530 SYLOW THEOREM APPLICATION EXAMPLES

By: Yasmine A. El-Ashi

Outline

- Peter Sylow
- Example 1
- Example 2
- Conclusion

Historical Note

- **Peter Ludvig Mejdell Sylow**, a Norwegian Mathematician that lived between 1832 and 1918.
- He published the Sylow theorems in a brief paper in 1872.
- Sylow stated them in terms of permutation groups.
- Georg Frobenius re-proved the theorems for abstract groups in 1887.
- Sylow applied the theorems to the question of solving algebraic equations and showed that any equation whose Galois group has order a power of a prime *p* is solvable by radicals.
- Sylow spent most of his professional life as a high school teacher in Halden, Norway, and only appointed to a position at Christiana University in 1898. He devoted 8 years of his life to the project of editing the mathematical works of his countryman Niels Henrik Abel. [1]

Example 1:

 A_5 is a simple group of S_5 , How can we find n_p for each prime factor say pof $|A_5|$

Sylow's Theorem

(D,*) is a group, $|D| = p^k m$, where p is prime and gcd(p,m) = 1;

Syl 1	$\forall i, 1 \leq i \leq k, \exists$ at least one subgroup of order p^i .
Syl 2	A subgroup of D with p^k elements, we call it a Sylow p -subgroup.
Syl 3	A subgroup of <i>D</i> with p^i elements, $1 \le i \le k$, we call it <i>p</i> -subgroup.
Syl 4	If H is a p -subgroup, then H is a subgroup of a Sylow p -subgroup.
Syl 5	Let $n_p = \#$ of distinct Sylow <i>p</i> -subgroups. Then $n_p m$ and $p (n_p-1)$.
Syl 6	A Sylow <i>p</i> -subgroup is normal in <i>D</i> iff $n_p = 1$.
Syl 7	$(D,*)$ is called simple group if {e} and <i>D</i> are the only normal subgroups of <i>D</i> .

Solution

• First, compute the size of A_5 :

$$|A_5| = \frac{5!}{2} = \frac{5*4*3*2*1}{2} = 5*4*3$$
$$= 5*2^2*3 = 60$$

• Let,

 $n_5 = #$ of distinct Sylow 5-subgroups $n_3 = #$ of distinct Sylow 3-subgroups $n_2 = #$ of distinct Sylow 2-subgroups

Find n_5

• Let, $|A_5| = 5 * 12$

Using **Syl 5**, we have:

 $n_5|12$ and $5|(n_5-1)$

 $\therefore n_5 \in \{1,6\}$

- Since A_5 is a simple group using Syl 6 and Syl 7 we have $n_5 \neq 1$ $\rightarrow n_5 = 6$
- Let K₁, K₂, ..., K₆ be distinct Sylow 5-subgroups, where each consists of 5 elements.
- We have $\bigcap_{i=1}^{6} K_i = (1)$ and the intersection between every pair of Sylow 5-subgroups is (1), since they have a prime order, hence $\left|\bigcup_{i=1}^{6} K_i\right| = (6 * 4) + 1 = 25$ elements

Find n_3

- Let, $|A_5| = 3 * 20$
 - Using Syl 5, we have:
 - $n_3|20$ and $3|(n_3-1)$
 - ∴ $n_3 \in \{1, 4, 10\}$
- Since A_5 is a simple group using Syl 6 and Syl 7 we have $n_3 \neq 1$ $\rightarrow n_3 \in \{4, 10\}$

Remark

Any element of odd order in S_5 is an even permutation. Thus all **3-cycle** and **5-cycle** elements are in A_5 .

Note

Each distinct Sylow 3-subgroup, consists of 3 elements. So we need to find the number of **3-cycles** in A_5 , and distribute them into distinct Sylow 3-subgroups.

I: 3-cycles in
$$A_5$$

•
$$\binom{(1\ 2\ 3)}{(3\ 2\ 1)}$$
 \rightarrow {(1), (1 2 3), (3 2 1)} = $\langle (1\ 2\ 3)\rangle = H_1$

•
$$\binom{(1\ 2\ 4)}{(4\ 2\ 1)}$$
 \rightarrow {(1), (1 2 4), (4 2 1)} = $\langle (1\ 2\ 4)\rangle = H_2$

•
$$\binom{(1\ 2\ 5)}{(5\ 2\ 1)}$$
 \rightarrow {(1), (1 2 5), (5 2 1)} = $\langle (1\ 2\ 5)\rangle = H_3$

•
$$\binom{(1\ 3\ 4)}{(4\ 3\ 1)}$$
 \rightarrow {(1), (1 3 4), (4 3 1)} = \langle (1 3 4) \rangle = H_4

•
$$\binom{(1\ 3\ 5)}{(5\ 3\ 1)}$$
 \rightarrow {(1), (1 3 5), (5 3 1)} = $\langle (1\ 3\ 5)\rangle = H_5$

II: 3-cycles in A_5

•
$$\binom{(1 \ 4 \ 5)}{(5 \ 4 \ 1)}$$
 \rightarrow {(1), (1 4 5), (5 4 1)} = $\langle (1 \ 4 \ 5) \rangle = H_6$

•
$$\binom{(2\ 3\ 4)}{(4\ 3\ 2)}$$
 \rightarrow {(1), (2 3 4), (4 3 2)} = $\langle (2\ 3\ 4)\rangle = H_7$

•
$$\binom{(2\ 3\ 5)}{(5\ 3\ 2)}$$
 \rightarrow {(1), (2 3 5), (5 3 2)} = $\langle (2\ 3\ 5)\rangle = H_8$

•
$$\binom{(2\ 4\ 5)}{(5\ 4\ 2)}$$
 \rightarrow {(1), (2 4 5), (5 4 2)} = $\langle (2\ 4\ 5)\rangle = H_9$

•
$$\binom{(3\ 4\ 5)}{(5\ 4\ 3)}$$
 \rightarrow {(1), (3 4 5), (5 4 3)} = $\langle (3\ 4\ 5) \rangle = H_{10}$

III: 3-cycles in A_5

- The number of 3-cycles in A_5 is 20, and these come in inverse pairs, giving us 10 subgroups of size 3
- Since $\bigcap_{i=1}^{10} H_i = (1)$ and the intersection between every pair of Sylow 3-subgroups is (1), since they have a prime order,

 \rightarrow we have 10 distinct subgroups of size 3

 \rightarrow we have 10 Sylow-3 subgroups

$$\therefore$$
 $n_3 = 10$

In addition,

 $\left|\bigcup_{i=1}^{10} H_i\right| = (10 * 2) + 1 = 21$ elements

Find n_2

- Let, $|A_5| = 2^2 * 15$
 - Using **Syl 5**, we have:
 - $n_2|15$ and $2|(n_2-1)$
 - ∴ $n_2 \in \{1, 3, 5, 15\}$
- Since A_5 is a simple group using Syl 6 and Syl 7 we have $n_2 \neq 1$ $\rightarrow n_2 \in \{3, 5, 15\}$

Remark:

 A_5 has **no** 2-cycle or 4-cycle elements, since these are odd permutations.

What are the remaining non-identity elements in A_5 ?

$$\left|\bigcup_{i=1}^{6} K_{i}\right| + \left|\bigcup_{j=1}^{10} H_{j}/(1)\right| = 25 + 20 = 45$$

 $|A_5| - 45 = 60 - 45 = 15$

- So we have 15 non-identity elements left, of the form (a b)(c d), such that each has order 2
- Let N_r be distinct Sylow 2-subgroups, where $r = 1 \dots n_2$ and $\bigcap_{r=1}^{n_2} N_r = (1)$
- We have 3 non-identity elements in every Sylow 2-subgroup $\therefore n_2 = \frac{15}{3} = 5$

Subgroups of size 4 in A_5 where each of their nonidentity elements has an order of 2

(12)(34)

• (13)(24) \rightarrow $\{(1), (12)(34), (13)(24), (14)(23)\} = N_1$ (14)(23)

(12)(45)

• (1 4)(2 5) \rightarrow $\{(1), (1 2)(4 5), (1 4)(2 5), (1 5)(2 4)\} = N_2$ (15)(24)

(12)(35)

• (13)(25) \rightarrow $\{(1), (12)(35), (13)(25), (15)(23)\} = N_3$

• (14)(35)} \rightarrow {(1), (13)(45), (14)(35), (15)(34)} = N_4

• (24)(35) \rightarrow {(1), (23)(45), (24)(35), (25)(34)} = N_5

- (15)(23)

(13)(45)

(15)(34)

 $(2\ 3)(4\ 5)$

(25)(34)

Example 2:

Let (D,*) be an abelian group with 72 elements, Prove that D has only one subgroup of order 8, say *H*, and one subgroup of order 9, say *K*.

Up to isomorphism, classify all abelian groups of order 72.

Solution

- First, let, $|D| = 72 = 8 * 9 = 2^3 * 3^2$
- Using Syl 1:
 ∃ a Sylow 2-subgroup, *H* of size 8
 ∃ a Sylow 3-subgroup, *K* of size 9
- Since *D* is an abelian group, we have: $H \lhd D$ and $K \lhd D$
- Using Syl 6, since H and K are both Sylow p-subgroups (where p is prime) and they are both normal, we have:

 $n_2 = 1 \text{ and } n_3 = 1$

• Thus we have a unique subgroup *H*of size 8 and a unique subgroup *K* of size 9

Up to isomorphism classification of all abelian groups of order 72

Partitions of 3	Isomorphism
3	$Z_{2^3} = Z_8$
1 + 2	$Z_2 \times Z_{2^2} = Z_2 \times Z_4$
1 + 1 + 1	$Z_2 \times Z_2 \times Z_2$

Partitions of 2	Isomorphism
2	$Z_{3^2} = Z_9$
1 + 1	$Z_3 \times Z_3$

Up to isomorphism classification of all abelian groups of order 72

 $D \cong Z_8 \times Z_9$ $D \cong Z_8 \times Z_3 \times Z_3$ $D \cong Z_2 \times Z_4 \times Z_9$ $D \cong Z_2 \times Z_4 \times Z_3 \times Z_3$ $D \cong Z_2 \times Z_2 \times Z_2 \times Z_2 \times Z_9$ $D \cong Z_2 \times Z_2 \times Z_2 \times Z_3 \times Z_3$

Conclusion

- The fundamental theorem for finitely generated abelian groups gives us complete information about all finite abelian groups.
- The study of finite non-abelian groups is much more complicated.
- For non-abelian group *G*, the "converse of Lagrange theorem" does not hold.
- The Sylow theorems give a weak converse. Namely, they show that if *d* is a power of a prime and *d*||G|, then *G* does contain a subgroup of order *d*.
- The Sylow theorems also give some information on the number of such groups and their relationship to each other, which can be very useful in studying finite non-abelian groups.[1]

[1] J. B. Fraleigh, A First Course in Abstract Algebra, 7th edition, 2003.