Exam one: MTH 530, Fall 2017

Ayman Badawi

QUESTION 1. (8 points). Let $(D, *)$ be a group with 85 elements. Use results from Sylow's Theorems to prove that D is cyclic.

Solution: $|D|=17 X 5 . n_{17} \mid 5$ and $17 \mid\left(n_{17}-1\right)$. Hence $n_{17}=1$. Thus D has only one subgroup of D, say H, with 17 elements. Hence H is normal in D. Also, $n_{5} \mid 17$ and $5 \mid\left(n_{5}-1\right)$. Thus $n_{5}=1$. Thus D has only one subgroup of D, say K, with 5 elements. Thus K is normal in D. It is clear that $D=H * K$ and $H \cap K=\{e\}$. Thus $D \cong H \times K$. Since K and D are cyclic and $\operatorname{gcd}(5,17)=1$, we conclude that D is cyclic.

QUESTION 2. (8 points) Let $(D, *)$ be a group with $p^{2017} m$, where p is prime, m is a positive integer, and $\operatorname{gcd}(p, m)=$ 1. Assume that H is the only subgroup of D with p elements (hence we know that H is a normal subgroup of D). Assume that D / H is cyclic. Prove that D is cyclic.

Solution: $F=D / H=<a * H>$ for some $a \in D$. Let $k=|a|$ in D. Since $|F|=|a * H|=p^{2016} m$, we conclude $k=|a|=p^{2016} m$ OR $k=|a|=p^{2017} m$. We show $k=|a|=p^{2017} m$. Now, $\langle a>$ is a cyclic subgroup of D and $p| k$. Thus $\langle a\rangle$ has a unique subgroup, say L, with p elements. Since H is the only subgroup of D with p elements, we conclude that $H=L$. Thus $L=H=\left\{a^{i_{1}}, a^{i_{2}}, \ldots, a^{i_{p}}=e\right\}$. Let $d \in D$. We show that $d \in<a>$. Since F is cyclic, $d * H=a^{n} * H$. Thus $d=a^{n} * h$ for some $h \in H$. Hence $d=a^{n} * a^{i_{j}}$ for some $1 \leq j \leq p$. Thus $d=a^{n+i_{j}} \in<a>$. Hence $D=\langle a\rangle$.

QUESTION 3. (i) (4 points). Is $\left(Z_{2},+\right) \times\left(Z_{6},+\right)$ group-isomorphic to $\left(Z_{12},+\right)$? If yes, then prove it. If no, then tell me why not?
Solution: Since $\operatorname{gcd}(2,12) \neq 1, Z_{2} \times Z_{6}$ is not cyclic with 12 elements. However, Z_{12} is cyclic with 12 elements. Thus they are not isomorphic.
(ii) (4 points). Is $\left(Z_{41}^{*},.\right)$ group-isomorphic to $(U(75),$.$) ? If yes, then prove it. If no, then tell me why not?$

Solution: Since 75 is not of the form $2 p^{m}, p^{m}$ for some odd prime p, we know $U(75)$ is not cyclic with 40 elements. However, Z_{41}^{*} is cyclic with 40 elements. They are not isomorphic.
(iii) (4 points). Construct a subgroup of $\left(Z_{4},+\right) \times\left(Z_{5}^{*},.\right)$, say H, such that H has 4 elements, but there is no subgroup N_{1} of $\left(Z_{4},+\right)$ and there is no subgroup N_{2} of $\left(Z_{5}^{*},.\right)$ such that $H=N_{1} \times N_{2}$.
Solution Let $a=(2,2)$. Then $|a|=4$. Now $L=\left\{a, a^{2}, a^{3}, a^{4}\right\}=\{(2,2),(0,4),(2,3),(0,1)\}$. If $L=N_{1} \times N_{2}$, then by staring at the elements of L, we conclude that $\left|N_{1}\right|$ is at least 2 and $\left|N_{2}\right|=4$ and thus $|L|$ is at least 8 , impossible.
(iv) (6 points). Let $f=\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 7 & 4 & 9 & 8 & 2 & 6 & 5 & 1\end{array}\right) \in S_{9}$. Find $|f|$. Is $f \in A_{9}$? explain

Solution: No comments!!

QUESTION 4. (6 points). Let $(D, *)$ be a group. Assume that $a * b=b * a$ for some $a, b \in D,|a|=n$, and $|b|=m$. Let $u=\operatorname{lcm}[n, m]$. Prove that D has a cyclic subgroup with u elements. (Hint: You may need the fact: if $d=g c d(n, m)$, then $\operatorname{gcd}\left(\frac{n}{d}, m\right)=1$ OR $\left.\operatorname{gcd}\left(n, \frac{m}{d}\right)=1\right)$.

Solution: Assume $\operatorname{gcd}(n / d, m)=1$. We know $\left|a^{d}\right|=n / g c d(d, n)=n / d$. Since $a^{d} * b=b * a^{d}$ and $\operatorname{gcd}\left(|b|,\left|a^{d}\right|\right)=$ $\operatorname{gcd}(m, n / d)=1$, we know $\left|b * a^{d}\right|=|b|\left|a^{d}\right|=m n / d=L C M[m, n]=u$. Since $\left|b * a^{d}\right|=u$, we conclude that $<b * a^{d}>$ is a cyclic subgroup with u elements.

QUESTION 5. (6 points). Assume $(D, *)$ is a group with p^{5} elements for some prime number p. Assume D has a normal cyclic subgroup H with p^{4} elements and D has a normal cyclic subgroup F with p elements such that $F \nsubseteq H$. Prove that D is abelian but not cyclic.

Solution: Since $F \nsubseteq H$ and F has p elements, $H \cap F=\{e\}$. Thus $|H * F|=|H||F| /|H \cap F|=p^{5}$. Hence $D=H * F$. Thus $D \cong H \times F \cong\left(Z_{p^{4}},+\right) \times\left(Z_{p},+\right)$. Since $\operatorname{gcd}\left(p, p^{4}\right) \neq 1$, \mathbf{D} is not cyclic. It is clear that D is abelian.

QUESTION 6. Let $S=\{0,1,2,3, \ldots, 8\}$. Then we view S_{9} as the set of all bijective functions from S ONTO S, and recall that $\left(S_{9}, o\right)$ is a group. Let $D=\left\{f:\left(Z_{9},+\right) \rightarrow\left(Z_{9},+\right) \mid f\right.$ is a group - isomorphism $\}$. Hence $D \subset S_{9}$.
(i) (8 points). Let $K:\left(Z_{9},+\right) \rightarrow\left(Z_{9},+\right)$ such that $k(1)=1^{8}=8$. Is $K \in D$? EXPLAIN. Find $K(a)$ for every $a \in Z_{9}$. If $K \in D$, then find $|K|$.
Solution: Note that $K=(18)(27)(36)(45)$. By staring at K, we observe that $K(x)=0$ iff $x=0$. Thus $\operatorname{ker}(K)=\{0\}$. Hence $K \in D$ and $|K|=2$.
(ii) (8 points).Prove that (D, o) is a cyclic subgroups of S_{9} with exactly 6 elements. Hence $D=<f>$ for some $f \in D$. Give me such f.
Solution: Let $f(x) \in D$. Since $Z_{9}=<1>$, we conclude that $f(x)$ is completely determined by $f(1)$. Since f is an isomorphism and $Z_{9}=<1>$, we conclude that $Z_{9}=<f(1)>$. Now, we know that Z_{9} has exactly $\phi(9)=6$ generators. Let G be the set of all generators of Z_{9}. Then $G=\left\{1^{1}=1,1^{2}=2,1^{4}=4,1^{5}=5,1^{7}=\right.$ $\left.7,1^{8}=8\right\}$. Thus $f(1)$ has exactly 6 possibilities. Hence D has exactly 6 elements, namely: f_{1} determined by $f_{1}(1)=1=e, f_{2}$ determined by $f_{2}(1)=1^{2}, f_{3}$ determined by $f_{4}(1)=1^{4}$, f_{5} determined by $f_{5}(1)=1^{5}, f_{7}$ determined by $f_{7}(1)=1^{7}$, and f_{8} determined by $f_{8}(1)=1^{8}$.
To show that $(D, 0)$ is a subgroup of S_{9}, we only show closure. Let $f_{i}, f_{j} \in D$, for some $i, j \in G=$ $\{1,2,4,5,7,8\}$. We show f_{i} o $f_{j} \in D$. Hence $f_{j}(1)=1^{j}$. Thus $\left(f_{i}\right.$ o $\left.f_{j}\right)(1)=f_{i}\left(f_{j}(1)\right)=f_{i}\left(1^{j}\right)=1^{i j} \in D$ since $\operatorname{gcd}(i j, 9)=1$ and thus $i j(\bmod 9) \in G$. Assume $D=<f_{i}>$ for some $i \in G$. Then $\left|f_{i}\right|=6$. Observe that $f_{i}^{6}=f_{i}$ o $f_{i} o \cdots$ o $f_{i}(6$ times $)=f_{1}=e$. Observe that $\left|f_{2}\right|=6$ since $f_{2}^{6}(1)=1^{2^{6}}=1^{64}=1$ in Z_{9}. Hence $D=<f_{2}>$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

