MTH 520 Graduate Abstract Algebra I 2017, 1-2

. ID

Exam one: MTH 530, Fall 2017

Ayman Badawi

QUESTION 1. (8 points). Let (D, *) be a group with 85 elements. Use results from Sylow's Theorems to prove that D is cyclic.

Solution: |D| = 17X5. $n_{17} | 5$ and $17 | (n_{17} - 1)$. Hence $n_{17} = 1$. Thus D has only one subgroup of D, say H, with 17 elements. Hence H is normal in D. Also, $n_5 | 17$ and $5 | (n_5 - 1)$. Thus $n_5 = 1$. Thus D has only one subgroup of D, say K, with 5 elements. Thus K is normal in D. It is clear that D = H * K and $H \cap K = \{e\}$. Thus $D \cong H \times K$. Since K and D are cyclic and gcd(5, 17) = 1, we conclude that D is cyclic.

QUESTION 2. (8 points) Let (D, *) be a group with $p^{2017}m$, where p is prime, m is a positive integer, and gcd(p,m) = 1. Assume that H is the only subgroup of D with p elements (hence we know that H is a normal subgroup of D). Assume that D/H is cyclic. Prove that D is cyclic.

Solution: $F = D/H = \langle a * H \rangle$ for some $a \in D$. Let k = |a| in D. Since $|F| = |a * H| = p^{2016}m$, we conclude $k = |a| = p^{2016}m$ OR $k = |a| = p^{2017}m$. We show $k = |a| = p^{2017}m$. Now, $\langle a \rangle$ is a cyclic subgroup of D and $p \mid k$. Thus $\langle a \rangle$ has a unique subgroup, say L, with p elements. Since H is the only subgroup of D with p elements, we conclude that H = L. Thus $L = H = \{a^{i_1}, a^{i_2}, ..., a^{i_p} = e\}$. Let $d \in D$. We show that $d \in \langle a \rangle$. Since F is cyclic, $d * H = a^n * H$. Thus $d = a^n * h$ for some $h \in H$. Hence $d = a^n * a^{i_j}$ for some $1 \leq j \leq p$. Thus $d = a^{n+i_j} \in \langle a \rangle$. Hence $D = \langle a \rangle$.

QUESTION 3. (i) (4 points). Is $(Z_2, +) \times (Z_6, +)$ group-isomorphic to $(Z_{12}, +)$? If yes, then prove it. If no, then tell me why not?

Solution: Since $gcd(2, 12) \neq 1$, $Z_2 \times Z_6$ is not cyclic with 12 elements. However, Z_{12} is cyclic with 12 elements. Thus they are not isomorphic.

(ii) (4 points). Is $(Z_{41}^*, .)$ group-isomorphic to (U(75), .)? If yes, then prove it. If no, then tell me why not?

Solution: Since 75 is not of the form $2p^m$, p^m for some odd prime p, we know U(75) is not cyclic with 40 elements. However, Z_{41}^* is cyclic with 40 elements. They are not isomorphic.

(iii) (4 points). Construct a subgroup of $(Z_4, +) \times (Z_5^*, .)$, say H, such that H has 4 elements, but there is no subgroup N_1 of $(Z_4, +)$ and there is no subgroup N_2 of $(Z_5^*, .)$ such that $H = N_1 \times N_2$.

Solution Let a = (2, 2). Then |a| = 4. Now $L = \{a, a^2, a^3, a^4\} = \{(2, 2), (0, 4), (2, 3), (0, 1)\}$. If $L = N_1 \times N_2$, then by staring at the elements of L, we conclude that $|N_1|$ is at least 2 and $|N_2| = 4$ and thus |L| is at least 8, impossible.

(iv) (6 points). Let $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 7 & 4 & 9 & 8 & 2 & 6 & 5 & 1 \end{pmatrix} \in S_9$. Find |f|. Is $f \in A_9$? explain

Solution: No comments!!

QUESTION 4. (6 points). Let (D, *) be a group. Assume that a * b = b * a for some $a, b \in D$, |a| = n, and |b| = m. Let u = lcm[n, m]. Prove that D has a cyclic subgroup with u elements. (Hint: You may need the fact: if d = gcd(n, m), then $gcd(\frac{n}{d}, m) = 1$ OR $gcd(n, \frac{m}{d}) = 1$).

Solution: Assume gcd(n/d, m) = 1. We know $|a^d| = n/gcd(d, n) = n/d$. Since $a^d * b = b * a^d$ and $gcd(|b|, |a^d|) = gcd(m, n/d) = 1$, we know $|b * a^d| = |b||a^d| = mn/d = LCM[m, n] = u$. Since $|b * a^d| = u$, we conclude that $< b * a^d >$ is a cyclic subgroup with u elements.

QUESTION 5. (6 points). Assume (D, *) is a group with p^5 elements for some prime number p. Assume D has a normal cyclic subgroup H with p^4 elements and D has a normal cyclic subgroup F with p elements such that $F \notin H$. Prove that D is abelian but not cyclic.

Solution: Since $F \nsubseteq H$ and F has p elements, $H \cap F = \{e\}$. Thus $|H * F| = |H||F|/|H \cap F| = p^5$. Hence D = H * F. Thus $D \cong H \times F \cong (Z_{p^4}, +) \times (Z_p, +)$. Since $gcd(p, p^4) \neq 1$, D is not cyclic. It is clear that D is abelian.

QUESTION 6. Let $S = \{0, 1, 2, 3, ..., 8\}$. Then we view S_9 as the set of all bijective functions from S ONTO S, and recall that (S_9, o) is a group. Let $D = \{f : (Z_9, +) \rightarrow (Z_9, +) | f \text{ is a group - isomorphism}\}$. Hence $D \subset S_9$.

(i) (8 points). Let $K : (Z_9, +) \rightarrow (Z_9, +)$ such that $k(1) = 1^8 = 8$. Is $K \in D$? EXPLAIN. Find K(a) for every $a \in Z_9$. If $K \in D$, then find |K|.

Solution: Note that $K = (1 \ 8)(2 \ 7)(3 \ 6)(4 \ 5)$. By staring at K, we observe that K(x) = 0 iff x = 0. Thus $ker(K) = \{0\}$. Hence $K \in D$ and |K| = 2.

(ii) (8 points). Prove that (D, o) is a cyclic subgroups of S_9 with exactly 6 elements. Hence $D = \langle f \rangle$ for some $f \in D$. Give me such f.

Solution: Let $f(x) \in D$. Since $Z_9 = <1 >$, we conclude that f(x) is completely determined by f(1). Since f is an isomorphism and $Z_9 = <1 >$, we conclude that $Z_9 = <f(1) >$. Now, we know that Z_9 has exactly $\phi(9) = 6$ generators. Let G be the set of all generators of Z_9 . Then $G = \{1^1 = 1, 1^2 = 2, 1^4 = 4, 1^5 = 5, 1^7 = 7, 1^8 = 8\}$. Thus f(1) has exactly 6 possibilities. Hence D has exactly 6 elements, namely: f_1 determined by $f_2(1) = 1^2$, f_3 determined by $f_4(1) = 1^4$, f_5 determined by $f_5(1) = 1^5$, f_7 determined by $f_7(1) = 1^7$, and f_8 determined by $f_8(1) = 1^8$.

To show that (D,0) is a subgroup of S_9 , we only show closure. Let f_i , $f_j \in D$, for some $i, j \in G = \{1, 2, 4, 5, 7, 8\}$. We show $f_i \circ f_j \in D$. Hence $f_j(1) = 1^j$. Thus $(f_i \circ f_j)(1) = f_i(f_j(1)) = f_i(1^j) = 1^{ij} \in D$ since gcd(ij,9) = 1 and thus $ij \pmod{9} \in G$. Assume $D = \langle f_i \rangle$ for some $i \in G$. Then $|f_i| = 6$. Observe that $f_i^6 = f_i \circ f_i \circ \cdots \circ f_i (6 \text{ times}) = f_1 = e$. Observe that $|f_2| = 6$ since $f_2^6(1) = 1^{2^6} = 1^{64} = 1$ in Z_9 . Hence $D = \langle f_2 \rangle$.

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com