Final Exam: MTH 530, Fall 2017

Ayman Badawi

QUESTION 1. Let D be a group with $5^{2} \cdot 7^{2}$ elements. Is D a nilpotent group? explain. If yes, then up to isomorphism find all possible structures of D. (note that every group with p^{2} elements is abelian where p is prime)

QUESTION 2. 1)Let D be an infinite simple group and H be a subgroup of D. Assume that $H \neq\{e\}$ and $H \neq D$. Prove that H has infinitely many distinct left cosets.

QUESTION 3. 2) Does A_{6} have a subgroup, say H, with 90 elements? If yes, then if $a \in H$ and a is of maximal order, say m, then what is m ? If no, then convince me.
3) Consider the group $\left(Z_{p}^{*},.\right)$ where p is prime and $p \geq 5$. Let $F=\left\{x^{2} \mid x \in D\right\}$. Prove that F is a subgroup of Z_{p}^{*}. Find $[D: F]$. If $p-1 \notin F$, prove that $a \in F$ or $p-a \in F$.
4) Prove that every group of order 72 is not simple.

QUESTION 4. 1)Let $(D, *)$ be a simple group. Assume that H_{1}, H_{2} are subgroups of D where $\left[D: H_{1}\right]=p_{1}$ and $\left[D: H_{2}\right]=p_{2}$ for some prime integers p_{1}, p_{2}. Prove that $p_{1}=p_{2}$.
2) By Krull-Schmidt Theorem, $F=U\left(3^{2} .5^{2} .11^{2}\right)$ is isomorphic to a product of irreducible normal subgroups and this product is unique (up to isomorphism) (i.e., write F as a product of its invariant factors).
3) Let F be an infinite finitely generated abelian group where 4 is the rank of the free-torsion part of F. Assume that if $a \in F$ and a is of finite order, then $|a|=3$ or 9 or 1 . If F has exactly 18 elements of order 9 and exactly 8 elements of order 3, then up to isomorphism, determine the structure of F.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

