Find each of the following derivatives (do not simplify):
(a) $y=\left(\sqrt{x}+4 x^{2}\right)\left(x-\frac{1}{x}\right)$
(b) $f(x)=\sqrt{\left(x^{2}+3\right)(x-4)}$
(c) $f(x)=\left(\frac{8 x^{2}-4}{1-9 x^{3}}\right)^{5}$

Problem Two

15 Points

Evaluate the following limits:
(a) $\quad \lim _{x \rightarrow 0} \frac{\sqrt{2-x}-\sqrt{2}}{x}$
(b) $\quad \lim _{x \rightarrow \frac{3}{2}^{+}} \frac{|2 x-3|}{3-2 x}$
(c) $\lim _{x \rightarrow-2} \frac{3 x^{2}-x-10}{x^{2}-x-2}$

Problem Three
12 Points
(a) Find the equation of the tangent line to the graph of $f(x)=2 x-\frac{4}{\sqrt{x}}$ at the point $(4,6)$.
(b) At what point(s) does the function $f(x)=\left(x^{2}-4\right)^{3}$ has a horizontal tangent line?

Problem Four

Use the definition of the derivative to find the derivative of $f(x)=x^{2}-1$

Suppose that the price-demand equation and the total cost (in dollars) for manufacturing x

TV sets are given respectively by :

$$
x=6000-30 p \quad \text { and } \quad C(x)=72000+60 x
$$

(a) Express the price p in terms of x and find the domain of p.
(b) Find the total revenue in terms of x.
(c) Find the profit function in terms of x.
(d) Evaluate the marginal profit at $x=1500$ and $x=3000$ and interpret the results?
(e) Find the exact profit from the sale of the $801^{\text {st }} \mathrm{TV}$ set.
(f) Use the marginal profit function to approximate the profit from the sale of the $801^{\text {st }}$ TV set.

For the function $f(x)=\frac{x+1}{x^{2}-2 x-3}$, Determine the following:
(a) The domain of $f(x)$.
(b) The vertical Asymptotes of $f(x)$.
(c) The horizontal Asymptotes of $f(x)$.

For the function $f(x)=-\frac{1}{4} x^{4}+x^{3}$, find the following:
(a) Domain
(b) $\quad x$ and y intercepts.
(c) Intervals where f is increasing and decreasing and find the local maxima and minima if any.
(d) Intervals where f is concave upward and concave upward and downward and find any inflection points.
(d) Graph $f(x)$.

