ON 2-ABSORBING PRIMARY IDEALS IN
COMMUTATIVE RINGS

AYMAN BADAWI, UNSAL TEKIR, AND ECE YETKIN

ABSTRACT. Let \(R\) be a commutative ring with \(1 \neq 0\). In this paper, we introduce the concept of 2-absorbing primary ideal which is a generalization of primary ideal. A proper ideal \(I\) of \(R\) is called a 2-absorbing primary ideal of \(R\) if whenever \(a, b, c \in R\) and \(abc \in I\), then \(ab \in I\) or \(ac \in \sqrt{I}\) or \(bc \in \sqrt{I}\). A number of results concerning 2-absorbing primary ideals and examples of 2-absorbing primary ideals are given.

1. Introduction

We assume throughout this paper that all rings are commutative with \(1 \neq 0\). Let \(R\) be a commutative ring. An ideal \(I\) of \(R\) is said to be proper if \(I \neq R\). Let \(I\) be a proper ideal of \(R\). Then \(Z_I(R) = \{r \in R \mid rs \in I \text{ for some } s \in R \setminus I\}\). The concept of 2-absorbing ideal, which is a generalization of prime ideal, was introduced by Badawi in [3] and studied in [2], [8], and [4]. Various generalizations of prime ideals are also studied in [1] and [5]. Recall that a proper ideal \(I\) of \(R\) is called a 2-absorbing ideal of \(R\) if whenever \(a, b, c \in R\) and \(abc \in I\), then \(ab \in I\) or \(ac \in \sqrt{I}\) or \(bc \in \sqrt{I}\). In this paper, we introduce the concept of 2-absorbing primary ideal which is a generalization of primary ideal. A proper ideal \(I\) of \(R\) is said to be a 2-absorbing primary ideal of \(R\) if whenever \(a, b, c \in R\) with \(abc \in I\), then \(ab \in I\) or \(ac \in \sqrt{I}\) or \(bc \in \sqrt{I}\).

Note that a 2-absorbing ideal of a commutative ring \(R\) is a 2-absorbing primary ideal of \(R\). However, these are different concepts. For instance, consider the ideal \(I = (12)\) of \(\mathbb{Z}\). Since \(2 \cdot 2 \cdot 3 \in I\), but \(2 \cdot 2 \notin I\) and \(2 \cdot 3 \notin I\), \(I\) is not a 2-absorbing ideal of \(\mathbb{Z}\). However, it is clear that \(I\) is a 2-absorbing primary ideal of \(\mathbb{Z}\). It is also clear that every primary ideal of a ring \(R\) is a 2-absorbing primary ideal of \(R\). However, the converse is not true. For example, \((6)\) is a 2-absorbing primary ideal of \(\mathbb{Z}\), but it is not a primary ideal of \(\mathbb{Z}\).

Among many results in this paper, it is shown (Theorem 2.2) that the radical of a 2-absorbing primary ideal of a ring \(R\) is a 2-absorbing ideal of \(R\). It is shown (Theorem 2.4) that if \(I_1\) is a \(P_1\)-primary ideal of \(R\) for some prime ideal
P_1 of R and I_2 is a P_2-primary ideal of R for some prime ideal P_2 of R, then $I_1 I_2$ and $I_1 \cap I_2$ are 2-absorbing primary ideals of R. It is shown (Theorem 2.8) that if I is a proper ideal of a ring R such that \sqrt{I} is a prime ideal of R, then I is a 2-absorbing primary ideal of R. It is shown (Theorem 2.10) that every proper ideal of a divided ring is a 2-absorbing primary ideal. It is shown (Theorem 2.11) that a Noetherian domain R is a Dedekind domain if and only if a nonzero 2-absorbing primary ideal of R is either M_k for some maximal ideal M of R and some positive integer $k \geq 1$ or $M_1^k M_2^n$ for some distinct maximal ideals M_1, M_2 of R and some positive integers $k, n \geq 1$. It is shown (Theorem 2.19) that a proper ideal I of R is a 2-absorbing primary ideal if and only if whenever $I_1 I_2 I_3 \subseteq I$ for some ideals I_1, I_2, I_3 of R, then $I_1 I_2 \subseteq I$ or $I_1 I_3 \subseteq \sqrt{I}$ or $I_2 I_3 \subseteq \sqrt{I}$. Let $R = R_1 \times R_2$, where R_1, R_2 are commutative rings with $1 \neq 0$. It is shown (Theorem 2.23) that a proper ideal J of R is a 2-absorbing primary ideal of R if and only if either $J = I_1 \times I_2$ for some 2-absorbing primary ideal I_1 of R_1 or $J = R_1 \times I_2$ for some 2-absorbing primary ideal I_2 of R_2 or $J = I_1 \times I_2$ for some primary ideal I_1 of R_1 and some primary ideal I_2 of R_2.

2. Properties of 2-absorbing primary ideals

Definition 2.1. A proper ideal I of R is called a 2-absorbing primary ideal of R if whenever $a, b, c \in R$ and $abc \in I$, then $ab \in I$ or $ac \in \sqrt{I}$ or $bc \in \sqrt{I}$.

Theorem 2.2. If I is a 2-absorbing primary ideal of R, then \sqrt{I} is a 2-absorbing primary ideal of R.

Proof. Let $a, b, c \in R$ such that $abc \in \sqrt{I}$, $ac \notin \sqrt{I}$ and $bc \notin \sqrt{I}$. Since $abc \in \sqrt{I}$, there exists a positive integer n such that $(abc)^n = a^n b^n c^n \in I$. Since J is 2-absorbing primary and $ac \notin \sqrt{I}$ and $bc \notin \sqrt{I}$, we conclude that $a^n b^n = (ab)^n \in I$, and hence $ab \in \sqrt{I}$. Thus \sqrt{I} is a 2-absorbing ideal of R. \[\square\]

Theorem 2.3. Suppose that I is a 2-absorbing primary ideal of R. Then one of the following statements must hold.

1. $\sqrt{I} = P$ is a prime ideal,
2. $\sqrt{I} = P_1 \cap P_2$, where P_1 and P_2 are the only distinct prime ideals of R that are minimal over I.

Proof. Suppose that I is a 2-absorbing primary ideal of R. Then \sqrt{I} is a 2-absorbing ideal by Theorem 2.2. Since $\sqrt{\sqrt{I}} = \sqrt{I}$, the claim follows from [3, Theorem 2.4]. \[\square\]

Theorem 2.4. Let R be a commutative ring with $1 \neq 0$. Suppose that I_1 is a P_1-primary ideal of R for some prime ideal P_1 of R, and I_2 is a P_2-primary ideal of R for some prime ideal P_2 of R. Then the following statements hold.

1. $I_1 I_2$ is a 2-absorbing primary ideal of R.
2. $I_1 \cap I_2$ is a 2-absorbing primary ideal of R.

Proof. (1) Suppose that \(abc \in I_1I_2 \) for some \(a,b,c \in R \), \(ac \notin \sqrt{I_1I_2} \), and \(bc \notin \sqrt{I_1I_2} = P_1 \cap P_2 \). Then \(a,b,c \notin \sqrt{I_1I_2} = P_1 \cap P_2 \). Since \(\sqrt{I_1I_2} = P_1 \cap P_2 \), we conclude that \(\sqrt{I_1I_2} \) is a 2-absorbing ideal of \(R \). Since \(\sqrt{I_1I_2} \) is a 2-absorbing ideal of \(R \) and \(ac, bc \notin \sqrt{I_1I_2} \), we have \(ab \in \sqrt{I_1I_2} \). We show that \(ab \in I_1I_2 \). Since \(ab \in \sqrt{I_1I_2} \subseteq P_1 \), we may assume that \(a \in P_1 \). Since \(a \notin \sqrt{I_1I_2} \) and \(ab \notin \sqrt{I_1I_2} \subseteq P_2 \), we conclude that \(a \notin P_2 \) and \(b \in P_2 \). Since \(b \in P_2 \) and \(b \notin \sqrt{I_1I_2} \), we have \(b \notin P_1 \). If \(a \in I_1 \) and \(b \in I_2 \), then \(ab \in I_1I_2 \) and we are done. Thus assume that \(a \notin I_1 \). Since \(I_1 \) is a \(P_1 \)-primary ideal of \(R \) and \(a \notin I_1 \), we have \(ab \in P_1 \). Since \(b \in P_2 \) and \(be \in P_1 \), we have \(be \in \sqrt{I_1I_2} \), which is a contradiction. Thus \(a \in I_1 \). Similarly, assume that \(b \notin I_2 \). Since \(I_2 \) is a \(P_2 \)-primary ideal of \(R \) and \(b \notin I_2 \), we have \(ac \notin P_2 \). Since \(ac \in P_2 \) and \(a \in P_1 \), we have \(ac \in \sqrt{I_1I_2} \), which is a contradiction. Thus \(b \in I_2 \). Hence \(ab \in I_1I_2 \).

(2)(Similar to the proof in (1)). Let \(H = I_1 \cap I_2 \). Then \(\sqrt{H} = P_1 \cap P_2 \). Suppose that \(abc \in H \) for some \(a,b,c \in R \), \(ac \notin \sqrt{H} \), and \(bc \notin \sqrt{H} \). Then \(a,b,c \notin \sqrt{H} = P_1 \cap P_2 \). Since \(\sqrt{H} = P_1 \cap P_2 \) is a 2-absorbing ideal of \(R \) and \(ac, bc \notin \sqrt{H} \), \(ab \in \sqrt{H} \). We show that \(ab \in H \). Since \(ab \in \sqrt{H} \subseteq P_1 \), we may assume that \(a \in P_1 \). Since \(a \notin \sqrt{H} \) and \(ab \notin \sqrt{H} \subseteq P_2 \), we conclude that \(a \notin P_2 \) and \(b \in P_2 \). Since \(b \in P_2 \) and \(b \notin \sqrt{H} \), \(b \notin P_1 \). If \(a \in I_1 \) and \(b \in I_2 \), then \(ab \notin H \) and we are done. Thus assume that \(a \notin I_1 \). Since \(I_1 \) is a \(P_1 \)-primary ideal of \(R \) and \(a \notin I_1 \), we have \(bc \in P_1 \). Since \(b \in P_2 \) and \(bc \in P_1 \), we have \(bc \in \sqrt{H} \), which is a contradiction. Thus \(a \in I_1 \). Similarly, assume that \(b \notin I_2 \). Since \(I_2 \) is a \(P_2 \)-primary ideal of \(R \) and \(b \notin I_2 \), we have \(ac \notin P_2 \). Since \(ac \in P_2 \) and \(a \in P_1 \), we have \(ac \in \sqrt{H} \), which is a contradiction. Thus \(b \in I_2 \). Hence \(ab \in H \). \(\square \)

In view of Theorem 2.4, we have the following result.

Corollary 2.5. Let \(R \) be a commutative ring with \(1 \neq 0 \), and let \(P_1, P_2 \) be prime ideals of \(R \). If \(P_1^n \) is a \(P_1 \)-primary ideal of \(R \) for some positive integer \(n \geq 1 \) and \(P_2^n \) is a \(P_2 \)-primary ideal of \(R \) for some positive integer \(m \geq 1 \), then \(P_1^n P_2^m \) and \(P_1^n \cap P_2^m \) are 2-absorbing primary ideals of \(R \). In particular, \(P_1P_2 \) is a 2-absorbing primary ideal of \(R \).

In the following example, we show that if \(P_1, P_2 \) are prime ideals of a ring \(R \) and \(n, m \) are positive integers, then \(P_1^n P_2^m \) need not be a 2-absorbing primary ideal of \(R \).

Example 2.6. Let \(R = \mathbb{Z}[Y] + 3XZ[3Y, X] \). Then \(P_1 = YR \) and \(P_2 = 3XZ[3Y, X] \) are prime ideals of \(R \). Let \(I = P_1 P_2 \). Then \(3X^2 \cdot Y \cdot 3 = 9X^2Y \in I \) and \(3X^2 \cdot Y = 3X^2Y \notin I \). Clearly \(3X^2 \cdot 3 = 9X^2 \notin \sqrt{I} = P_1 \cap P_2 \) and \(Y \cdot 3 = 3Y \notin \sqrt{I} = P_1 \cap P_2 \). Hence \(I \) is not a 2-absorbing primary ideal of \(R \).

In the following example, we show that if \(I \subseteq J \) such that \(I \) is a 2-absorbing primary ideal of \(R \) and \(\sqrt{J} = \sqrt{I} \), then \(J \) need not be a 2-absorbing ideal of \(R \).

Example 2.7. Let \(R = \mathbb{Z}[X, Y, Z] \). Then \(P_1 = XR, P_2 = YR \) are prime ideals of \(R \), and \(I = P_1 P_2 \) is a 2-absorbing primary ideal of \(R \) by Corollary 2.5. Let
Let I be a proper ideal of a ring R. It is known that if \sqrt{J} is a maximal ideal of R, then I is a prime ideal of R. In the following result, we show that if \sqrt{J} is a prime ideal of R, then I is a 2-absorbing primary ideal of R.

Theorem 2.8. Let I be an ideal of R. If \sqrt{J} is a prime ideal of R, then I is a 2-absorbing primary ideal of R. In particular, if P is a prime ideal of R, then P^n is a 2-absorbing primary ideal of R for every positive integer $n \geq 1$.

Proof. Suppose that $abc \in I$ and $ab \notin I$. Since $(ac)(bc) = abc^2 \in I \subseteq \sqrt{J}$ and \sqrt{J} is a prime ideal of R, we have $bc \in \sqrt{J}$ or $ac \in \sqrt{J}$. Hence I is a 2-absorbing primary ideal of R. \hfill \square

In view of Theorem 2.2, Theorem 2.3, and Theorem 2.8, the following is an example of an ideal J of a ring R where \sqrt{J} is a 2-absorbing ideal of R, but J is not a 2-absorbing primary ideal of R.

Example 2.9. Let $R = \mathbb{Z}[X, Y, Z]$ and let $J = (XYZ, Y^3, X^3)R$. Then $\sqrt{J} = XR \cap YR$ is a 2-absorbing ideal of R, but J is not a 2-absorbing primary ideal of R by Example 2.7. Also, see Example 2.6.

Recall that a commutative ring R with $1 \neq 0$ is called a divided ring if for every prime ideal P of R, we have $P \subseteq xR$ for every $x \in R \setminus P$. Every chained ring is a divided ring (recall that a commutative ring R with $1 \neq 0$ is called a chained ring, if $x | y$ in R or $y | x$ in R for every $x, y \in R$). It is known that the prime ideals of a divided ring are linearly ordered; i.e., if P_1, P_2 are prime ideals of R, then $P_1 \subseteq P_2$ or $P_2 \subseteq P_1$. We have the following result.

Theorem 2.10. Let R be a commutative divided ring with $1 \neq 0$. Then every proper ideal of R is a 2-absorbing primary ideal of R. In particular, every proper ideal of a chained ring is a 2-absorbing primary ideal.

Proof. Let I be a proper ideal of R. Since the prime ideals of a divided ring are linearly ordered, we conclude that \sqrt{J} is a prime ideal of R. Hence I is a 2-absorbing primary ideal of R by Theorem 2.8. \hfill \square

Let R be an integral domain with $1 \neq 0$, and let K be the quotient field of R. If I is a nonzero proper ideal of R, then $I^{-1} = \{ x \in K \mid xI \in R \}$. An integral domain R is said to be a Dedekind domain if $II^{-1} = R$ for every nonzero proper ideal I of R.

Theorem 2.11. Let R be a Noetherian integral domain with $1 \neq 0$ that is not a field. Then the following statements are equivalent.

1. R is a Dedekind domain.
(2) A nonzero proper ideal I of R is a 2-absorbing primary ideal of R if and only if either $I = M^n$ for some maximal ideal M of R and some positive integer $n \geq 1$ or $I = M^1_1 M^2_2$ for some maximal ideals M_1, M_2 of R and some positive integers $n, m \geq 1$.

(3) If I is a nonzero proper 2-absorbing primary ideal of R, then either $I = M^n$ for some maximal ideal M of R and some positive integer $n \geq 1$ or $I = M^1_1 M^2_2$ for some maximal ideals M_1, M_2 of R and some positive integers $n, m \geq 1$.

(4) A nonzero proper ideal I of R is a 2-absorbing primary ideal of R if and only if either $I = P^n$ for some prime ideal P of R and some positive integer $n \geq 1$ or $I = P^1 P^2 m$ for some prime ideals P_1, P_2 of R and some positive integers $n, m \geq 1$.

(5) If I is a nonzero proper 2-absorbing primary ideal of P_1, P_2 of R and some positive integers $n, m \geq 1$.

Proof. (1) \Rightarrow (2). Suppose that R is a Dedekind domain that is not a field. Then every nonzero prime ideal of R is maximal. Let I be a nonzero proper ideal of R. Then $I = M^n_1 \cdots M^n_k$ for some distinct maximal ideals M_1, \ldots, M_k of R and some positive integers $n_1, \ldots, n_k \geq 1$. Suppose that I is a 2-absorbing primary ideal of R. Since every nonzero prime ideal of R is maximal and \sqrt{I} is either a maximal ideal of R or $I_1 \cap I_2$ for some maximal ideals I_1, I_2 of R by Theorem 2.3, we conclude that either $I = M_n$ for some maximal ideal M of R and some positive integer $n \geq 1$ or $I = M^1_1 M^2_2$ for some maximal ideals M_1, M_2 of R and some positive integers $n, m \geq 1$. Conversely, suppose that $I = M^n$ for some maximal ideal M of R and some positive integer $n \geq 1$ or $I = M^1_1 M^2_2$ for some maximal ideals M_1, M_2 of R and some positive integers $n, m \geq 1$. Then I is a 2-absorbing primary ideal of R by Theorem 2.8 and Corollary 2.5.

(2) \Rightarrow (3). It is clear.

(2) \Rightarrow (4). It is clear.

(4) \Rightarrow (5). It is clear.

(3) \Rightarrow (5). It is clear.

(5) \Rightarrow (1). Let M be a maximal ideal of R. Since every ideal between M^2 and M is an M-primary ideal, and hence a 2-absorbing primary ideal of R, the hypothesis in (5) implies that there are no ideals properly between M^2 and M. Hence R is a Dedekind domain by [6, Theorem 39.2, p. 470].

Since every principal ideal domain is a Dedekind domain, we have the following result as a consequence of Theorem 2.11.

Corollary 2.12. Let R be a principal ideal domain and I be a nonzero proper ideal of R. Then I is a 2-absorbing primary ideal of R if and only if either $I = p^n R$ for some prime element p of R and $k \geq 1$ or $I = p^n_1 p^n_2 R$ for some...
distinct prime elements p_1, p_2 of R and some positive integers $n, m \geq 1$. In particular, if $R = \mathbb{Z}$ or $R = F[X]$ for some field F, then a proper ideal I of R is a 2-absorbing primary ideal of R if and only if $I = p^kR$ for some prime element p of R and some positive integer $k \geq 1$ or $I = p_1^n p_2^m R$ for some distinct prime elements p_1, p_2 of R and some positive integers $n, m \geq 1$.

The following is an example of a unique factorization domain that contains a 2-absorbing primary ideal not of the form $P_1^n P_2^m$ for some prime ideals P_1, P_2 of R and some positive integers $n, m \geq 1$.

Example 2.13. Let $R = K[X, Y]$, where K is a field. Consider the ideal $I = (X, Y^2)$ of R. Then I is a 2-absorbing primary ideal of R that is not of the form $P_1^n P_2^m$, where P_1, P_2 are prime ideals of R and $n, m \geq 1$.

Let R be a commutative Noetherian ring with $1 \neq 0$. It is well-known that every proper ideal of R has a primary decomposition. Since every primary ideal is a 2-absorbing primary ideal, we conclude that every proper ideal of R has a 2-absorbing primary decomposition. However, decomposition of an ideal of R into 2-absorbing primary ideals need not be unique. We have the following example.

Example 2.14. In light of Corollary 2.12, consider the ideal (60) of \mathbb{Z}. Then $(60) = (3) \cap (4) \cap (5) = (3) \cap (20) = (4) \cap (15) = (5) \cap (12)$.

Hence (60) has four distinct 2-absorbing primary decompositions. The ideal (210) of \mathbb{Z} has exactly ten distinct 2-absorbing primary decompositions.

$(210) = (2) \cap (3) \cap (5) \cap (7) = (6) \cap (5) \cap (7) = (10) \cap (3) \cap (7) = (14) \cap (3) \cap (5) = (15) \cap (2) \cap (7) = (15) \cap (14) = (21) \cap (2) \cap (5) = (21) \cap (10) = (35) \cap (2) \cap (3) = (35) \cap (6)$.

Definition 2.15. Let I be a 2-absorbing primary ideal of R. Then $P = \sqrt{I}$ is a 2-absorbing ideal by Theorem 2.2. We say that I is a P-2-absorbing primary ideal of R.

Theorem 2.16. Let I_1, I_2, \ldots, I_n be P-2-absorbing primary ideals of R for some 2-absorbing ideal P of R. Then $I = \bigcap_{i=1}^n I_i$ is a P-2-absorbing primary ideal of R.

Proof. First observe that $\sqrt{I} = \bigcap_{i=1}^n \sqrt{I_i} = P$. Suppose that $abc \in I$ for some $a, b, c \in R$ and $ab \notin I$. Then $ab \notin I_i$ for some $1 \leq i \leq n$. Hence $bc \in \sqrt{I_i} = P$ or $ac \in \sqrt{I_i} = P$.

If I_1, I_2 are 2-absorbing primary ideals of a ring R, then $I_1 \cap I_2$ need not be a 2-absorbing primary ideal of R. We have the following example.

Example 2.17. Let $I_1 = 50\mathbb{Z}$ and $I_2 = 75\mathbb{Z}$. Then I_1, I_2 are 2-absorbing primary ideals of \mathbb{Z} by Corollary 2.12. Since $\sqrt{I_1} \cap \sqrt{I_2} = 2\mathbb{Z} \cap 3\mathbb{Z} \cap 5\mathbb{Z} = 30\mathbb{Z}$, $I_1 \cap I_2$ is not a 2-absorbing primary ideal of \mathbb{Z} by Theorem 2.3.
In the following result, we show that a proper ideal I of a ring R is a 2-absorbing primary ideal of R if and only if whenever $I_1I_2I_3 \subseteq I$ for some ideals I_1, I_2, I_3 of R, then $I_1I_2 \subseteq I$ or $I_2I_3 \subseteq \sqrt{I}$ or $I_1I_3 \subseteq \sqrt{I}$. But first we have the following lemma.

Lemma 2.18. Let I be a 2-absorbing primary ideal of a ring R and suppose that $abJ \subseteq I$ for some elements $a, b \in R$ and some ideal J of R. If $ab \notin I$, then $aJ \subseteq \sqrt{I}$ or $bJ \subseteq \sqrt{I}$.

Proof. Suppose that $aJ \notin \sqrt{I}$ and $bJ \notin \sqrt{I}$. Then $a_j \notin \sqrt{I}$ and $b_j \notin \sqrt{I}$ for some $j_1, j_2 \in J$. Since $a_j \notin \sqrt{I}$ and $b_j \notin \sqrt{I}$, we have $bj \in \sqrt{I}$. Since $abj \in I$ and $ab \notin I$ and $aj \notin \sqrt{I}$, we have $b \notin \sqrt{I}$. Now, since $ab(\overline{j}_1 + \overline{j}_2) \in I$ and $ab \notin I$, we have $a(\overline{j}_1 + \overline{j}_2) \in \sqrt{I}$ or $b(\overline{j}_1 + \overline{j}_2) \in \sqrt{I}$. Suppose that $a(\overline{j}_1 + \overline{j}_2) = a_j + a_j \notin \sqrt{I}$. Since $a_j \notin \sqrt{I}$, we have $a \notin \sqrt{I}$, a contradiction. Suppose that $b(\overline{j}_1 + \overline{j}_2) = b_j + b_j \notin \sqrt{I}$. Since $b_j \notin \sqrt{I}$, we have $b \notin \sqrt{I}$, a contradiction again. Thus $aJ \subseteq \sqrt{I}$ or $bJ \subseteq \sqrt{I}$.

Theorem 2.19. Let I be a proper ideal of R. Then I is a 2-absorbing primary ideal if and only if whenever $I_1I_2I_3 \subseteq I$ for some ideals I_1, I_2, I_3 of R, then $I_1I_2 \subseteq I$ or $I_2I_3 \subseteq \sqrt{I}$ or $I_1I_3 \subseteq \sqrt{I}$.

Proof. Suppose that whenever $I_1I_2I_3 \subseteq I$ for some ideals I_1, I_2, I_3 of R, then $I_1I_2 \subseteq I$ or $I_2I_3 \subseteq \sqrt{I}$ or $I_1I_3 \subseteq \sqrt{I}$. Then clearly I is a 2-absorbing primary ideal of R by definition.

Conversely, suppose that I is a 2-absorbing primary ideal of R and $I_1I_2I_3 \subseteq I$ for some ideals I_1, I_2, I_3 of R, such that $I_1I_2 \not\subseteq I$. We show that $I_1I_3 \subseteq \sqrt{I}$ or $I_2I_3 \subseteq \sqrt{I}$. Suppose that neither $I_1I_3 \subseteq \sqrt{I}$ nor $I_2I_3 \subseteq \sqrt{I}$. Then there are $q_1 \in I_1$ and $q_2 \in I_2$ such that neither $q_1I_3 \subseteq \sqrt{I}$ nor $q_2I_3 \subseteq \sqrt{I}$. Since $q_1q_2I_3 \subseteq I$ and neither $I_1I_3 \subseteq \sqrt{I}$ nor $q_2I_3 \subseteq \sqrt{I}$, we have $I_1q_2 \in I$ by Lemma 2.18.

Since $I_1I_2 \not\subseteq I$, we have $ab \notin I$ for some $a \in I_1, b \in I_2$. Since $abI_3 \subseteq I$ and $ab \notin I$, we have $aI_3 \subseteq \sqrt{I}$ or $bI_3 \subseteq \sqrt{I}$ by Lemma 2.18. We consider three cases. **Case one:** Suppose that $aI_3 \subseteq \sqrt{I}$ but $bI_3 \subseteq \sqrt{I}$. Since $q_1bI_3 \subseteq I$ and neither $bl_3 \subseteq \sqrt{I}$ nor $q_1l_3 \subseteq \sqrt{I}$, we conclude that $q_1b \in I$ by Lemma 2.18. Since $(a + q_1)bI_3 \subseteq I$ and $aI_3 \subseteq \sqrt{I}$, but $q_1I_3 \subseteq \sqrt{I}$, we conclude that $(a + q_1)I_3 \subseteq \sqrt{I}$. Since neither $bl_3 \subseteq \sqrt{I}$ nor $(a + q_1)I_3 \subseteq \sqrt{I}$, we conclude that $(a + q_1)b \in I$ by Lemma 2.18. Since $(a + q_1)b = ab + q_1b \in I$ and $q_1b \notin I$, we conclude that $ab \in I$, a contradiction. **Case two:** Suppose that $bI_3 \subseteq \sqrt{I}$, but $aI_3 \not\subseteq \sqrt{I}$. Since $aq_2I_3 \subseteq I$ and neither $aI_3 \subseteq \sqrt{I}$ nor $q_2I_3 \subseteq \sqrt{I}$, we conclude that $aq_2 \in I$. Since $ab(q_2)I_3 \subseteq I$ and $bl_3 \subseteq \sqrt{I}$, but $q_2I_3 \not\subseteq \sqrt{I}$, we conclude that $(b + q_2)I_3 \not\subseteq \sqrt{I}$. Since neither $aI_3 \subseteq \sqrt{I}$ nor $(b + q_2)I_3 \subseteq \sqrt{I}$, we conclude that $a(b + q_2) \in I$ by Lemma 2.18. Since $a(b + q_2) = ab + aq_2 \in I$ and $aq_2 \in I$, we conclude that $ab \in I$, a contradiction. **Case three:** Suppose that $aI_3 \subseteq \sqrt{I}$ and $bl_3 \subseteq \sqrt{I}$. Since $bI_3 \subseteq \sqrt{I}$ and $q_2I_3 \not\subseteq \sqrt{I}$, we conclude that $(b + q_2)I_3 \not\subseteq \sqrt{I}$. Since $q_1(b + q_2)I_3 \subseteq I$ and neither $q_1I_3 \subseteq \sqrt{I}$ nor
Let \(q_1I_3 \subseteq \sqrt{T} \), we conclude that \(q_1(b + q_2) = q_1b + q_1q_2 \in I \) by Lemma 2.18. Since \(q_1q_2 \subseteq I \) and \(q_1b + q_1q_2 \subseteq I \), we conclude that \(bq_1 \in I \). Since \(aI_3 \subseteq \sqrt{T} \) and \(q_1I_3 \not\subseteq \sqrt{T} \), we conclude that \((a+q_1)I_3 \not\subseteq \sqrt{T} \). Since \((a+q_1)q_2I_3 \subseteq I \) and neither \(q_2I_3 \subseteq \sqrt{T} \) nor \((a+q_1)I_3 \not\subseteq \sqrt{T} \), we conclude that \((a+q_1)q_2 = aq_2 + q_1q_2 \in I \) by Lemma 2.18. Since \(q_1q_2 \subseteq I \) and \(aq_2 + q_1q_2 \subseteq I \), we conclude that \(aq_2 \in I \). Now, since \((a + q_1)(b + q_2)I_3 \subseteq I \) and neither \((a + q_1)I_3 \not\subseteq \sqrt{T} \) nor \((b + q_2)I_3 \not\subseteq \sqrt{T} \), we conclude that \((a + q_1)(b + q_2) = ab + aq_2 + bq_1 + q_1q_2 \in I \) by Lemma 2.18. Since \(aq_2, bq_1, q_1q_2 \subseteq I \), we have \(aq_2 + bq_1 + q_1q_2 \subseteq I \). Since \(ab + aq_2 + bq_1 + q_1q_2 \subseteq I \) and \(aq_2 + bq_1 + q_1q_2 \subseteq I \), we conclude that \(ab \in I \), a contradiction. Hence \(I_1I_3 \subseteq \sqrt{T} \) or \(I_2I_3 \subseteq \sqrt{T} \). \(\square \)

Theorem 2.20. Let \(f : R \to R' \) be a homomorphism of commutative rings. Then the following statements hold.

1. If \(I' \) is a 2-absorbing primary ideal of \(R' \), then \(f^{-1}(I') \) is a 2-absorbing primary ideal of \(R \).

2. If \(f \) is an epimorphism and \(I \) is a 2-absorbing primary ideal of \(R \) containing \(\ker f \), then \(f(I) \) is a 2-absorbing primary ideal of \(R' \).

Proof. (1) Let \(a, b, c \in R \) such that \(abc \in f^{-1}(I') \). Then \(f(abc) = f(a)f(b)f(c) \in I' \). Hence we have \(f(a)f(b) \in I' \) or \(f(b)f(c) \in \sqrt{T} \) or \(f(a)f(c) \in \sqrt{T} \), and thus \(ab \in f^{-1}(I') \) or \(ac \in f^{-1}(\sqrt{T}) \) or \(bc \in f^{-1}(\sqrt{T}) \). By using the equality \(f^{-1}(\sqrt{T}) = \sqrt{f^{-1}(T)} \), we conclude that \(f^{-1}(I') \) is a 2-absorbing primary ideal of \(R \).

(2) Let \(a', b', c' \in R' \) and \(a'b'c' \in f(I) \). Then there exist \(a, b, c \in R \) such that \(f(a) = a', f(b) = b', f(c) = c' \), and \(f(abc) = a'b'c' \in f(I) \). Since \(\ker f \subseteq I \), we have \(abc \in I \). It implies that \(ab \in I \) or \(ac \in \sqrt{T} \) or \(bc \in \sqrt{T} \). This means that \(a'b' \in f(I) \) or \(a'c' \in f(\sqrt{T}) \subseteq \sqrt{f(I)} \) or \(b'c' \in f(\sqrt{T}) \subseteq \sqrt{f(I)} \). Thus \(f(I) \) is a 2-absorbing primary ideal of \(R' \). \(\square \)

Corollary 2.21. Let \(R \) be a commutative ring with \(1 \neq 0 \). Suppose that \(I, J \) are distinct proper ideals of \(R \). If \(J \subseteq I \) and \(I \) is a 2-absorbing primary ideal of \(R \), then \(I/J \) is a 2-absorbing primary ideal of \(R/J \).

Proof. The proof is clear by Theorem 2.20(2). \(\square \)

Theorem 2.22. Let \(R \) be a commutative ring with \(1 \neq 0 \), \(S \) be a multiplicatively closed subset of \(R \), and \(I \) be a proper ideal of \(R \). Then the following statements hold.

1. If \(I \) is a 2-absorbing primary ideal of \(R \) such that \(I \cap S = \emptyset \), then \(S^{-1}I \) is a 2-absorbing primary ideal of \(S^{-1}R \).

2. If \(S^{-1}I \) is a 2-absorbing primary ideal of \(S^{-1}R \) and \(S \cap Z_I(R) = \emptyset \), then \(I \) is a 2-absorbing primary ideal of \(R \).

Proof. (1) Let \(a, b, c \in R \), \(s, t, k \in S \) such that \(\frac{a t b}{s t k} \in S^{-1}I \). Then there exists \(u \in S \) such that \(uabc \in I \). Since \(I \) is a 2-absorbing primary ideal, we get
Then \(\frac{ab}{c} \in I \) or \(bc \in \sqrt{I} \) or \(uac \in \sqrt{I} \). If \(uab \in I \), then \(\frac{ab}{c} = \frac{uab}{uc} \in S^{-1}I \). If \(bc \in \sqrt{I} \), then \(\frac{ab}{c} = \frac{uab}{uc} \in S^{-1}I \). If \(uac \in \sqrt{I} \), then \(\frac{ab}{c} = \frac{uab}{uc} \in \sqrt{S^{-1}I} \).

(2) Let \(a, b, c \in R \) such that \(abc \in I \). Then \(\frac{abc}{c} = \frac{a}{c} \leq \frac{a}{1} \in S^{-1}I \). It follows \(\frac{a}{c} \in S^{-1}I \) or \(\frac{ab}{1} \in \sqrt{S^{-1}I} \) or \(\frac{ac}{1} \in \sqrt{S^{-1}I} \). If \(\frac{a}{c} = \frac{ac}{c} \), then \(uab \in I \), for some \(u \in S \). Since \(u \in S \) and \(S \cap Z(I(R)) = \emptyset \), we conclude \(ab \in I \) if \(\frac{a}{c} = \frac{ac}{c} \in \sqrt{S^{-1}I} \), then there exists \(v \in S \) and a positive integer \(n \) such that \((vbc)^n = v^n b^c c^n \in I \). Since \(v \in S \), we have \(v^n \not\in Z(I(R)) \). Thus \(b^n c^n \in I \), and so \(bc \in \sqrt{I} \). If \(\frac{a}{c} \in \sqrt{S^{-1}I} \), then similarly we obtain \(ac \in \sqrt{I} \), and it completes the proof. \(\square \)

Theorem 2.23. Let \(R = R_1 \times R_2 \), where \(R_1 \) and \(R_2 \) are commutative rings with \(1 \neq 0 \). Let \(J \) be a proper ideal of \(R \). Then the following statements are equivalent.

1. \(J \) is a 2-absorbing primary ideal of \(R \).
2. Either \(J = I_1 \times I_2 \) for some 2-absorbing primary ideal \(I_1 \) of \(R_1 \) or \(J = I_1 \times I_2 \) for some 2-absorbing primary ideal \(I_2 \) of \(R_2 \) or \(J = I_1 \times I_2 \) for some primary ideal \(I_1 \) of \(R_1 \) and some primary ideal \(I_2 \) of \(R_2 \).

Proof. (1) \(\Rightarrow \) (2). Assume that \(J \) is a 2-absorbing primary ideal of \(R \). Then \(J = I_1 \times I_2 \) for some ideal \(I_1 \) of \(R_1 \) and some ideal \(I_2 \) of \(R_2 \). Suppose that \(I_2 = R_2 \). Since \(I_2 \) is a proper ideal of \(R \), \(I_1 \neq R_1 \). Let \(J' = \frac{J}{\langle 0 \rangle \times R_2} \) is a 2-absorbing primary ideal of \(J' \) by Corollary 2.21. Since \(R' \) is ring-isomorphic to \(R_1 \) and \(I_1 \cong J' \), then \(I_1 \) is a 2-absorbing primary ideal of \(R_1 \). Suppose that \(I_1 \neq R_1 \). Since \(J \) is a proper ideal of \(R \), \(I_2 \neq R_2 \). By a similar argument as in the previous case, \(I_2 \) is a 2-absorbing primary ideal of \(R_2 \). Hence assume that \(I_1 \neq R_1 \) and \(I_2 \neq R_2 \). Then \(\sqrt{J} = \sqrt{I_1} \times \sqrt{I_2} \). Suppose that \(I_1 \) is not a primary ideal of \(R_1 \). Then there are \(a, b \in R_1 \) such that \(ab \in I_1 \) but neither \(a \in I_1 \) nor \(b \in I_1 \). Let \(x = (a, 1), y = (1, 0) \), and \(c = (b, 1) \). Then \(yzc = (ab, 0) \) in \(J \) but neither \(xy = (a, 0) \) in \(J \) nor \(yc = (b, 0) \) in \(\sqrt{J} \), which is a contradiction. Thus \(I_1 \) is a primary ideal of \(R_1 \). Suppose that \(I_2 \) is not a primary ideal of \(R_2 \). Then there are \(d, e \in R_2 \) such that \(de \in I_2 \) but neither \(d \in I_2 \) nor \(e \in \sqrt{I_2} \). Let \(x = (1, d), y = (0, 1) \), and \(c = (1, e) \). Then \(yzc = (0, de) \) in \(J \) but neither \(xy = (0, d) \) in \(J \) nor \(xc = (1, de) \) in \(\sqrt{J} \), which is a contradiction. Thus \(I_2 \) is a primary ideal of \(R_2 \).

(2) \(\Rightarrow \) (1). If \(J = I_1 \times R_2 \) for some 2-absorbing primary ideal \(I_1 \) of \(R_1 \) or \(J = R_1 \times I_2 \) for some 2-absorbing primary ideal \(I_2 \) of \(R_2 \), then it is clear that \(J \) is a 2-absorbing primary ideal of \(R \). Hence assume that \(J = I_1 \times I_2 \) for some primary ideal \(I_1 \) of \(R_1 \) and some primary ideal \(I_2 \) of \(R_2 \). Then \(I_1' = I_1 \times I_2 \) and \(I_2' = R_1 \times I_2 \) are primary ideals of \(R \). Hence \(I_1' \cap I_2' = I_1 \times I_2 = J \) is a 2-absorbing primary ideal of \(R \) by Theorem 2.4. \(\square \)

Theorem 2.24. Let \(R = R_1 \times R_2 \times \cdots \times R_n \), where \(2 \leq n < \infty \), and \(R_1, R_2, \ldots, R_n \) are commutative rings with \(1 \neq 0 \). Let \(J \) be a proper ideal of \(R \). Then the following statements are equivalent.
(1) J is a 2-absorbing primary ideal of R.
(2) Either $J = \times_{t=1}^n I_t$ such that for some $k \in \{1, 2, \ldots, n\}$, I_k is a 2-absorbing primary ideal of R_k, and $I_t = R_t$ for every $t \in \{1, 2, \ldots, n\} \setminus \{k\}$ or $J = \times_{t=1}^n I_t$ such that for some $k, m \in \{1, 2, \ldots, n\}$, I_k is a primary ideal of R_k, I_m is a primary ideal of R_m, and $I_t = R_t$ for every $t \in \{1, 2, \ldots, n\} \setminus \{k, m\}$.

Proof. We use induction on n. Assume that $n = 2$. Then the result is valid by Theorem 2.23. Thus let $3 \leq n < \infty$ and assume that the result is valid when $K = R_1 \times \cdots \times R_{n-1}$. We prove the result when $R = K \times R_n$. By Theorem 2.23, J is a 2-absorbing primary ideal of R if and only if either $J = L \times R_n$ for some 2-absorbing primary ideal L of K or $J = K \times L_n$ for some 2-absorbing primary ideal L_n of R_n. Observe that a proper ideal Q of K is a primary ideal of K if and only if $Q = \times_{t=1}^{n-1} I_t$ such that for some $k \in \{1, 2, \ldots, n-1\}$, I_k is a primary ideal of R_k and $I_t = R_t$ for every $t \in \{1, 2, \ldots, n-1\} \setminus \{k\}$. Thus the claim is now verified.

Acknowledgement. We would like to thank the referee for his/her great effort in proofreading the manuscript.

References

Ayman Badawi
Department of Mathematics & Statistics
American University of Sharjah
P.O. Box 26666, Sharjah, United Arab Emirates
E-mail address: abadawi@aus.edu

Unsal Tekir
Department of Mathematics
Marmara University
İstanbul, Turkey
E-mail address: utekir@marmara.edu.tr
Ece Yetkin
Department of Mathematics
Marmara University
Istanbul, Turkey
E-mail address: ece.yetkin@marmara.edu.tr