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Spring 2020
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Office Hours: By appointment

Covers basic properties of groups, normal subgroups and direct sum of
groups; homomorphism and isomorphism between groups; classification of
finite abelian groups; and applications of Sylow’s Theorems. Introduces rings,
ideals, polynomial rings, irreducible and prime elements of rings, unique
factorization domains, fields and their extensions including finite fields.

Upon completion of the course, students will be able to:

Develop mathematical proofs and reason abstractly in exploring
properties of rings and groups. ( Exam |, Exam Il, and Final)
Demonstrate an understanding of Lagrange Theorem and its
applications, symmetric groups, quotient groups, cyclic groups. (Exam |
and Final)

Demonstrate an understanding of the structure of finite abelian groups
(Exam | and Final).

Demonstrate an understanding of Sylow’s Theorems and their
applications (Exam | and Final)

Demonstrate an understanding of the intellectual structure of rings,
ideals, prime ideals, primary ideals, 2-absorbing ideals, maximal ideals,
prime elements, irreducible elements and quotient rings. (Exam Il and
Final)

Use and apply homomorphism and isomorphism theory between rings
and groups. (Exam |, Exam Il and Final)

Demonstrate an understanding of fields, and field extension (Exam Il
and Final)
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other

Instructional
Material and
Resources
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Learning
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Grading
Distribution,

and Due Dates

¢ Demonstrate an understanding of separable fields, splitting fields,
Galois field, finite fields, and cyclotomic field extension. (Exam Il and
Final)

Primary:
http://ayman-badawi.com/MTH%20530.html
http://ayman-badawi.com/MTH%20531.html

Instructor class notes. I-Learn, my personal webpage

and

Reference:

David S. Dummit and Richard M. Foote, Abstract Algebra- Third Edition
Any graduate textbook will do.

The teaching and learning tools used in this course to deliver the subject matter
include white board and markers, formal lectures, class discussions,
assignments, two exams and a final

Grading Scale

A:85—100, A-:81--84.99, B+:77---80.99, B: 74 -- 76.99, B-: 70 —73.99, C+: 67 ---
69.99, C: 63—66.99, F<63

Excellent

A Equals 4.00 grade
points

Meet Expectation

A- | Equals 3.80 grade
points

B+ | Equals 3.30 grade
points

B Equals 3.00 grade
points

Below Expectation

B- | Equals 2.70 grade
points

C+ | Equals 2.30 grade
point

C Equals 2.00 grade
point

Fail

F Equals 0.00 grade
points

Academic Integrity

Violation Fail
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XF | Equals 0.00 grade
points
Withdrawal Fail
WF | Equals 0.00 grade
points
Grading Distribution
Assessment Weight Date
Homework 15%
Mid-Term one 25%
Mid-Term two 25%
Final Exam 35% Comprehensive
Total 100 %

Explanation of
Assessments

Student
Academic
Integrity Code
Statement

Exams, homework assignments will include proofs. So students are expected
to master some of the techniques that are commonly used in Abstract Algebra

Student must adhere to the Academic Integrity code stated in the graduate
catalog.

SCHEDULE

Note: Tests and other graded assignments due dates are set. No addendum, make-up exams, or
extra assignments to improve grades will be given.

#

WEEKS

1--6

7-13

CHAPTER/SECTIONS NOTES

Groups, subgroups, cyclic groups,
symmetric groups, quotient groups,
product of groups, normal subgroups,
Sylow’s groups, classification of finite
abelian groups, group homomorphism
and isomorphism

Definitions, Examples, proofs

EXAM |
Rings, ideals, prime ideals, primary ideals, pefinition
2-absorbing ideals, maximal ideals,
guotient rings, quotient fields, prime Examples
elements, irreducible elements, product of

Proofs

rings, localized rings, fields
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MTH 532 Abstract Algebra II, 2020, 1-1 © copyright Ayman Badawi 2020

U(n) is cyclic? , MTH 532, Spring 2020

Ayman Badawi

n > 3. Then U(n) is cyclic iff n = 4, n = p™, or n = 2p™ for some odd prime p and integer m > 1.

Suppose that n = 4 or n = p™, or n = 2p™ for some odd prime p and integer m > 1. We show that U (n) is cyclic.

If n =4,U(4) ~ Z, is cyclic. If n = p™ for some odd prime p and integer m > 1, then ¢(n) = (p — 1)p™~!. Hence
U(n) & zp—1 @ zpm—1. Since ged(p— 1,p™ ') = 1, U(n) is cyclic. If n = 2p™ for some odd prime p and integer m > 1,
. then ¢(n) = (p — 1)p™~". Hence U(n) = z,—1 ® z,m-1. Since ged(p — 1,p™ ') = 1, U(n) is cyclic.

Now assume that n # 4 and n # p™, and n = 2p™ for some odd prime p and integer m > 1. We show that U (n) is
not cyclic.

Case 1. Asuume n = 2™, m > 3. Then U(n) ~ 2 ® zym-2. Since ged(2,2™~2) # 1, U(n) is not cyclic.

Case 2. Assume n = 2kp™, p is odd prime, k > 2, and m > 1. Then ¢(n) = 2™ (p — 1)p™~!. Thus U(n) =~ D =
2 ® Zym—2 ® 2p_1 D Zym—1. Now H = 2 ® {0} @ 2,1 @ {0} is a subgroup of D. Since ged(2,p — 1) # 1, H is not a
cyclic subgroup of D. Thus D is not not cyclic (we know every subgroup of a cyclic group is cyclic). Hence U(n) is not
cyclic.

Case 3. Assume n = 2p''ph2...pkm where m > 2, pi, ..., p,, distinct prime odd integers. Then ¢(n) = (p; —
l)pklfl(pz — l)plzcz_l....(pm — l)p%"fl. Thus U(n) ~D = Z(p—1) D 2y =1 D 2(p,—1) D Zp;cz—l D D2, -1) D Z k=1
(note m > 2). Now H = z,,_1 & {0} & z,,—1 & {0} & ... ® {0} is a subgroup of D. Since ged(p; — 1,po — 1) # 1, H is
not a cyclic subgroup of D. Thus D is not not cyclic. Hence U(n) is not cyclic.

Case 4. Assume n = 2Fp}'ph?...pkm, where m > 2 and k > 2, py,..., p, distinct prime odd integers. Then
d(n) =27 p; — )p"Hpy — D)ph2 (D — Dplr =1 Thus U(n) =~ D = 23 @ 2pm— @ 2(p,—1) B 2pk1 -1 © 2(p,—1) @
2t @ oo @ 2(p,, 1) B 2 (note m,k > 2). Now H = {0} {0} & 2,1 {0} & 2p,_1 {0} & ... £ {0} is a
subgroup of D. Since ged(p; — 1,p2 — 1) # 1, H is not a cyclic subgroup of D. Thus D is not not cyclic. Hence U(n) is
not cyclic.

Case 5. Assume 7 is odd. Then n = pi'ph? - .- pkm, where m > 2, py, ..., p,, distinct prime odd integers. Then ¢(n) =
(pl — 1)pk1fl(p2f l)p;@*l,...(pmf 1)plﬁn’m71, Thus U(TL) ~D= Z(pl_l)@zpkl—l @Z(pz_w@zp;cz—l @....@Z(pm_l)@zpfnmfl
(note m > 2). Now H = z,,_1 & {0} & z,,—1 & {0} & ... & {0} is a subgroup of D. Since ged(p; — 1,po — 1) # 1, H is
not a cyclic subgroup of D. Thus D is not not cyclic. Hence U(n) is not cyclic.

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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Useful Information for Second Exam, Final, Common Knowledge , MTH 532,
Spring 2020

Ayman Badawi

Fact 1. Let A be a commutative ring with 1 and f(X) € A[X]. Then f(X) € Nil(A[X]) if and only if the coefficients
of f(X) are nilpotent elements of A.

Example: f(X) = 3X° 4+ 6X? + 12X + 24 is a nilpotent element of the polynomial ring Z»7[X] (i.e., f(X) €
Nil(Zx[X]), ie., there exists a positive integer n such that f(X)™ = 0 in Z»;[X] since the coefficients of f(z) are
nilpotent elements of Z»7. (note that 3,6, 12,24 € Nil(Zy7))

Example : f(X) = 5X> + 2z + 4 is not a nilpotent element of Zg[X] since 5 & Nil(Zs).

Fact 2. Let A be a commutative ring with 1 and f(X) = a, X" + --- + a1 X + a9 € A[X]. Then f(X) € U(A[X]) if
and only if a,, ...,a; € Nil(A) and ag € U(A).

Example: f(X) = 3X3 +6X?+ 12X + 7 is a unit (invertible) element of the polynomial ring Z»7[X] (i.e., f(X) €
U(Zy[X]), i.e., there exists a polynomial k(X ) € Zy;[X] such that f(X)k(X) = 1 in Zy;[X] since 3, 6, 12 are nilpotent
elements of Z,7 and the constant term ag = 7 € U(Zy7).

Example : f(X) = 2X3 + 5X + 4 is not a unit (invertible) element of Z3[X|] since 5 ¢ Nil(Zg) and the constant
term ag =4 & U(Zs).

Example : f(X) =2X? + 5X + 3 is not a unit (invertible) element of Zg[X| since 5 ¢ Nil(Zs).

Fact 3. (Surprising result!) Let A be a commutative ring with 1 and f(X) = a, X" + -+ + a1 X + ap € A[X]. Then
f(X) € Z(A[X]) if and only if a,,, ...,a; € Z(A) and bf(X) = 0 for some nonzero b € Z(A).

Example: f(X) = 3X? + 2X? + 3X + 2 is not a zero-divisor element of the polynomial ring Zs[X] (i.e., f(X) ¢
Z(Zs[ X)), i.e., there is no nonzero-polynomial k(X) € Z(Zs[X] such that f(X)k(X) = 0 in Zs[X]. Why? because
Z(Zs) ={0,2,3}, but bf(X) # 0 for every nonzero b € Z(Zs).

Example : f(X) = 10X3 + 20X + 10 is a zero-divisor element of the polynomial ring Z30[X] (i.e., f(X) €
Z(Z3[X]), i.e., there is a nonzero-polynomial k(X) € Z(Z3[X] such that f(X)k(X) = 0in Z3o[X]. Why? because
3 € Z(Z3y) and 3f(X) = 0.

Fact 4. Let A be a commutative ring with 1. Then Nil(A) is a proper ideal of A.

Trivial: Let a,b € Nil(A). Then o™ = b™ = 0 for some positive integers n, m. Hence by EXPANSION, we have
(a —b)"™™ = 0 Thus a — b € Nil(A). Also, (ab)™ = a™b™ = a™.0 = 0. Hence ab € Nil(A). Thus Nil(A) is a
subring of A. Now let f € A. Then (fa)™ = f™a™ = f™.0 = 0. Hence fa € Nil(A). Thus Nil(A) is a proper ideal of
A (note Nil(R)NU(A) = 0).

Fact 5. (Nice result on how to find nilpotent elements in Z,,). Write n = p{"'p;? - - - p;* (of course py, ..., pj, are distinct
prime integers) and let m = pyp,---px. Then Nil(Z,) = (m) = mZ, = span{m} is the ideal of Z,, generated by
m € Z,.

Example: Let A = Z75. Thenn = 75 = 3.5? and m = 3.5 = 15. Hence Nil(A) = (15) = 154 = span{15} =
{0, 15,30, 45,60}.

Example : Let A = Z3y. Thenn = 30 = 2.3.5and m = 2.3.5 = 0 € Z3y. Hence Nil(A) = (0) = 0A = span{0} =

{0}
Fact 6. (Recall (from lecture) this is nice result on how to find prime ideals and maximal ideal in Z,). Write
n = p{'py?---p,* (of course py, ..., py are distinct prime integers). Let A = Z,,. Then a proper ideal I of A is a prime

ideal of A if and only I is a maximal ideal of A if and only if I = (p;) = p; A for some 1 <4 < k.

Example: Let A = Z;5. Then n = 75 = 3.5%. Hence 34 = {0,3,6,9,12,...,72} and 5A = {0, 5, 10, ..., 70} are the
only prime (maximal) ideals of A.

Example : Let A = Z3p. Then n = 30 = 2.3.5. Hence 24 = {0,2,4,6,12,...,28}, 34 = {0,3,6,...,27}, and
5A =1{0,5,10,...,25} are the only prime (maximal) ideals of A.

Fact 7. (Recall (from lecture) this is a nice result, it is called the Chinese remainder Theorem): Let A be a com-
mutative ring with 1 and I, I, ..., I;; are proper ideals of A that are relatively prime ideals of A (i.e., I; + I; = A for
every i # j, 1 <1i,j < k, some authors call such ideals co-prime ideals). Let ' = I, N I, N --- N I. Then A/F is ring-
isomorphicto A/} ® A/, ®---®A/I. In particular, if F' = {0}, then A is ring-isomorphic to A/} B A/, ®- - - B A/I}.

Fact 8. (Nice result, make sure that you know it): Let B, C' be commutative rings with 1 and A = B & C. Let F
be a proper ideal of A. Then F' = I} @ I, for some ideal I; of B and some ideal I, of C. Furthermore (nice), A/F is
ring-isomorphic to B/I; @ C'/I,. Furthermore (from Lecture):

(a) F is a prime ideal of A if and only if either F' = I & C for some prime ideal I of B or F' = B & J for some prime
ideal J of C.

(b) F'is a maximal ideal of A if and only if either F' = I & C for some maximal ideal I of B or ' = B & J for some
maximal ideal J of C.
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Fact 9. Let A be a commutative ring with 1 and I be a proper ideals of A. Then [ is a prime ideal of A if and only if
A — I is a multiplicative subset of A (recall from lecture that what I call multiplicative subset of A, some authors call it
multiplicatively closed subset of A). The proof is so trivial (just use definitions)

REMARKS Let A be a commutative ring with 1.

(a) Note that every subring of A is a multiplicative subset of A.

(b) Note that every subgroup of U(A) is a multiplicative subset of A

(c) Chose an element a € A. Then D = {a,a?,a?,...,a",...} = {a™ | m is a positive integer } is a multiplicative
subset of A.

d) an ideal I of A is proper if and only if 1 ¢ [ Easy: Suppose [ is an ideal and 1 ¢ I. We claim that [ is proper.
Deny. Hence I N U(A) # . Suppose there is a unit (invertible) element u € I. Since I is an ideal of Aand u~! € 4,
we have 1 = v~ 'u € I, a contradiction.

e) A proper ideal of T of Z is prime if and only if I is a maximal ideal of Z if and only if I = pZ = (p) for some prime
integer p of Z. Thus the prime ideals of Z are maximal ideals of Z and they are of the form pZ for some prime integer
p. (Proof is trivial : We know that the proper ideals of Z has the form nZ for some positive integer n. Now assume that
nZ is a prime ideal of Z. Hence Z/nZ is an integral domain. But Z/nZ is Z,,. Thus Z,, is a finite integral domain and
hence a field. Thus n must be a prime number and nZ must be a maximal ideal.

f) A commutative ring A with 1 is called Noetherian if every proper ideal of R is finitely generated., i.e. if I is a
proper ideal of A, then I = span{ay,...,a,} over A for some elements ay,...,a, € I, i.e., if z € I, then there are
bi,...,bn, € A such that x = bja; + ... + bya,. Interesting result about Noetherian rings : If A is Noetherian, then
Alxy, ..., zy] is Noetherian (i.e., the polynomial ring with n variables is Noetherian)

g) Let A be a commutative ring with 1. Then the radical of A (denoted by Rad(A)) = Intersection of ALL prime
ideals of A. It is Known, that the RADICAL of A = Nil(A). (the proof relies on the fact that I proved in the class if I is a
proper ideal of A and S is a multiplicative system such that I NS = @ then there is a prime ideal P of A such that I C P
and PNS =10

h). Let A be a commutative ring with 1. Jacobson radical of A (denoted by J(A)) is the intersection of all MAXIMAL
ideals of A. Nice result about the Jacobson Radical of A : For every x € J(A), z +u € U(A) for every u € U(A). Also
Rad(A) C J(A) Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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Useful Information about FIELDS and Galois Extension, Common Knowledge ,

MTH 532, Spring 2020

Ayman Badawi

1 Q, fields of characteristic 0

QUESTION 1. Assume that [Q(«) : Q] = n and f(z) € Q[z] is a monic polynomial of degree n such that f(a) = 0.
Prove that f(z) is an irreducible polynomial over Q. In fact, prove that f(z) = Irr(«, Q).

Solution: Let k(z) = Irr(«, Q). Since [Q(a) : Q] = n, we know that deg(k(z)) = n (note that k(x) is the unique
monic irreducible polynomial over Q such that k(«) = 0). Since f(«) = 0, we know (class notes) that k(z)|f(z).
Since f(z) and k(x) are monic and deg(f(x)) = deg(k(z)) = n, we conclude that k(z) = f(z).

QUESTION 2. Let o = ¢’ and E = Q()).

®

(i)

(iii)

(iv)

)

(vi)

Find [E : Q]

Solution: By last lecture, note that F is the 10th cyclotomic extension field of () (i.e, E is the splitting field of
the polynomial '° — 1, i.e. INSIDE E, we have 2! — 1 = (z — a)(z — a?)....(x — a™). By class notes, we know
B Q) = 6(10) = 4,

What are the roots of Irr(a, @Q)? Then find Irr(a, @) written in the general form.

Solution: Let k(z) = Irr(a, Q). Then deg(k(x)) = ¢(10) = 4 and by class notes (last lecture), the roots of
k(z) are the o*’s, where gcd(k,n) = 1,1 < k < 10. Hence the roots are a; = o, a; = o3, a3 = o’ and
as = o°. Hence k(z) = (z — a1)(z — a2) (v — a3)(z — a4). Now how to find k(=) written in the general form
(note deg(k) = 4).

2mi

Note that z' — 1 = (2° — 1)(2° + 1). Let h(z) = 2° + 1. Then it is clear that h(a) =’ + 1 =[e 0 >+ 1 =
e™+1 = —1+1 = 0. Thus we know k(z)|h(z). Now observe, we know z° + 1 = (z+1)(2* — 23 + 22—z + 1).
Letd(z) = 2*— 23+ 2% —2+1. Then h(x) = 2° +1 = (z+ 1)d(x). Since h(a) = 0, we conclude that d(a) = 0.

Since deg(d(x)) = deg(k(z)) = 4 and d(a) = k() = 0, by Question 1 we conclude that k(z) = d(z) =
R i S L B

Find a basis, B, for E over Q. Then Write w = o’ + 4a® + 7o in terms of the elements in the basis B.

Solution: Since [E : Q] = 4, by class notes we know B = {1,a,a? o} is a basis of E over Q, i.e., if b € E,
then b = ag + a0 + ara? + aza? for some qy, ..., a3 € Q.

Now remember from the lecture, how we got the basis B: Let k(z) = Irr(a,Q) as in (ii). Then k(z) =
2 — 23+ 22 —2+ 1 and M = (k(x)) is a maximal ideal of Q[X] and L = Q[z]/M is a field. Then by
mapping = + M — «, we concluded that L is field-isomorphic to E. Since {1 + M,z + M,z*> + M, x> + M}
is a basis for L over Q and = + M — «, we conclude that B = {1,a,a?, o’} is a basis of E over Q. Hence if
a € L, then we know that ¢ = ag + a1z + apz? + a3z® + M and thus ¢ = ag + a1z + axz? + a32® + M in L
—b=ag+ aa+ axa® + aza’ in E. Hence w = o’ +4a® +7a° in E & 27 + 42° + 72° + M in L. But we
know how to find 27 + 42% + 725 + M in L. Recall we divide 27 + 426 + 72° by k(z) = 2* — 23 + 22 — 2z + 1
(high school math (division a polynomial by another polynomial)) and you find the remainder r(z). I did the
calculation, I got 7(z) = —4x — 7 (if I made a mistake, then just correct it, I do not need to know about it!).
Hence 27 + 42° +72° + M = —42z — 7+ M in L. Hence w = o’ + 4a° + 7° = —4a — 7 in E (if this is not
beautiful, then nothing is beautiful!). (see the below Question...to see more beauty )

Let a € E. Find all possibilities of deg(Irr(a, Q)).

Solution: From class notes deg(Irr(a,Q)) is a factor of [E : Q]. Why? Let a« € E. Then Q(a) is a field
between  and E. Hence [E£ : Q| = [E : Q(a)][Q(a) : Q] and we know that [Q(a) : Q] = deg(Irr(a,Q)). Thus
deg(Irr(a,Q)) is a factor of 4 (since [E : Q] = 4). Thus deg(Irr(a, Q)) = 1 or deg(Irr(a, Q)) = 2 or deg(Irr(a,
Q)) = 4. Note that if deg((Irr(a, Q)) = 1, thena € Q and Irr(a,Q) =z — a.

Is F a Galois extension field of Q?

Solution: Yes. Why? because [E : Q)] is a finite number. Since F is the splitting field of »'° — 1 (in particular,
E is the splitting field of k(z) = Irr(a, Q) = 2* — 2* + 22 — 2 + 1), then E is a normal EXTENSION of Q
(remember that E is a normal extension of Q means that for each a € F, I'rr(a, Q) has all its roots inside £,
i.e., Irr(a,Q) = (x — a1)(x — az)...(x — ay) for some & that is a factor of 4 ( note that we just proved that if
a inQ@), then Irr(a, Q) has degree 2 or 4 and thus it has 2 distinct roots or 4 distinct roots).

Find all elements of the Galois group Aut(E/Q). How many subgroups does Aut(E/Q) have? Find them all.

Solution: Since E is a Galois extension of ), we know that |Aut(E/Q)| = [E : Q] = 4. Since E is the
10th cyclotomic extension of ), by class notes we know that Aut(F/Q) is group-isomorphic to U(10). Thus
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[Aut(E/Q)| = [E : Q] = |U(10)| = ¢(10) = 4. Nowlet f € Aut(E/Q). Then f : E — FE'is a field isomorphism
such that f(c) = c for every c € Q (i.e., f is one to one, f is onto, f(a + b) = f(a) + f(b) and f(ab) = f(a)f(b)).

To construct these function, observe that if « € F is a root of Irr(a, Q), then f(a) must be a root of Irr(a, Q)
(Why? because f is an isomorphism from E to E). Since each each element in Z is a linear combination of 1,
a, a?,0°, we conclude that f can be determined completely if we know what f(a) maps to . For example if
f(a) = b, then f(ap+ aja + aa® + aza®) = ag + a1b + axb? + a3b’. Now what are the choices of f(a)? Since
f is an isomorphism from E to E, f(«) must be a root of Ir7(a, Q) = k(z) = 2* — 2° + 2> — x + 1. Now we

know what to do: From part II, the roots of of k() are a, a®,a’, a’.

Thus here are all elements of Aut(E/Q): f; : E — F such that f(«) = « (identity map), f, : £ — E such
that f,(a) = o3, f; : E — E such that f3(a) = o’, and f; : E — F such that f4(a) = o°. If you want, you
can write o, a’, o’ as linear combination of 1, o, a?, and o (as I did in part III, for example o = —1), but
here we do not need to. Now since |Aut(F/Q)| = |U(8)| = 4 and U(10) is cyclic (Why? see class notes, 10
= (2)(5)), we know that the group Aut(F/Q) is isomorphic to Z,. Let us calculate the order of each element
in Aut(E/Q). |f1| = 1 (note f is the identity map). |f,| = 4. Why? note that Aut(F/Q) is a group under
composition. Hence we need to find the smallest integer m such that f]" = f, o fro0... 0 fo(mtimes) = fi.
But here f, is determined by f>(a) = o’. Thus we need to find m such that [f,(a)]™ = a. Now [f>(a)]> =
L(f2(a)) = f(a?) = [f2(a)]? = (&) = o® # a. Since |f,| # 2 and |f,| must be a factor of 4 (lagrange
Theorem), we conclude that | f,| = 4. Important observatlon, in general, if f(a) = c* and the operation is
composition, then [f(a)]™ = (f 0 o... of )(a)(mtimes) = c*™. So, to see that [f,(a)]* = « (the identity map),
[/2(2)]* = a3 = a’l. From class notes, observe that the set of all roots of the polynomial z'° — 1 under
normal multiplication is a cyclic group and « generates such groups, i.e., || = 10. Hence o' = o8« and
since o'° = 1, we conclude o’ = 1. Thus o®' = a.

Hence we have Exactly one subgroup of order 1, G; = {f,}, we have EXACTLY one subgroup of order 2,
Gy = {f1, s} (note that [f4()]> = o® = 8! = « ), and exactly one subgroup of order 4, G5 = Aut(E/Q) =
{f17f27 f37 f4} =< f2 >.

(vii) Find all distinct fields between @ and F (including Q, and E). For each subfield L between Q and E find [L : Q).

Solution: By last lecture, Galois Theorem tell us that number of all fields between Q and E (including @) and
E) is exactly the number of all subgroups of Aut(E/Q) (including the identity map, and Aut(E/Q)). From
Part VI, Aut(E/Q) has exactly 3 subgroups. Hence there are exactly 3 fields between ) and E (including
Q@ and E). Hence there is exactly one field L between Q and E such that . # @ and L # E. So how to
find L. Recall from last lecture, Galois Theorem tell us that each subgroup of Aut(E/Q) fix one and only
one field between Q and £. What do we mean with "fix one and only one field between Q and E? here is
the meaning (read it CAREFULLY ): If G is a subgroup of Aut(E/Q), then there is a largest field , say L,
between Q and E such that for every (read carefully for every) f € G, we have f(i) = i for every i € L and
|G| = |Aut(E/L)| = [E : L].

So from part 1. Q is the fixed field that corresponds to the group G; = Aut(E/Q) = {f1, f2, 3, fa}. E
is the fixed field that corresponds to the group G, = {f;} = Aut(E/E). Now we need to find a field L
that is fixed by G, = {f1, f4}, i.e, we need to find the largest field L between @ and FE such that for every
i € L, we have f1(i) = i and f4(i) = i. Note that in our case, L = Q(v) for some v € E — Q. So how
to find v. Here is a technique that work, here f;(a) = a and f4(a) = o°. Take v = a + o’. Check that
v ¢ Q. HOW can I CHECK? write o in terms of 1, o, o?, and o’ as I did in part iii. My calculation,
showed that o + o° ¢ Q. OBSERVE that a3a’ + axa® + ajo + a9 € Q for some a3, ...,a9p € Q if and
only if oy € Q, a3 = ay = a; = 0. For if aza® + ay0® + a1 + ag = a4 € Q, then consider the polynomial
f(z) = a3’ + a2 +ayz+ag—as. Then f(a) = 0. Hence we know that k(x ) =z —1’3+.L —z+1=1Irr(a,Q)
must divide f(z), impossible since deg(k) = 4 and deg(f) < 3. So let v =« + o’. Then fi(v) = v and
fa(v) = fala + %) = fa(a) + f1(®) = a® + fs(a)’ = + (&°)° = + ¥ =’ + a = v (since o® = 1),
Thus G, fixed the field Q(v). We know by Galois Theorem that |G2\ =[E: Q( )]. Since |G»| = 2, we have

[E : Q)] = 2. To find [Q(v) : Q. We know [E : Q] = [E : Q(v)][Q(v) : Q]. Since [E : Q] = 4 and
[E: Q(v)] = 2, we conclude that [Q(v) : Q] = 2. Thus note that I rr(v, Q) is a monic irreducible polynomial
of degree 2 over Q.

Fact 1. Assume that F is a Galois extension of () and L is a field between Q and E. If L is not a normal extension of @,
then the group Aut(FE/Q) is not abelian group! (waw waw !)

QUESTION 3. Let E be a splitting field of f(z) = 2’ — 12, by class notes E = Q(ay, ..., a7) where ay, ..., a; are the
roots of f(z). Show that Aut(F/Q) is a non-abelian group.

Solution: We know every splitting field of a polynomial over () is a Galois extension of (). By Einstein result,
let p = 3, then p| — 12 and 3% = 9 { —12. Thus f(z) is IRREDUCIBLE. Clearly a« = v/12 is a root of f(x). Thus
L = Q(a) is a field between Q and F and [L : Q] = 7. Clearly, B = {1,a,d?, ...,a®} is a basis of L over ). Hence all
elements in L are real numbers and i ¢ L. Since f(z) has roots that are not real, f(z) does not SPLIT completely
inside L. Hence L is not a normal extension of (). Thus by the FACT, Aut(F/Q) is not abelian.

QUESTION 4. Let E = Q(v/2,v/2). Find [E : Q]. Prove that E is not a Galois extension of Q. Let a € E — Q. Find
all possibilities of degree(Irr(a,Q)).
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Solution: This is how you view E. Let L = Q(v/2), and H = Q(v/2). Then E = L(v/2) = H(V/2).

Now, it is clear that Irr(v/2,Q) = 2> — 2 and Irr(v2,Q) = 2> — 2. Now 2° — 2 has no roots in L. Thus
2> — 2 stays irreducible over L, i.e., I77(v/2, L) = 2 — 2 (note that Ir(v/2, L) = f(z) is the unique irreducible
polynomial with coefficient from L such that f(v/2) = 0). Thus [E = L(v2) : L = Q(v/2)] = 3. It s clear that
[L=Q(V2):Q]=2.Hence [E:Q|=[E=L(V2): LI[L=Q(V2):Q] = (3)(2) =6.

Also note that [E : Q] = [E : H|[H : Q] = (2)(3) = 6. We show that E over () is not a normal Extension, and
hence F is not a Galois Extension of ). Choose ¢ = v/2. Then a € E. I'rr(a,Q) = 2> — 2. Since all elements of F
are real numbers and 2> — 2 has 2 non-real roots, z° — 2 doest not SPLIT over FE (i.e., 2> — 2 cannot completely
factored as product of linear factors over I, i.e, 2> — 2 does not have all its roots inside £). Hence E over Q is not
a normal Extension, and thus F is not a Galois extension of ().

Now let a € E — Q. Then we know deg(Irr(a,Q)) must be a factor of [F : Q] = 6. Thus all possibilities of
degree(Irr(a,Q)) are 2, 3, 6.

Fact 2 (NICE! ). Def: F' C E (of course F and E are fields) and £ = F(b) for some b € E. Then we say E is a simple
extension of F'. Let E = Q(ay, aa, ..., a) such that [E' : Q] < oco. Then there exist b € F such that E = Q(b). So, in
general if F is a field extension of @ and [E : Q)] is finite number, then £ = Q(b) for some b € E, i.e., E is a simple
extension of Q).

QUESTION 5. Let E be the field in Question 4, i.e., E = Q(v/2,v/2). By the fact above find b € E such that E = Q(b).
Then find Irr (b, Q).

Solution: You will like this technique!. Here is the idea, recall from basic linear algebra. If K is a subspace of
V and dim(V) = dim(K), then K = V. Claim: b = v/2 + v/2. We show E = Q(b). Since b € F, Q(b) is a subspace
of E. If we show that [Q(b) : Q] = 6 = [E : Q], then E = Q(b). Here is the Technique! we find f(z) = Irr(b, Q) by
""back ward' method.
Set (*)
r=V2+V2

Use minimum calculations on (x) in order to eliminate all radical. Then we get a polynomial with coefficients
in Q. This polynomial will be 77 (b, Q). ONE WAY :

z—V2=v2
(x—\@)3=2

2 —3V22 P+ 65— V8 =2

Now move all radicals to the right side

2461 —2=3V222+V8

(2% 4 62 —2)* = (3V22? + V8)? = 18z* + 242? + 8

Thus all radicals are eliminated. Now we move the right side to the left, then we get our f(z) = Irr(b, Q) of
degree 6 such that f(b) = 0.

Irr(b,Q) = f(x) = (2° 4+ 62 —2)? — 182* — 242” — 8 € Q[z]

If you want you can simplify f(z) but here there is no need. It is clear that deg(f) = 6 and f(b) = 0. Thus

[Q() : Q] = 6.
Since [F: Q] = [Q(b) : Q] = 6 and Q(b) "lives" inside F, we conclude that £ = Q(b).

QUESTION 6.Let o = V3 and b = v/7 and E = Q(a,b). Show that Q(a,b) is a Galois extension of Q. Find all
subgroups of Aut(E/Q). For each subgroup H of Aut(E/Q), find the field that is fixed by H.

Solution: Recall from last lecture if £ = Q(ay, az, .., a;,) such that for every i, | < i < k, Irr(a;, Q) has all its
roots in E (i.e., I7r(a;, Q) splits in ), then E is a Galois extension of Q. Clearly, f,(z) = Irr(a,Q) = 2> — 3 and
fo(z) = Irr(b,Q) = x* — 7. Both polynomials split in £. Thus E is a Galois extension of ). By similar argument
as in Question 4, [E : Q] = 4. Hence Aut(E/Q) is a group with 4 elements. We know that every group with p’
elements for some prime p is abelian. As I stated in Question 2 (vi, and vii). If d is a root of a polynomial %(z) and
f € Aut(E/Q), then f(d) must be a root of k(x). Now a = /3, —a = —/3 are the roots of f,(z) = 2> —3,b = /7,
-b = - \/7 are the roots of f,(z) = x> — 7. Hence we can now state all elements of Aut(E/Q) (note again that if
h € Aut(F/Q) then h is a field-isomorphism from £ ONTO E such that /(c) = c for every c € Q.)

So let f1, f2, f5, fa : E — E be field isomorphisms (note all of them determined by mapping a root of f,(z) to a
root of f,(z) and a root of f;,(z) to a root of f,(z). Hence

fi(d) = d for every d € E (the identity map), f(a) = —a and f,(b) = b (note that « = /3 and b = V/7),
f3(a) = a and f5(b) = —b, f4(a) = —a and f4(b) = —b. Now since |Aut(E/Q)| = 4. Hence |f;)| = 2o0rd, i # 1.
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Note | fi| = 1 (f; is the identity map). It is clear that [f;(a)]> = fi(fi(a)) = a and [f;(b)]> = f:(fi(b)) = b for every
2 <4 < 4. Thus |f;| = 2 for every 2 < : < 4. Hence Aut(E/Q) is isomorphic to Z, x Z,. Thus we have exactly 5
subgroups of Aut(E/Q) (including { f,} and Aut(E/Q). The subgroups are

1) G; = {f1} and the corresponding fixed field is £ since f;(d) = d for every d € E and |Aut(E/E)| = |G| = 1.

2) G, = {f1, f»} and the corresponding fixed field is Q(b) since b ¢ @Q and f>(b) = b and |Aut(E/Q(b))| =
|Ga| =2 =[E: Q(b)].

3) G;3 = {f1, 3} and the corresponding fixed field is Q(a) since a ¢ @ and f3(a) = a and |Aut(E/Q(a))| =
|G3| =2=[E:Q(a)l.

4) G4 = {f1, f+} and the corresponding fixed field is Q(ab) = Q(/6) WHY? since f4(a) = —a and f4(b) = —b,
we have f;(ab) = fa(a)f4(b) = (—a)(—b) = aband |Aut(E/Q(ab))| = |G4] =2 = [E : Q(ab)].

5) Gs = Aut(E/Q) = {f1, f2, [3, f4} and the corresponding fixed field is Q and |Aut(E/Q)| = |Gs| =4 = [E :

Ql.
THUS ALL fields between Q and E are Q, Q(b), Q(a), Q(ab), E = Q(a,b).

QUESTION 7. Let E = Q(+/5, V/6). Find b € E such that Q(b) = E. Find Irr(b, Q).

Solution : By the methods as in Question 4, and 5. We conclude that [E : Q] = 4. (Note that Irr(\/5,Q) = z2—5
and Ir7(v/6,Q) = 2> — 6).
We claim : b = /5 + /6
So let
r=V5+V7

2 =1242V5V7
(22 —12)> = (2V5V7)? = 140

f(z) = Irr(b,Q) = (2% — 12)?> — 140 is an Irreducible monic polynomial of degree 4 such that f(b) = 0. Hence
[E:Q]=[Q(b): Q] =4and Q(b) = E.

I end this section with the following amazing result.

QUESTION 8. (nice Question). Prove that if f(z) is a polynomial of degree n > 1 in R[z] (the polynomial ring with
REAL coefficient, then f(z) = wuai(z)az(x)...ar(x) where u is a nonzero number in R and each a;(z) is a monic
irreducible polynomial of degree 1 or 2 (not necessarily that the a;(x)’s are distinct)

Solution: Since R is a field, we know R[z| is a UFD (Unique factorization domain). Hence we know that
f(z) = uai(z)az(z)...ax(x) where u is a nonzero number in R and each a;(z) is a monic irreducible polynomial
(not necessarily the a;(z)’s are distinct). The only thing we need to prove that each a;(x) is of degree 1 or 2. Now
f(z) = 2% + 1 is an irreducible polynomial over R and hence M = (f(x)) is a maximal ideal of R[z]. Thus R[z]/M
is a field. Note that £ = R[X]/M = {a+ bx + M|a,b € R} and [E : R] =2 and E = span{l + M,z + M} over R.
Since i is a root of the irreducible polynomial f(x), we know that F is field-isomorphic to R(:) by mapping x + M
to i. Hence R(7) is a field and [R(7) : R] = 2. Thus R(i) = span{1,i} over R. Hence R(i) = {a + bila,b € R} = C
( the set of all complex numbers). Since R(i) = C and [R(:) : R] = 2, we have [C' : R] = 2. Let a € C. Then the
degree of Irr(a, R) must be a factor of [C' : R] = 2. Hence for every a € C, the degree of Irr(a, R) is either 1 or 2,
i.e, R[] has no IRREDUCIBLE polynomials of degree > 3. Thus each q; () is a monic irreducible polynomial of
degree 1 or 2. Done

2 FINITE FIELDS, fields of characteristic p

Fact 3. (i) Every finite field, say F', has exactly p" elements for some prime integer p and a positive integer n and
Z, C F. Furthermore, if Fy, I are fields with same number of elements, then £y, F> are isomorphic as FIELD.
(Class notes)

(ii) Let F' be a finite field with p" elements. Then (F*,.) is a cyclic group with p™ — 1 elements. Hence z*" = z for
every z € F (i.e., 27" — z = 0 for every 2 € F) (class notes)

(iii) Let F be a finite field with p™ elements and m|n. Then F' has a UNIQUE subfield with p™ elements. Furthermore
if H is a subfield of F with p™ elements, then m/|n (note that [F' : Z,| = [F' : H|[H : Z,]) (class notes)

(iv) Let F be a finite field with p™ elements. Let f(z) be an IRREDUCIBLE monic polynomial of degree n in Z,[z],
then F is field-isomorphic to Z,[x]/(f(z)) (class notes).

(v) Let F be a field with p" elements, a € F. Then a is a root of an IRREDUCIBLE monic polynomial f(y) in Z,[y]
of degree m such that m|n. Furthermore, let H be the unique subfield of F with p™ elements, then f(y) splits com-
m—1

pletely inside H (i.e., f(y) has all its roots (exactly m distinct roots)) and the roots of f(y) are a, a?, av’,....aP
Also note that H = Z,(a) = span{l,a,a?,...,a™ "'} over Z,,.

(vi) Let f(y) be an irreducible monic polynomial over Z,, of degree m. Then f(y) splits completely inside a field with
p™ elements.

(vii) (in view of the above). Let f(y) be an irreducible monic polynomial over Z, of degree m. Then the splitting field
of Then f(y) splits completely inside a field with p™ elements.
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(viii) Let F be a finite field with p™ elements. Then F is a Galois extension of Z,,. Furthermore, Aut(F/Z,) is a cyclic
group with n elements. Hence |Aut(F/Z,)| = n, Aut(F/Z,) is group-isomorphic to Z,,, and |Aut(F'/Z,)| = n =
[F : Zy). [Aut(F/Z,) is cyclic, it is trivial, since F' has unique subfields of particular order and each subgroup of
Aut(F/Z,) FIXED a unique subfield of F!!)

(ix) THIS RESULT is clear and true for any field F' (finite or not). Assume that S; be the set of all roots of an
IRREDUCIBLE monic polynomial f(z), and S; be the set of all roots of an IRREDUCIBLE monic polynomial
h(z). If h(z) # f(x),then S; NS, =

(x) (Freshman Dream, class notes). Let F' be a finite field with p™ elements. Then for every integer £ > 1 and for every
a,beF, (a+ b)pk =a?" + "

QUESTION 9. Let P; be the set of all distinct irreducible monic polynomial of degree 5 over Z3. Find |P5| (i.e., HOW
MANY MONIC IRREDUCIBLE POLYNOMIALS of degree 5 in Z, [y| are there? )

Solution: Let f(y) € P;. By Fact(vi), f(y) has all its roots (exactly 5 distinct roots) inside a field 7' with 3°
elements. Let a € F. Then by fact (v) a is a root of a unique monic irreducible polynomial in Z;[y| of degree m
such that m|5. Hence Each element in F is a root of an Irreducible polynomial of degree 1 or 5 in Z3[y|. But Z3[y]
has exactly 3 irreducible monic polynomials of degree 1 (namely, y, y + 1, y + 2). Thus each element in /' — 73 is
a root of an irreducible monic polynomial of degree 5 in Z3[y]. Now |F — Z3| = 3°> — 3. By Fact (ix) two distinct
polynomials in P; have no COMMON root (also note that each polynomial in P; has exactly 5 distinct roots in
F — 7Z3). Hence | P3| = 3%3 (nice!)

QUESTION 10. Let P be the set of all distinct irreducible monic polynomial of degree 6 over Z,. Find | Pg|

Solution: Again, let f(y) € Ps. By Fact(vi), f(y) has all its roots (exactly 6 distinct roots) inside a field F
with 2° elements. Let a € F. Then by fact (v) a is a root of a unique monic irreducible polynomial in Z;|y] of
degree m such that m|6. Hence Each element in F' is a root of an Irreducible polynomial of degree 1 or 2 or 3
or 6 in Z,[y]. Thus let P; be the set of all distinct irreducible monic polynomial of degree 1 over Z,, let P, be
the set of all distinct irreducible monic polynomial of degree 2 over 7, let P; be the set of all distinct irreducible
monic polynomial of degree 3 over Z,, H, be the unique subfield of F' with 2> elements, and H; is the unique
subfield of F with 23 elements. Now by fact (v) each polynomial in P, has all its roots (exactly 2 distinct roots)
in the subfield H; of I' and each polynomial in P; has all its roots in the subfield H; of F'. Thus each element in
D = F — (H3 U H;) is a root of an irreducible monic polynomial of degree 6 in Z,[y| (note that 7, is inside every
finite finite with 2" elements, thus if « € D, then d ¢ 2, in fact H3 N H, = Z,). Now we calculate |F" — (H3 U H,|.
First |H, U H3| = |Hy| + |H3| — |[Hy N H3| =23 + 2% — 2 = 10. Thus |F — (H3 U H)| = 2° — 10 = 54. By Fact (ix)
two distinct polynomials in P; have no COMMON root (also note that each polynomial in P has exactly 6 distinct
roots in F' — (H, U H3)). Hence | Ps| = 54/6 = 9 (nice!)

QUESTION 11. Let f(y) = > +y+ 1 € Z[y]. Show that f(y) is irreducible over Z,. Find a splitting field of f(y) and
write it as a product of linear factors.

Solution: Since deg(f) = 3, to show that f(y) is irreducible, it suffices to show that f(y) has no roots in
Z,. Thus since f(0) # 0 and f(1) # 0, f(y) is irreducible over Z,. We know that the splitting field of f(y)
is a field with 23 elements. Now M = (f(x)) = (2 + x + 1) is a maximal ideal of Z,[z] and F' = Z,[z]/M is
a field with 2° elements and F = span{l + M,z + M, x> + M} over Z,. Now we "view'" f(y) inside F[y] as
fr(y) = 1+ M)y*+ (1 + M)y + (1 + M) (class notes). We know (class notes) that = + M is a root of f>(y). Hence
by Fact (v), a; = x + M, ap = 2> + M, and a3 = x* + M are all the roots of f(y) inside F. Note that if you want
then you reduce z* + M to ag + ajz + ax2z*> + M (by dividing z* by 2 + = + 1 and taking the remainder). Thus
£) = (14 M)y —a)(1+ M)y — a)((1 + M)y - as).

QUESTION 12. Let F be a field with 5° elements. Find all elements of Aut(F/Zs). Find all subgroups of Aut(F/Zs).
For each subgroup H of Aut(F/Zs) find the corresponding field inside F' that is FIXED by H .

Solution: First |Aut(F/Zs)| = [F : Zs] = 6 and Aut(F/Zs) is cyclic with 6 elements (isomorphic to Zc) (see
Fact (viii)). We know that (F, *) is a cyclic group with 5° — 1. Thus (F*,.) =< a; > for some a; € F such that
lai|. = 5% — 1. Let f(y) be a monic irreducible polynomial over Zs such that f(a;) = 0. Then it is clear that
deg(f) = 6. Then f(y) has all its roots inside F. Say a; € F is a root of f(y). Then we know that all roots
of f(y) are ay,al a3, a;5% a,5° by Fact (v). Let f € Aut(F/Zs) (i.e., f is a field-isomorphism from F ONTO
F and it fixes Z,, i.e., f(a) = a for every a € Z,). Also note that F = span{l,a,a? a* a* a°} over Zs. Then
as I discussed in Question 2(vi) f can be determined by mapping a root of f(y) to a root of f(y). Hence let
f1, f2, f3, fa, 5, f6 - F — F be field-isomorphism that fixed Z,. Then the elements of Aut(F'/Zs) are:

fi(b) = b for every b € F (the identity map), f>(a;) = aj, f3(a1) = a?z, fa(ay) = af, fs(ay) = aT and
fo(a1) = a?s. We know Aut(F/Zs) is cyclic. Hence we will find a generator, i.e., at least one of the f; has order 6
(under composition). Now f; (i.e., f2(a1) = a’f ) is always such generator. Note that |a;| = 56— 1. and a?ﬁ = a7 and
6 is the least positive integer such that a;5° = a;. Hence clearly that f; is a generator of Aut(F/Zs). For [f>(a)]®
(composition f, 6 times) = a?ﬁ = a. Thus Aut(F/Zs) =< f, >. Since Aut(F/Zs) is cyclic with 6 elements,
Aut(F/Zs) has exactly one cyclic subgroup of order 1, 2, 3, 6. Since |f,| = 6. Then we know |[f,]?| = |f3| =
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6/gcd(2,6) = 3, [[f2] = |fsl = 6/gcd(3,6) = 2, |[f2)*] = |fs| = 6/9ed(4,6) = 3, |[]’| = 6/ged(5,6) = 6.
Let H,, H; be the unique cyclic subgroups of Aut(F/Zs) of order 2 and 3 respectively. Then H, = {fi, f4} and
H; = {f1, f3, fs}. Thus here are the subgroups:

1) H; = {f1} and the corresponding fixed field is F since f|(d) = d for every d € E and |Aut(E/E)| = |G| = 1.

2) H, = {f1, fa}. Let K; be the field inside F that is fixed by each function in H,. We know by Galois Theorem,
[F: K] = |H,| = 2. Since [F : Zs| = [F : K|][K, : Zs| , we have 6 = 2[K : Zs| Thus [K, : Zs| = 3. Hence K| is
the unique subfield of ' with 5° elements.

3) Hyx = {f1, f5, fs}. Let K, be the field inside F' that is fixed by each function in H;. We know by Galois
Theorem, [F : K;] = |H;3| = 3. Since [F : Zs] = [F : K7][K, : Zs| , we have 6 = 3[K; : Zs5] Thus [K; : Zs]| = 2.
Hence K is the unique subfield of I’ with 5% elements.

4) Hy = Aut(F/Zs) =< fr >={f1, f», f3, f4, [5, [6} and Zs is the fixed field by each element in H,.
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QUESTION 1. Given D is a group with 48 elements. Assume that D has an element « € C(D) such that |a| = 16.
Prove that D is cyclic.

Solution

By Sylow’s Theorems, we must have a subgroup H with 3 elements. Let h € H — e. Then |h| = 3. Since
a € C(D), a*h = h*a. Since a x h = h * a and gcd(|a|,|h|) = ged(16,3) = 1, by a HW problem we conclude that
|lb=axh|=(16)(3) =48. Then D =< b >=<axh >.S0 D ~ Z;3.

QUESTION 2. Does U(54) have an element of order 18? If yes, how many elements of order 18 does U(54) have?
Solution
54 = (2)(3%). Hence ¢(54) = (2)(9). By a HW problem U (54) ~ Z, © Zy ~ Z3 (since gcd(2,9) = 1).
By class notes Z;5 has exactly ¢(18) = 6 distinct generators. Since U(54) ~ Z;3, we conclude that U(54) has
exactly 6 elements of order 18.

QUESTION 3. Let f : (Z13,+) — (U(50),.) be a group homomorphism such that f(1) # 1. Find f(0). Find Ker(f).

Solution

Note that 0 is the identity of Z;s and 1 is the identity of U(50) (U (50) = {a € Zso|gcd(a,50) = 1} is group under
multiplication). Since f is a group homomorphism, we know f(0) = 1.

We know Z3/Ker(f) =~ Range(f) < U(50). Now we know by HW problem that U (50) ~ Z.

Thus Z;3/Ker(f) ~ to a subgroup of Z,. Thus m = |zj3/ker f| = |Z3|/|Ker(f)| must be a factor of 18 and m
must be a factor of 20. Hence m = 1 or m = 2.

If m = 1, then Ker(f) = Z;3 and hence f(a) = 1 for every a € Z3, a contradiction since f(1) # 1. Thus m =
2.

m = 2 implies 2 = |Z3|/|Ker(f)| = 18/|Ker(f)|. Thus |Ker(f)| = 9. Since Zg is cyclic, Z;3 has unique
subgroup with 9 elements. Thus Ker(f) = {0,2,4,6,8,10,12,14,16} =< 2 >.

QUESTION 4. Let D be a group with 100 elements. Assume that D has a subgroup H with 20 elements such that
H C C(D). Prove that D is an abelian group.

Solution

We know C(D) is a normal subgroup of D. Let m = |C(D)|. We know that m|100. Since C(D) is a group
(subgroup of D) and H is a subgroup of D that lives inside C(D), we conclude that H is a subgroup of C (D).
Thus 20 | m. Since 20| and m|100, we conclude that m = 20 or m = 100. Assume m = 20. Then D/C(D) is a
cyclic group (since |D/C(D)| = 5). Hence D must be abelian by class notes, and thus C(D) = D and m = 100 a
contradiction. Hence m # 20. Thus m = 100, and therefore C(D) = D. Hence D is abelian.

QUESTION 5. (i) EXTRA CREDIT, but you need it to solve (ii). Let D be a finite group and H be a subgroup of
D such that [D : H] = m for some integer m (note that [D : H] = |D|/|H| = number of all distinct left cosets of
H). Prove that there is a group homomorphism , say f, from D into S,,, such Ker(f) C H.

Solution
Let L = {H,a, * H, ..., a,,, * H} be the set of all distinct left cosets of H.

H ar x H am *x H

Now define f : D — S,, such that f(a) =
axH axayxH ... axa;,x*

) for every a € D.

It is clear that f(a) is a bijective function for every a € D and thus f(a) € S,, for every a € D.
It is trivial to check that f(a x b) = f(a) o f(b) for every a,b € D. Thus f is a group homomorphism.

H H m* H H H .. an*xH
Let w € Ker(f). Then f(w) = @ . * - @ @m* ") Thus
wxH wxayxH ... w*xa,*xH H a+«H .. a,*xH

w+ H = H and hence w € H. Thus Ker(f) C H. Note that ker(f) = H only if H is a normal subgroup of D.
Thus by the first isomorphism theorem , we conclude that D/ Ker(f) ~ to a subgroup of S,,.

(ii) Let D be a finite simple group. Assume that H, K are subgroups of D such that [D : H| = p; and [D : K| = p; for
some prime integers pj, p». Prove that p; = p;. (nice result!)

Solution
Let n = |D|. First note that p;, p, are prime factors of |D| (i.e., p;|n and p,|n).

Case 1. Assume p; > p;. By part (i), there is a group homomorphism , say f, from D into S, such Ker(f) C
H. Thus D/ker(f) ~ to a subgroup of S, . Since H # D and ker(f) C H, we conclude that Ker(f) # D.
Since D is simple and Ker(f) # D, we conclude that ker(f) = {e¢} and hence D = to a subgroup of S,,.
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Note that |S,, | = p;!. Thus n|p,!. Since p,|n and n|p;!, we conclude that p;|p; !, which is impossible since p; is
PRIME and p, > p; (i.e., p; is not a PRIME factor of p,!). Thus p, # p;.

Case 2. Assume p; > p,. By similar argument as in case 1. By part (i), there is a group homomorphism , say
f,from D into S, such Ker(f) C K. Thus D/ker(f) ~ to a subgroup of S,,. Since K # D and ker(f) C K,
we conclude that Ker(f) # D. Since D is simple and Ker(f) # D, we conclude that ker(f) = {e} and hence
D ~ to a subgroup of S,,. Note that |S,,| = p,!. Thus n|p,!. Since p;|n and n|p,!, we conclude that p;|p,!,
which is impossible since p; is PRIME and p; > p, (i.e., p; is not a PRIME factor of p,!). Thus p; ;_4 D2e

Since p, # p; and p; # p,, we conclude that p; = p,.

QUESTION 6. Let D be a group with p™ elements, where p is a prime integer and m > 2. Prove that D has a normal
subgroup with p”~! elements. [Hint : Show that D must have a subgroup H with p™~! elements by class note result
(which result?). Then use class - lecture (result) to show that H is normal in H (which result?)].

Solution

By Sylow’s Theorems (lecture) D has a subgroup with p’ elements for every 1 < i < m. Hence D has a
subgroup H with p~! elements. Since [D : H| = p is the smallest prime factor of | D|, by class notes we conclude
that H is a normal subgroup of D.

QUESTION 7. Let D be a group with (52)(7?) elements. Prove that D is an abelian group. Find all non-isomorphic
groups with (5%)(7%) elements?

Solution

By Sylow’s Theorems, since n; = 1, we conclude that D has a normal subgroup H with 7> elements. Also,
since ns = 1, we conclude that D has a normal subgroup K with 5 elements. Since H N K = {e¢} and D = H x K,
by a HW problem we conclude that D ~ H @ K. Since |H| = 7%, we know (class notes) that [ is abelian and
thus H ~ Zy or H = Z; & Z;. Since |K| = 52, we know (class notes) that K is abelian and thus K ~ Z,s or
K = Z5 @ Zs. Thus D is isomorphic to one and only one of the following groups:

Z49 D Zps =~ Z(49)(25> is cyclic OR

Zao ® Zs ® Zs OR

77 ® Z7 ® Zrs OR

Z1® Z71® Zs D Zs.

QUESTION 8. Leta = (123) 0 (13425) € Se. Is a € Ag? Find |al.
Solution
a=(25) 0 (34)is a product of 2 2-cycles. Hence o € As. We know |a| = LCM|[2,2] = 2.

QUESTION 9. Let D be a group with 105 elements (105 = (3)(5)(7)).

(i) Prove that D is not simple. [Hint: Assume D is simple. How many elements of orders 7, 5, 3 does D have? is this
possible?
Solution
Assume that n; # 1 and ns # 1. Hence we conclude that n; = 15 and ns = 21. Thus by a HW problem, D
has exactly (15)(6) = 90 elements of order 7 and D has exactly (21)(4) = 84 elements of order 5. Thus D

must have at least 90 + 84 = 174 elements, which is impossible since | D| = 105. Hence n; = 1 or ns = 1. Thus
D has a normal subgroup with 7 elements or a normal subgroup with 5 elements. Thus D is not simple

(i) Assume that n; = 1 (i.e., D has exactly one sylow-7-subgroup). Prove that D has a normal cyclic subgroup with
35 elements [hint: Use a result from HW, use a result from class notes! and of course sylow’s theorems] .

Solution

Since n; = 1, we conclude that D has a normal subgroup H with 7 elements. Also, we know that D has a
subgroup K with 5 elements. By a HW problem F' = H x K is a subgroup of D. Since H N K = {e}, we
conclude that |F| = |H||K| = 35. Since [D : F] = 3 and 3 is the smallest prime factor of | D|, by class notes
we know that F' = H « K is a normal subgroup of D.

Now |F'| = (5)(7) and F is a group (subgroup of D), so we can apply sylow’s Theorems on F. It is clear that
n7 = 1 and ns = 1. Hence H, K are normal subgroups of F. Since H N K = {e}, by a HW problem we know
F~H&®K = 7Z;9 Zs ~ Z35. Hence I is cyclic. Thus F is a cyclic normal subgroup of D.

Submit your solution by 3 pm (as at most), March 28, 2020 .

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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QUESTION 1. (i) (3 points) Let A be a commutative ring with 1 and B be a commutative ring (B may not have "1").
Assume f : A — B is a ring-homomorphism. Prove that f(1) € Id(B) (i.e., show that f(1) is an idempotent
element of B).

Proof. Since f is a ring-homomorphism, we have f(1) = f(1.41) = f(1).gf(1) = f(1)2 Thus f(1) € Id(B).

(i) (3 points) Let A be a commutative ring with 1 and B = 27 (B is the set of all even integers). Assume f : A — B
is a ring-homomorphism. Prove that f(a) = 0 for every a € A.

Proof. By part (i), /(1) must be idempotent element of B = 2Z. Now Id(B) = {0}. Thus f(1) = 0. Hence
f(a) = f(a.al) = f(a).5f(1) = f(a).50 = 0 for every a € A.

(iii) (3 points) Let A, B be fields and f : A — B is a ring-homomorphism such that f(a) # 0 for some a € A. Prove
that f is injective (i.e., prove that f is one-to-one).

Proof. By part (i), (1 4) must be idempotent element of B. Since B is a field, it is clear that 7d(B) = {0p, 1 5}.
Hence f(14) =0p or f(14) = 15. Assume f(14) = 0. Then f(a) = f(a.al4) = f(a).5f(1) = f(a)..05 =0,
a contradiction since f(a) # Og. Thus f(14) = 15. We know Ker(f) is an ideal of A. Since A is a field and
Ker(f) is an ideal of A, we conclude that Ker(f) = Aor Ker(f) = {04}. If Ker(f) = A, then f(b) = 0p for
every b € A, which is a contradiction since f(14) = 15. Hence Ker(f) = {04}. Now assume that f(b) = f(c)
for some b,c € A. Thus f(b) +5 —f(c) = 0p. Since f is a ring-homomorphism, f(b +4 —c) = 0p. Since
Ker(f) ={04}, we conclude that b+ 4 —c = 04. Thus b = c.

(iv) (3 points) Let f : Zg — Zo be a ring-homomorphism. Prove that f(a) = O for every a € Z.

Proof. Again by part (i), f(1) must be idempotent element of Zy. By investigation, /d(Zy) = {0, 1}. Hence
f(1) = 0or f(1) = 1. Assume f(1) = 0. Then f(a) = f(a.1) = f(a).f(1) = f(a).0 = 0 for every
a € Zc and we are done. Hence assume that f(1) = 1. We know that f(0) = 0. Hence for every n € Z,
0 <n <5,wehave f(n) = f(1+ ..+ 1 (ntimes)) = f(1)+ f(1) + ... + f(1) (n times) = n (since 9 > 6).
Thus Range(f) = {0,1,2,3,4,5} is a subring of Zy. In particular, Range(f) is a subgroup of Zy UNDER
ADDITION. Thus |Range(f)| must be a factor of 9 (Lagrange Theorem for groups), which is impossible
since |Range(f)| = 6 and 6 is not a factor of 9. Thus f(1) # 1, and hence f(1) = 0. Therefore f(a) = 0 for
every a € Zg.

(v) EXTRA (example where f(1) # 0 and f(1) # 1) Let f : Zg — Zjo be a ring-homomorphism such that f(a) # 0
for some a € Zs. Find Range f and Ker(f).

Again by part (i), f(1) must be idempotent element of Z;y. By investigation, 7d(Z;;) = {0,1,6,5}. Assume
that f(1) = 0. Hence as before, we conclude that f(b) = O for every b € Zs, which is a contradiction since
f(a) # 0 for some a € Zg. Also as before f(1) # 1. For if f(1) = 1, then Range(f) = {0,1,2,3,4,5} , which
impossible since 6 is not a factor of 10. Assume that f(1) = 6. Then by calculation, Range(f) = {0,6,2,4}.
Again, it is impossible since |Range(f)| = 4 and 4 is not a factor of 10. Now assume that f(1) = 5. Then, by
calculation , we conclude that f is a ring-homomorphism, Range(f) = {0,5} and Ker(f) = {0,2,4}.

QUESTION 2. (5 points) Let A be a commutative ring with 1 and let I be a proper ideal of A that is not a maximal
ideal of A. Hence, we know that I C M for some maximal ideal M of A. Let a € M — I. Prove that a + I is not an
invertible element of the ring A/I (i.e., show thata + I & U(A/I)).

Proof First, M is not UNIQUE. Maybe there are infinitely many maximal ideals of A. All of you assumed that
M is unique (i.e., M is the only maximal ideal of A) and hence / has to be the maximal ideal //. Note that if
you prove that for every nonzero element « € A — I, we have a + [ is an invertible element of A/I, then you can
conclude that 7 is a maximal ideal of A.

So, let @ € M — I (note I am not taking « € A — I !) and assume that a + [ is invertible in A/I. Thus
a+Ib+I=ab+I=1+1forsomebc A. Hence 1 —ab € I. Thus 1 — ab = i € I, and hence 1 = ab + i. Since
a € M and M is an ideal of A and a € M, we conclude that ab € M. Since I C M, we have i € M. Since ab € M
andi € M, 1 = ab+i € M, which is impossible since M is a proper ideal of A (M NU(A) = () (note by definition
a maximal ideal is a proper ideal). Thus « + I is not an invertible element of A/I.

QUESTION 3. (5 points) Let A be a finite commutative ring with 1 and a € A. Suppose that a ¢ Z(A). Prove that
acU(A).

Proof. Since A is a finite commutative ring with 1, we may assume that A = {0, 1,as,...,a,,}. Leta € A—Z(A).
Since A is finite, there exist positive integers m > k such « = «*. Thus by distributive law, «™ = «* implies
a*(a™*—1) = 0. Since a ¢ Z(A), itis clear that a’ ¢ Z(A) for every positive integer f > 1. Thus a*(a™*—1) =0
implies a™ % — 1 = 0. Thus a™~* = 1. Hence a € U(A). [THIS is a nice result, so now you have this FACT (add
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to your dictionary): If A be a finite commutative ring with 1 and a € A, then EITHER « € Z(4) ORa € U(A), A
is finite is very CRUCIAL. For let A = Z (A is infinite). Let a« € A — {0,1,—1}. Then NEITHER a € Z(A) NOR
acUA)]

QUESTION 4. (5 points) Let A be a commutative ring with 1 and f(X) € A[X] such that f(X) # 0 and f(X) €
Z(A[X]). For every n > 1, prove that there exists a polynomial k(X ) € A[X] of degree n such that k(X)) f(X) = 0.

Proof. By Class notes (I-Learn), there exists a nonzero element b ¢ Z(A) such that bf(X) = 0. Let n > 1
and £(X) = bX". Then deg(k(X)) = n and by normal multiplications of polynomials, we have k(X)f(X) =
bX"f(X) =0 (since bf(X) = 0).

QUESTION 5. (5 points) Let A be a commutative ring with 1 and I be a prime ideal of A. Prove that N:l(A) C I.

Proof. Since 7 is prime, we know that A/ is an integral domain. Hence Z(A/I) = {0 + I}. Also note
that for any ring B, Nil(B) C Z(B). Hence let a € Nil(A). Then «™ = 0 for some integer » > 1. Hence
(a+D)"=a"+1=0+1.Thusa+1I € Nil(A/I). Since Z(A/I) = Nil(A/I) ={0+ I} and a + I € Nil(A/I),
we conclude that « + 7 = 0 + I. Hence a € I. Thus Nil(A) C I.

another Proof. Let a € Nil(A). Hence a™ = 0 € I for some integer n > 2. Hence a" = a.a"~! = 0 € I. Thus
a" = a.a™ ' =0 € I. Since I is prime, o € I or a”~! € I. If a € I, then we are done. Hence assume that o"~' € |
and n > 3. Since [ is prime and o"~! = a.a"~? ¢ I, again we conclude that o € I or a"~? € I. By repeating as
before, we conclude that o> € I. Since a> = a.a € I and I is prime, we conclude that a € I.

QUESTION 6. (i) (3 points) Let A = Z, & Z. Find all prime ideals of A .
See class notes: 27, @ Zg, Z4 ® 226, Z4 & 3Zs.

(ii) (3 points). Let A = Z;, ® Zs. Find Nil(A).
Note Nil(A) subset of Z|, & Zg, i.e., each element in Nil(A) has the form (a, b), where a € Nil(Z,) and
b € Nil(Zs). By notes, Nil(Z;) = 6Z1, = {0,6} and Nil(Zsg) =273 = {0,2,4,6}. Hence |[Nil(A)| =2.4 =8
and Nil(A) = {(0,0),(0,2),(0,4),(0,6),(6,0),(6,2), (6,4),(6,6)}.

4
(iii) (3 points) Let B = Nk Is B invertible over Zy? If yes, then find B~!. If No, then explain.

Yes since |B| = —4=5¢€ Zyand 5 € U(Zy) (gcd(5,9) = 1). Since 1/5 in Zy is 5-'.1 = 2.1 = 2, by class notes

B‘1:22 74=225=41
7 2 5 4

-2 2

(iv) (3 points) Let A = Z;p[X] and f(X) =2X3+5X +4 € A. Is f(X) € Z(A)?

Z(A) ={0,2,4,5,6,8}. By investigation, bf(X) # O for every nonzero b € Z(A). Hence, the answer is NO
(v) (3 points) Give me an example of a commutative ring A with 1 such that Char(A) =5 and Z(A) # {0}.

A=7s& Zs. Char(A) = LCM(|1],]1]) = 5. Since (1,0)(0,1) = (0,0), we conclude that Z(A) # {(0,0)}.
(vi) (3 points) Let A = Z;3[X] and f(X) = 6X? + 12X + 17 € A. Is there a polynomial k(X) € A such that

kE(X)f(X) = 1? If yes, then explain (you do not need to find k(X)). If no, then tell me why not.

Since the coefficients of X2, X in Nil(Z3) and 17 € U(Z3), by class notes f(X) € U(A).

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab
Emirates.
E-mail: abadawiQaus.edu, www.ayman-badawi.com
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QUESTION 1. Let F be a finite field with 2!> elements.
(1) (3 points) Let a € F. Then a is a root of an irreducible monic polynomial of degree m over Z, Find all possibilities
of m.
Solution: m|12 implies m = 1,2,3,4,6,12
(ii) (3 points) We know that (F™*,.) is a cyclic group and hence (F*,.) =< a > for some a € F'*. Prove that the degree

of Irr(a, Z,) = 127 (i.e., prove that the degree of the unique irreducible monic plolynomial over 7, that has a as a
root is 12)

Solution: Assume degree Ir7(a, Z;) = m. Then we know [Z,(a) : Z,] = m. Thus Z,(a) is a subfield of F' with
2™, Since |a|, = 2'? — 1, we conclude that m = 12

(iii) (3 points) We know |F*| = 2! — 1 = 4095. Since 819 | 4095, then we know that F'* has a unique cyclic subgroup,
say H =< b > for some b € F'* with 819 elements. What is the degree of Irr(b, Z,)? justify your answer

Solution: Assume degree Irr(b, Z,) = m. Then we know [Z,(a) : Z,] = m. Thus Z,(b) is a subfield of F’ with
2™, Since |a|, = 809, we conclude that m # 1,2,3,4,6 (since 809 > 2™, m=1,m=2,m =3,m =4, m = 6).
Thus m = 12

(iv) (4 points) Let Pj, be the set of all irreducible monic polynomials of degree 12 over Z,. Find |Pj,|. Show the work.

Solution: Since 1 | 6, 2|6, 3|6, and 6|6. Every monic irreducible polynomial over 7, of degree 1 or 2 or 3 or 6
has all its roots in the subfield H of F’ with 2° elements. Hence for every « € W = F — H, degree(Irr(a, Z>))
is 4 or 12. Thus |W = F — H| = 2'2 — 2, Hence

Let K be the subfield of F' with 2* elements and L be the subfield of F' with 22 elements. Thus each element
in X = K — L is a root of an irreducible monic polynomial over 7, of degree 4. Thus | X = K — | = 2% — 22,

Hence each element in W — X is a root of an irreducible monic polynomial over 7, of degree 12.
Thus |Pp| = |W — X|/12 = (212 — 26 — 2% + 22)/12 = 335

(v) (8 points) Find all elements of the Galois group Aut(F/Z,). For each subgroup H of Aut(F/Z,) find the corre-
sponding subfield of F', say Ly, that is fixed by H.

Solution: We know F* =< a > and a,a?,a” ,...,a> are the roots of Irr(a, Z,) and Aut(F/Z,) = [F : Z,] =
12. Let f; : F — F such that f;(a) = a®> (note f is the identity map). Hence Aut(F/Z,) = {fo, f1,..., fui} isa
cyclic group with 12 elements and it is clear that Aut(F/Z,) =< f, >. For each m|12 Aut(F/Z,) has exactly
one subgroup (cyclic) of order m.

For m = 1,G; = {fo} and F is the fixed field by G,

For m = 2,G> = { fo, fs} and the unique subfield /7, with 2° elements is fixed by G (note that [F : Z,] = [F :
H,|[H, : Z,] and since [F : Hy] = 12 and [F : Hy] = |G,| = 2, we conclude [H; : Z,] = 6)

For m = 3, G3 = {fo, f1, f3} and the unique subfield //; with 2* elements is fixed by G3.
For m = 4, G4 = {fo, f3, fs, fo} and the unique subfield /7, with 23 elements is fixed by G,
For m = 6, Gs = {fo, f2, f4, 6, [3, fi0} and the subfield H with 22 elements is fixed by G.
For m = 12, G, = Aut(F/Z,) and Z, is the unique subfield fixed by G ;.

QUESTION 2. Let E be the 5th cyclotomic extension field of Q)

(i) (2 points) £ = Q(a) for some a € C (C is the ring (field) of all complex numbers). Find a.
a = e¥/3 = cos(2n/5) + sin(2n/5)i

(ii) (6 points)Let a as in (i), find Irr(a, Q), find [E : @], and find all roots of Irr(a, Q) inside E. Is Aut(E/Q) a cyclic
group under composition? how many elements does Aut(FE/Q) have?
We know [E : Q] = ¢(5) = 4 = degree(Irr(a,Q)). Itis clear that 2° — 1 = (z — 1)(2* + 23 + 22 + 2 + 1)
and hence I77(a, Q) = f.(x) = 2* + 23 + 22 + x + 1. Also, we know a, a?, a*, a* are the roots of f,(z) (since
for every i, | < i < 5, we have gcd(i,5) = 1 and thus |a’| = 5 for every 1 < i < 5). We know Aut(E/Q)
is group-isomorphic to U(5) and since U(5) is cyclic, we conclude that Aut(E/Q) is a cyclic group with 4
elements.

(iii) (2 points) Find a basis B (in terms of a) of E over Q.
Solution: Since [Q(a) : Q] = 4, we know E = Q(a) = span{l,a,a?, da’} over Q.
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(iv) (2 points) write a® + ¢ + a* as a linear combination of the elements in the basis B (B is as in iii).
Solution: We know a® + a° + a* in E «» 2° + 25 + 2* + (f,(x)) in Q[z]/(fa(2)). Now dividing 26 + 2° + 2* by
fa(z) and taking the remainder, we conclude 26 + 2° + 2* + (f,(z)) = —2% — 22 + (fu(2)) in Q[z]/(fa(x)).
Thus a® + a° + a* = —d® — a®

(v) (4 points) For each subgroup of Aut(F/Q) with 2 elements, say H, find the corresponding subfield of F, say Ly,
that is fixed by H.

Solution: Since Aut(F/Q) is a cyclic group with 4 elements Aut(E/Q) has exactly one subgroup with 2
elements, say /1. Let I be the identity map on F and f; : E — E such that f;(a) = a*. Then H = {I, f,} is
the unique subgroup of Aut(E/Q) with 2 elements. Since a +a* ¢ Q and fy(a+a*) = fi(a) + fa(a*) = a* +a,
we conclude that Q(a + a*) is the subfield of E that is fixed by H.

QUESTION 3. Let E = Q(v/5,V/7).

(i) (3 points). We know that £ = Q(a) for some a € R. Find Irr(a,Q) (i.e., find the unique irreducible monic
polynomial over @) that has a as a root. What is [E : Q]?

Solution: We know a = /5 + /7.
r=V5+V7 = 2? =12+2v35 = (2% — 12)? = 140. Hence Ir7(a, Q) = (x> — 12)> — 140 = 2* — 242? + 4.
Thus [Q(a) : Q] = 4.

(ii) (3 points) It is clear that L = Q(+/35) is a subfield of E. Find the subgroup, say H, of Aut(FE/Q) that fixes the
field L.

Solution: Since Let I be the identity map on £ = Q(a) and f : E — FE such that f(v/5) = —v/5 and
f(v/7) = —V/1. Itis clear that /I = {I, f} is the subgroup that fixed the field L = Q(1/35).

(iii) (3 points) Is the field Q(v/5) isomorphic to the field Q(+/7)? If yes, then construct such ring-isomorphism (field-
isomorphism)? If no, then explain briefly why not?

Solution: No. Why? Assume that f : Q(v/5) — Q(/7) is a ring-isomorphism. First we know that f(¢) = ¢
for every ¢ € Q. Hence f(a root of 2> — 5) must map to a root of 2> — 5. Thus f(1/5) must be v/5 or —/5. But
neither /5 nor —/5 is in Q(1/7). Thus such f does not exist.

QUESTION 4. (3 points) Let E be the splitting field of the polynomial f(z) = z’ — 18. We know that E is a Galois
Extension of Q. Prove that Aut(F/Q) is a non-abelian group.

Solution: We know that f(z) is irreducible over @ by Einstein’s Result. Thus [E = Q(v/18) : Q] = 7. It is
clear that £ C R and v/18 is the only real root of f(z). Hence f(x) does not split in E. Since E is not a normal
extension of ), we know by a class result that Aut(F/Q) must be a non-abelian group.

QUESTION 5. (i) (2 points) Give me an example of an integral domain that is not a UFD (Unique Factorization
Domain).

Let A = Z + 2?Z[z]. Then 27 is an irreducible element of A (note z ¢ A), but 2 is not a prime element of A
since z%|23.23 but 22 { 2° in A. Thus A can not be a UFD (in a UFD every irreducible element is prime).

(i1) (2 points) Give me an example of a Unique Factorization Domain that is not a principal ideal domain.
Solution: We know that Z|z| is a UFD, but the ideal (z,2) of Z|z] is not a principal ideal

(iii) (4 points) Let A be a principal ideal domain. Prove that every prime ideal of A is a maximal ideal of A.[Hint: Every
proper ideal is a principal ideal, and every proper ideal is contained in a maximal ideal].

Solution: Let I be a proper ideal of A. We know I = (a) = aA for some prime element o of A. Thus [ is
contained in a maximal ideal ). Since every maximal ideal is prime, we conclude that A/ = (x) for some
prime element x of A. Since / C M, we conclude that a = ux for some u € A. Since A is a UFD, we know that
an element, say b, in A is prime if and only if b is irreducible. Hence q is a irreducible element A. Since a is
irreducible and a = uz, by definition of irreducible elements, we conclude that v € U(A) or z € U(A). Since
M = (x),z ¢ U(A). Hence u € U(A). Thus u~'a = z. Thus = € (a), and hence (z) C (a). Since (a) C (z)
and (z) C (a), we conclude that M = (z) = (a) = I. Thus [ is a maximal ideal of A.

(iv) (4 points) Let A be a commutative ring with 1. Suppose that A has exactly one maximal ideal. Prove that Id(A) =
{0, 1}. [Hint: note if 2 ¢ U(A), then the ideal (z) = x A is a proper ideal of A].
Solution: Let M be the maximal ideal of A. Assume there is ¢ € Id(A) such that e # 0, 1. Hence we know
that 1 — e € Id(A). Since (e) and (1 - e) are proper ideals of A and A/ is the only maximal ideal of A, we
conclude that the ideals (¢) and (1 — ¢) "live" inside M. In particular,e,1 —c € M. Hencee+1—c=1¢€ M,
which is impossible since M is a proper ideal of A. Thus id(A) = {0, 1}.

(v) (4 points) Let A be an integral domain, P be a prime ideal of A, and I be a proper ideal of A such that /NP = {0}.
Prove that there exists a prime ideal F' of A such that I C F and FF N P = {0} [Hint: Let W = P — 0, note
INW = (] Solution: Let W = P — {0}. Since A is an integral domain, W is a multiplicative subset of A (i.e.,
W is a multiplicatively closed subset of A). Since W N I = (), we know by a class result, there is a prime ideal
F of A that contains  and F'N'W = (). Hence F N P = {0}
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QUESTION 6. ( 4 points). Let F' be a group with 12 elements. Prove that F' must have a normal subgroup with 3
elements OR F' must have a normal subgroup with 4 elements.

Solution : |F| = 12 = 3.22. We know to show that n; = 1 or n, = 1. Deny. Then n; = 4 and n, = 3. Now
n3 = 4 implies that 7' has exactly 8 elements of order 3. Since |F'| = 12, there is a room for one and only one
subgroup with 4 elements, a contradiction. Thus n; = 1 or n, = 1. Hence ' must have a normal subgroup with 3
elements OR F must have a normal subgroup with 4 elements.

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com



TABLE OF CONTENTS

31

224 Solution for HW-ONE



./ (HWl , Mosheact L\\t_))ebm\ i g\:\m‘gi \\‘\ ;\\‘\“‘“a
* Q0D -

(L) Let g be a qeup and QQ’FGNQ“ \al = m < . Show Pal

15 a5, 0% Q‘,---;O\ME isuiq Subgmup af Wi M @lements

lal s oo vianze
\et QK) a” e D whe (e Y\,\(G—z i wank = Q\““ 6\3

S 1 & \T\__ ;
e Il o<k inCm wen M ED, Sy a =24 = el
o If ki 7 om ) \03 dwsion a\osmi\\\QM 2 q%f st
Kah = gm af whee okt < m
N q"')+Y
now o W
quo‘, Q/)
2ol =gr. /(/)
-ea
= af sace < m  then " €D e CY\O{'C
F_ M
h S AR
Hence a¥h ¢ B DR il g A _2155

(LL) LQ" D bQ Q (j(b\r\P Q(\(\ QCD Gi\lcf\ \U\‘:‘(V\( o0 . Ag&kme \\(\G\\V Qﬂ:e
Prove het ™\ n .

Vs B SO0 i ;e e an \n

63 dusion 0‘%0t\\r\f\€”‘ 3 q ¥ st
N= QM +Y wWhex e e L m

Gen oil= a®

qm+Y 4/]
- Q /
a
:(CAM] QY
¥ 0
= e Q
-a'

hen: tr="=0
Sice M ois the swallest iveger sk RANE- T

—y N=QMm40 —0=gm — min w
(%)



(i) et D
e ageup and o CD
‘ G\\\IQ(\ \ \:m 3
b= a here qudi,m) =\ L Deue \\M: \\(:TY‘“LQ\ BeO such thal

\Q\:m - Um :Q
b ah

dl &, m) -
qedCi,m) oy wooks Bz 5= (a9) = e

: /—\ 0 4
@ 5 m'wonv Vo Show h=m \Y\/

s =ty e
3 0(3‘“\( This 12 (ke
- (&) ceryus |
= e

PR
AT D&/
m\h A cﬁgd(k,m;\\_/ </)
- m <\
also ,\§a%)" = (o\“‘)k B nus B By

tHence W= =

() Leb D= (L, 4) - Given \\:‘\o,b\,t,\l\\e\ o Q sborsp 5F D
Tad ol Wy coseks of W :

Gat= Town D BEYS
(o Yo lo,4,8,12060 =M / %/
g e W5 A3 =anW ‘ %
A 2 ad = ?z,e,\o,ltx,\si Zogy ’
W3 e = 131,14, =0uad

A
d Lt aseksl ob

(2)



(V) LQ& D = (Q ) _*\ .\W\QY\ \_\ = (ﬂ_ e 3 \S Q SU\’X&(DU\P 0\' (Q )4»] ' P‘f‘b\le
ot W has \(\(\f\i\‘e\\‘,\ m(\(\k} \{R\’ cosels Give e 1) dishiack (e f\ C)}%Q\'S Is\' .
& A€0 st gy

thern  thee oo \(\Qm\\\) mony sels q U

Thee aee Vb condl s of H ot Yor Boen ®

G\ =~ i [SHRY \ \/\E\'\ S O\<Q<‘ i
. EVQ diskinc etk cosets 3

(‘) O )\ _\,\‘\
) S\

Lx)wa i
W) o.-4 44l {1 :
(8)--08.5¢H %

(o) Lot K. 16,12,18, 24 Gaving o, Mok VW a Aoup  under  malkhiplicabinn
module g b5 LoﬂS\(uL\\(\ﬂ e CQ\QSS TV . et s e? W is P
whal s 2475 ; :

- G {92 D 24

£ 6 V2N 24

T oA B !
(B 5 - W
ph 6 {ﬁ

24 24" A8
oL iis " closed . ander mdhp. s Va wé b oapeF
‘€=6 6.Q :Q.6:6 \/O\QF

FRU DGR R S G

)

P00 € 2 idiCmie) M oa loie BE

(3)



TABLE OF CONTENTS

35

225 Solution for HW-Two



Scanned with CamScanner




Scanned with CamScanner




Scanned with CamScanner




Scanned with CamScanner




Scanned with CamScanner




Scanned with CamScanner




Scanned with CamScanner




Scanned with CamScanner




Scanned with CamScanner




TABLE OF CONTENTS

45

226 Solution for HW-Three



- il ZE ' 3000313—'[(‘
IStua A”’lqm@,fﬂg H‘LOJ .

(L) F‘gi_’ (fdf a/’/z,gﬂ J‘unl‘_‘&_c. it in a/y A{ﬂcbm ﬁtfgooﬁ),
lef Hbe a subsel of o group D) Cnste ok Heaun toe hfmite o
Foite W Tren H is « qujﬂmf, o D ﬁ gebeH ﬁrcwg{ a,bEH .
(wbInced Vot Fo be ik t).

=fNL
(W) Let F. L be Subjow‘asrfajmuflb,})mw Fod M=F.

1S aSw%)ij]D of . (hmfiuse ) cboue.)
e [now Fl< D ( F,L subamué)s-d’ffb)
Wont  +o show ot F a b CAI\J 2 eloments in M, Hen -
o kb eM.
P;’Egi‘ let aq,b& M ance M=TNL , Hhen

ab€eF s O\,JQGL :

) an e RTINS e A;.etl d‘g
a€fF andael Mgijp oy CSubamU(D

nouwd s Y ab€F L for eadnh acef,L 3 ' \A".‘T‘L
-1 Shk o{‘e L
of‘)‘wbe L Sinle Subbaf‘o\\ﬁji P D bJ (M -
Hence

= 'VOt_l*bE,M. « whersedon A FodL”
So, M is a Sulo(jf\’w}ﬂ”"{ O.=

%

O



(li,D bj (it) N=12ZA010" 27 s aSut}QJ/Unyﬁ a—p KZ +)
S Z 1S (jleC-/ e [Knewd =aZ Fned a
\/LS.“(\3 a Auss -Nate .

L:ue,/? Sv’»kijrwf oF (Z,+) =<'y Por Sone NEE.

123 = LTy =L

JCZ -2 1SP=< 1"
|7 44/ . .
(7 % AN
3 5 3 y

N = 12Z NISE s
. 2
“lCMOz, 15)E y p
- 3.5 4202700
= CoF =<1, '

= To - 4o | /
Gifenr Hood

iv) LeblD be an abelian group Lot € elements

D heus e Aistmct ?;ml:?jmfgj H s Hy such et | H I =1Hol=3
C o/ Mz me Hod F 1S fmfoo;g/bu Haedk D=(Zqrt)

Lohet woill be an &W'VOL‘ 4 < uch 3,Wf> D')

A E ebelian

[277/ ‘f’) /S OJ&/JC, '\jl\)(?d /56‘ Gl”'}b’ﬁ/)
df 9 ﬁle/runTL_s Frs am ons,b[e. Y it /’las mor<

Hoen onL ut/‘rizui» Sdbj Lglq)
ond sinee 1D here hes 2 oisknct Subgrosps 2 grdec 2

; n/7L b (Ze \.
Hin D ca e (Zg1t) 52) @/ﬁ 5ch3’,3)¢(

T 2 =
TERAWQ ob =uch ), Whert Fis abelionNorIET

@ \O]:q ’_\) 7 H“:[[U,O))(UZXD(?,’?}

Q:»Cam(_‘r'z,
’J% Subarm \‘
s g eira =2, wke BFT (o)

H, = f[o,o) ) ”/’}J{Z-’?)j




(V) Lek PeSn such that £ o m-—CJCf{. Cenvince me. ot
ilf m ;F,wldm{-ﬁwl Fherr fEAn‘%ﬂ-cﬂ Ff S N eues) m’L‘ﬂW

Hha £EAn
> m-cgele
Let F=(o ay —--- a,) ESn .

. e /Cﬂd'-'o bg C[ugf "mpfl-m 'H\MJ‘ mllg b{)‘eb‘h’u«f-
;u(\t}/\)f\ ﬁSSn Cean J?ﬂ written cAS C'OmIOD.S;‘an "’! 2—%’15
as fo/(aoowgl:

j:(".‘ a, ;h-qu) :(q' C‘m) (e O‘m_,] ——-- (o, )

—

o Fvﬂf(,—h—__U 2 -cydles

o)DJ S/aﬂV‘? Wwo Ferd &wn/)ls N e a /I./

(a, o, q3) = (o q‘?l\(/f'*;qzi,%du
(o @ 9 % % %) = (a a,) (a, 94-) (9, o) (4, o) C4y q,)

—_—

s 2 s -
(—}é)l/‘x—, Nofice +ok £ con be weklten e sl (m=1) 1_-6(7@;-;

Henee , -
Colen o is odd = cm 1) iseen = Fe Aa.

o When M 5 ewnn = (m-l) /s ac”% 75,@/44 ;

L~

%,

€




Vi) et £- 123454 7%
H368¥2f§>ég‘3~

() Fnd [£] - T5 FcAgQ Explam

£=(1H 85—)(23@
2 of:_?jo.nf‘ CJdLs 2 59 bj Clusgs 7/\771

[t = LM [ legthat ci, leasth oh ;)
=LCxA( B /3>

=7 4%)

o [f- (158 7 (2 36)

~ !-J wche
oJJ = g‘i & ‘ ¥
2 - Lotle \ _,j..f-:ﬁ‘.t 2
f,'-.u”. & TGN 2L 2 2

: feAs @5 FES

= ewin tewn Tewr) =
b;j (v)

i3
|
r
¢
<

Also,
L=(IHESZ) (234D

= (1 ?)(/f)(/g)f ’/) (26)(23]

£ ~2 Cudl«s
_ eyt
Sinee F c&m be written as twn number oA 2 ch

=0, Yes fe/‘f% SMte- foj less Thon oF /)cgc&c&n

be. u)/‘Hen as @n 2 Numbre ot 2 - Cl»/cfd #en
f{‘ C/}n (+L9-C"ui’_) ;\Q‘TDOJ,P\_,IJ a/\oﬂ Ca.,”[ bg 07/‘9 OJC«Q

c,jcécs 1/

)



| Cemme 1)

(D) Dees Ag heas an abeban sdogroup waith 1S7 et
[ Hint 1TF o Sheo thob Ag hae coyelic sbgroup ol 1<

elements , Hon You oo deng 3\\\&-Ctsdn‘sc_ Wlhs doe\ton \

I‘ld‘ro@b/ "fo S‘I\Du.‘) cxl}f/{.fqn Su@mf
we need Fo Facd « CJrjrc S“b(jvf with 1§ cluerts .

andd 7‘& Ja So , ok
we shoudd Shod thad I LE A st
/§~

| £l = 1S & 18 J@;Zﬁ: -
= LCM (gt oAG | Jenh 4G A

fLCM(§/3)
(123 us) (< 78).

1S,
Hente bﬂ H.wd (O 5@
1 o CJdM_ 3“}0‘0“0“@ L£> s :/ %

if,}”/ Ay o
> Ag has C/\ngin e.wfoJmlo o JS'e/{znwmlS Sgy
fl' MS an aJo@QSan Sy\me\,,‘o d'f IS~ éﬂszs sSn& .

cjoﬂ(_ LM}JL\L: cwladtcm '

oo



Vit) Tef F=(143)C14) €Sy  Findd If[+ Jef Je=( /_ff;)_qg)c—.gg

fiod 1l ot Lot Aot eyt .
2 3y
ﬁ:( ) s [0 3
- 2 3 4 5\
k= J ) = k:15y3)
AL

Viit) - Given H=1(), 093,135 is o Subg o Sg-
C-H\fs isjl\f/f) rYeu de not né_er} Le CW): Fl:ncg He /'ff% C/QSQ‘K(IOOH
ond Tind 41, right Cosel Ho(1s7)- ke aéjw obxerse ¢

CGL/\ wtsdg —H«/M} H f\S c{n:a/me«j Sw%muf O“f sz \D

-

#letfCosh 2 (18D H = [ 1)) 5 06 (1y3) » (16(134))

2 3u <)

)= [ YRILEE”
\ !

vy 2 §

2 3 4N
(15 013Y) = = (13Y45)
(157 ) (3 7 ng//

r A\Z
= (1S)eH=[(c), (193 5 (1345) ]

. T
g righh coseb ¢ HoliS) = [ (005 (142201)5 (13900150,
isbt Cose

o (143)(1S7) = // "

!
\

™

3 ’VT -\\
\

NS (15 Yy3)

5 21 34) ( ‘
.

/, ~

o (134)(IS) = S -(1s534)
(5 2 /Sj 2



2> Hol(Is) :[CIS’) ) (15593), (153 L/)j . W/@

we rotice Head - (1S)ol # Ho(1$)
Hencee H Carf be a normed Su‘:&)\)ujﬂ""g 8:"

S I UDESe Whee leth cosed # right csef
tohich a*b.S e Counter eXam,OL, cwned a(wjfg 7LU CuasS - Mofe

ik s C/L&ﬁh Fo Skxw Nt asrmel .Swéﬁf\w;ﬂ-
C”) Let o‘rb b element a‘Q QSNU(J %uc,‘/\—HM,j- a#o = b#a
Assume lal=n wd || =m., le} o= [exh| . Poove ¥ [nm.

M abeD = arbeD de

(-b\\j cof\wP closure—

]Q/\' \U\\:V\ om\n\ \‘O\!:M . (4 ,Pgm{m,\
wrd \augbl . <& d=e =€ and Carb)=€.
Nad) '
= Cq %b)nﬁi\: [q%b@M*ﬁQo@bb— o - (axb) gVen
| A Fves . > smciﬁ
:(u*c\)(me) C\O&*b)"”(“b;> Lf‘/“‘b’
= (arax oxa) LbxbE- "
Ao Ariwme s Amtinnes
- m am
= o’im%b o
:(O‘n) ’ (b) tr o b:j Hlv@&h@, n/nm
= (e« (e) g Y

= €. -
= Carb) ze ‘/ 6/(o

Hene, by HidD [/ T



(X) Gilve me an c:xc(/nﬁle, A two elementc a,b in ajfu‘f
(

Whse  Jal=n , Ibl=m andd [oxb[ <=k bult e fam -

):hsvnl y Stare. o fle elenont ¥ in il wundd sorredow ‘Pﬂ,\cﬂq,b} ‘

/(/{‘ ‘H«Ljhﬂuf) be SS"'
K=(143)(15) € S..
A= (143)ESe  wnd b=C1)ES—

[Of}:j.:f‘/ /b;:
[K=axlo= 143) ) (¥
|

el = L/
nm = 32 = é W/{q
> |
Xl) ek a, b be eleent A q]/\aulﬁ ‘Suc/’l—Hw}' b = bt

ASS"’M 10‘/ =N lb[”m amd CJC:’) m_) } 6,)( /< /dé[o/
Peove kzam [ Hinh: qou may ucunL to use He Fact Lam numbsr

Thiing thad 7 ged (=), ellc cndiofe. o wel/e olore
e cl, C o= —f—w hferess | |
@ bd (IX) e /inpD ‘l‘r\.a} /;{ A0 f/) «O/‘@/\e— cub ~bxa

/ /:V\ (Ar‘J/b/'(ﬂ uA,J /C(I"bj.f/C, ,/_C_Z_Qﬂjr—@
e So we dnj /waﬂ 40 Show Hm/;é - since ol = bwa

v K
/a;{-b[ /L@(uyb\' =, q ¥o =€

= 2"y B =e For e infeyer 1
L
> (@) ybze > exb =6 > bm:e

Henze , rf?//Ln but cyaf(m,m;/
S [m 7K | v @/0‘76 ®)




o2y S:‘rnlllcﬁxﬂg B 'A/)‘l?'*/'- (o’ bkjmrc('mﬂ 6"'”: QM:Q
&km*bl»m . Siez ab =loet

|8
") =€ D oMy e =l

> e (7/{/)

Tren , n/Km anh 3C<1(n,m)=!
> [n /]
using Hho hint 5 i/l o0fk ancl god camd =1

[ /k]® 7

ba @an@ }L-_-nm =
X:‘f) Let F 5(@;#‘:) _,_%([:)2 /%9> be OLJW/D~F70WW/P}HSM

: ' o
cned HSIFS. Prove —thet FCH) s o Subgrou o Pz
(nD'hﬁ, H‘ 1:3 ‘Daﬁ\ug, —“A_p} H::D') EH!%’*I‘ Ugapmfi‘f‘(o C’lbb'\r&]'

Wunt bo shwo fhat [P yF o) € F(H)
V Eca), FCYEF(H) > ab&H i
D005 we fnoo HED 7 Hhen bg(b ,;L:m?% = FCH) ES
a”#lb ceH Y abEH

wnd F (arb)= F) 5F® - YakeH
ow\J as HLD, v —Hhaen y V/q’beH

[F awrb)=Fe) w,F(b) | €FH) -

H:ig;;f- vacH 3 & ualgiLe- cH, N ‘ ) —W\ “
Fealyb)=F@) 6 F). g lass -bigy Then
{[chp] ¥, F(b) ‘}‘e;fm)

2 . j
F(H)I_S qs"'é‘j’\’%uzpf‘jz & /

®



yiii) Let Fi(Zay,)—s (Zi¢ /1) be aqroup homsmephisn
=weh Haot FCD) 2o« Faad FCZy) . [ Hint: Note Hhed Zn i<
Q——\‘jc_/uc‘/ F(Zw s qSu\oarbuP o Z(S' bd Xift “and U:C;u[ mustk be
o factne o Ja| Er et e Z @CMS-WM‘}.

Fnd FC, Feg) ; FC2) .

1["('22\,,1')—4)(,2&,;«}-) \
F (il mebar) L F oy + F (o) mod IE

qu:[o,ffz,s,——-*/?jf / %[y:{o///l/"‘//qg'

| F(ZW < L ( 'I:)c,d ﬁ?/:
v oD U'{ € -’CC“QUL)
. Z'J;' /aymf’/gc /fCZm)/ / ol b N j
o Alsy by clus biy Thin /ffﬂ)’/'/w T
ond Sirce Zu 5 de}c—’ @/ F( Em)//zq

N\

)4?5’16?!‘0/5. -’3[ /-5»:([) /S.—_/ 3\/ _g, .
(-tL ,aL(,f':/vg U'/ 2J ! ‘j)/ ?_{',,. 2/ [q/"E/?/ u/"bf"
Hena /oy () | FCB) | = [ or3
g

/ Lo
Now b(j clag ~Most }mfc/r%a/)/"[&eﬁu'u’ ore j J

e f)oov‘é .

/ Zu A—— F{Zq

(x&)-—- £ ( %(m ) e el
Lohere zzq/}&/(p) A :C’t’zu:@ J

Hence }7[-(2?,‘1’)} =+ since - If | :CE?-‘D]:[ , Then

| ZL%CI(FJI{ =] = Zw= e ()

W}’\lc}\ M-eons \V/qe_z-zq = ;[—:(G{) =0 CO/T{TQQJC«'HM NG
8‘"/«6/\ r(]) +6 . @



He/\w/; DE e bng lef+ W Hh

lFCEw)\Z& x w\c) J ’-g £S5 0

“han

F Czw) {o,sv 10§ < Zg }
B

S\AbjmdP ot CSC/\ C Soy Cﬂc’hc’ ' Axiswer.
— sine Big i Cddtc/ ’ 1

n 1o a nngutl’
[Pz <o, 13 =8 | e 1o oo
| = & mod IS -
'OK‘ 71,0 oo Fhis in Al %f‘jgéé‘) -[*Egl)—__f:/c/r?) IIS;coj = "/om-Jl( = 1]
M | 22 p[=3 = w5
and  Since Kcr(F):Z oe &y, Filb)=0 moJlS'j

/C&r/F):ZO/B/(/ Cf/}Z/ /S 18, 2/5 @/(7

?2\*/ ke (F) :{ fer (F) ; | theee (F) Zj_‘@"(’:)j
F < Jo
o Fli4bam)= FO)

|4 jear(E) = T 1Y F19,03, 16,19, 22§
we nofice 4hut and elopunt M | (F) — T in F(24y).

% I__F_(_/ii / Propecies of Cosehs
1

@ F(/z):f//z+k&?/ﬁ)) :»f?ﬂrrr)) Sine 12G KeAF)
g/;E//Z): s 7

@) =F(8tjunr) = £ 24 1ortr)
- Z—H(v'f({:) {Q"r/é}/////’// 17129, 2]j So, gE 2+ (F) -

% ﬁ(?}-/\fﬂw/m‘%’a mS’Z/&‘?F(zw))

O,
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227 Solution for HW-Four
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223 Solution for HW-Five



Targ h 765ac’ HW S
JoooRE4FE

W 2
le4 D be an abelian group with 93 5" element s

) SuPPOSG that D has EXaCHd one Subﬁmup with Y e,LGWf'S.
fond all  non- isomorplu‘c group with these Properh‘es.

fu HOH i
2 2
Al non - isomorphic group withoud the Condition 1+2 4]
1414
we have

@Zg@ /e, ,@ZS@Z@ @20/7@225
@ 2,072,62L01 ® 20L,040 % € 6 2,6 2,07, 82:0 /%

4, Yelement -

Now  Suppese D has (xacﬂﬂ one Sul )gymp wi
Then We  have to checle which one QP them has’ exach Con™ Bl oty
© One St(szs‘fop with 4 ﬁwéﬂén‘;'j-gzﬁﬂﬁ mmg " phsevation™ o
D Py ® /L, 2 let Hbe as ubu ap r:?F ZA withi @rder 4
= H®305 is The gnfa Subg ru{—v i h order.. "f

@D-2,0 LG Sme of L@ v H+s;oz+ao§ The only
Subgmup of order 4

: O D‘ZZQZ @/Z . et K be chubSrqu of ,2"‘, ‘with 2element s
5 "Z @K@}D( and' §o§+fzﬁ@§og' are o Subjroup

with 4 elements but D has eya(-ﬂd one Subjroup OFOYdfq
contradicion

@ D= /Z,0 ’24@/73@'2 . same of (3) because /L, O KD 703 503
ad 3036 24 @ 3% +505 are two Subjrauf) with order % (onhdcﬂ(bo.\

&




® . 2, 2,6 ,22@,215 v it has fhree subgroup of orJer 4_
F= 2 ®35030 2, ® 502 and W= 2,02, D503 @303
and | - 302 @LOZ, ® 505 Uke I(lo1,0)]-= 1C1,1,0,000= 1 (0,1, 0)]
= 4 Contvaclichon
OP-2,0 2, ®72, ®L&OL . same as © has +hree elemend of
order Y. Contradichon

TheveFore  The all honh - ISomorphic group with this PI’OP&'HeS are:

Zy® L., and 2, AL ®

Ve

i) SUPPCSE’ that D has exach one Subﬂroup with 4 eleneent's and it
has exam‘ﬁj one Subgroup with 5 elements. Find alt
hon - isomorphic group with theewe Proparh‘ac-

FVOm (i) we bavﬁ on{ﬂ bwo group that has  Oh Subgroup

of order 4

Now check if Hiey have alse one Su?group of orders
) D-= 729@,7_25;-“ Led " H be a'.Szfﬁoﬁra@P of 1se with 5 elements
Then ?0%*?‘4 is  the (Jhté,r Subﬂroup of order 6. |
= D has one ,«Sulojroup‘ of _Or_d@r 5

@) D= GOL@L : his group has two Subgroup of order &
gog@ 25 &) %Og and %05@ 503 & /ZS .
= D has two Subgroup of order 5 Contracliction

= /-Zg ® /72; are  the 5n% group that has on Subgroup

of order 4 and one subgroup of order 5.

e trt——. I,



2]l let D be a Cgc[\c group with 100 elements . Convince me thed

(Aut(D),0) is abelan group and Pind mi, .- mi such that
Aut (D)~ /2”3 ®--@ e

Solation » -

Since D is finite de.'c group wifih loo 6(@’”3"4
= DA 7,

= (Ad(D)o) & (Aut(Zioo) o)

from lechwe notes we Know Vnz2 (Au*f(fln),o)&}’ @J(ﬂ),)
= (Aut (Zgo)r0) & (U(i00), -)

From Nwd - Uflo) is @ Arowp under multiplication med loo
%‘5 _.U(IOO)N /[2@ Zq@; < ere rdcd(q/S) 1

U(IOU) ~ /72 & /71;0 -5 Since ;Zz.@’lzo te wbials o
=% UCfOCJ) ) Clbelﬁidﬂ ﬁrduP .
=3 &inc e Aul ( )™ U (100)

RN - {Aud Uzaw‘)’@‘} s abelian group
£ '

=> (j}\u.’%’ (TD),O?} s akelion: groQF

Fom WwH: f 4 &
Ao s Aat (Zioo) #, W(loo) ¥ 77, B L0 i,
- Au’r (D) ~ _Z @ oy (B ® > o
casel = m, =2 , wa=4 ., P37 =5 v

but - also sine 2, /2 @ 7, = Z @7  Since ged(4,6)= £
= - Aut(DDR @ ,z,o '

/
Cagse 2 = m, =1L lm1-20

.




rove - -
Prove +that every group with n= 17x3> is abekan. Fnd all
he - \

on ISOmor‘Ph,(c ‘jm“P w,‘Hq h C’.lzrnénés
Solubion:- 1Dl = 153 = |qx3l Prove D is abelian

ha = H of all Sglom-%—SubﬂmuP

=  nyf[_ID'
*Nsgim1 © '%’ 17 = = lorld

= N3= => D has exactly one sylow _3- Subgroup 8&ay H

Since n3= 'j_ => ‘HGD => IHI;BQ:'C,

n = # of all Sylow- 17 —Subﬂmup

17
= h'?liéﬁi‘ﬂ] ) n,;,’g”' > hg= lor3 or 4
= Bn, - = if =1 = 7[0-n = 7]o v
if hjg=3 = E) NERYIE=N 17h2 %
if ongeq = N0 =D 1948 %
= nz=]1 = D has exacily one Sylow- # - Subgroup Sayl

ginCe Nz = 1 = ka4 D, = K= =3

Since H, KaD and  HOK z3ef = [Hil= Bkl 917 < 153
- JHNKI

- 2
VA g and |H[=3 =9 Since

Uy 2, or MY LOZ

SinCe | KY =
H is abelian Subjrau]o of D
Since gcc/{%l?}:f = D"S%Lﬂ‘c

17 =>

— D I
. /Z -~ Not fjéf«'c but 8ince
| — ' abeli
2,073 and xS —y Dis abela
sy, LA abelan and oy & 17 and Zz@LOLix
= 159 elenents

are the all Non — isomior phic 41 oup with n

_—M



ﬂﬂ LUL D be agrouP w.‘-}h 5.1-29. Pprow 'Hm{ D has cxaCHj oné

Subﬁroup with 24 elements Sa:j H and HC C(D).

Solution -
brove that D ha

So by Sylow Hicorem:.
fow =24 = Subﬁmu‘)

nyg = 1) 81l &5

s one Subﬁrou]) of order 29

Mg = F of all sy

DI -y V)zc/}&xll =

—)531(24)]
=1 => Qﬂ,('—') =D %}0 L

- n _FI '
= %1l £ hyg= 5= 99N 5-1) =2 29°H Xx
i Mg I =2 2at (-1 = Q?Llox
o> 2g s = 271 54

24

=D F Nq

ll‘p‘ J’)zq = 56

= hzg= _ - " )
. -exdm"ij; one Sgiew’~ 92q - SuU 3?’4«/;» Say
) —> H4D

oy — ‘j,l’w'f, Sdbj}? 17 FA[D

we Cov &M@if ﬁZﬁB

Hi=29 . W 'I;sniajd;:(; = TR'% Aaq
oup of Au.“f(722q) ~ (}('ZQ)

() ) =28

b Syl
o % Subgrou(® of Act(H)

~ Subar
v

pl and ( DAH)‘

l Oéu\)] =1

= gcd (28, gaf=d =

- H¢ C(D) -




C T MBS A

) let D be a group with 26 eloments . prove hal D is Not Simple

SDLLLHOT\ .

2%.3°
led D be a group where |DI= 216 = 27.3
hs__, # of all sylow AB—SuloﬂvouP
na | 1B o> "‘3)23 o ny=l 2,48
Isy1() ]

Bl frg-) = if n=1 = 3]0-0 = 3]0V
Fh=2 = 3[/(2-1) => 3+1 x
ifn=d4 = 3l(1-n= 33V
ifn=8 = 2](@-) = 3}3 x

=y Yg= 1 or ""

n=# of all Sjlow-2~SUbﬂn*0uP

”z[ Dl o hllg?’ - Py=1,3,9,9%
1541 (2))

nsl = 210 = 200 v
:*fr @3_:5 ) ﬁ?f(:j f) =y 2!2 L
Brg=q =>2[(A-1 =2 2|8
= 2[26 v~

= Q’ (ny -1 =

- g3 -l
if 0, =0t => 2] i

=D N = Vg 3 q,g;ﬁ

== SW"*lllq&I
h‘g.‘:l or Nz = Y > ASL{ 32 i

Since | S t
et Ng = 4 3 o group homorpki:,am K D——-a y s
D Subgroup of Sy and Ker(K) #D [Ker(waD]
~N Su ; | .
%dl«‘) J er(K) 483 = ij Assume Ker(K)= €%
we want 40 Show o - qnd
=> D& Subﬂrow‘) of Sy but At *’
A T ar
ISq ‘ = Y| =24 impossible Conrfw(a \c c‘; -
‘ s Not Simp

= Ker(k) +5¢% =2 D




N N — A AT I 8 o il o] SPELS AR R o T R e T T ——

¢ | e
\J Lff‘ D be a gro“P wl"‘H’l 5% |4 e[em&ml—; A PJ“O\;C ‘H’)anl D 's hOTL St‘mplz_
‘Assume that nz+1 - How mmz((j element in D have order |T.7
Sﬁhﬁ\"thn

k4 D Le & group with Bx?x\q =595 elements
Prove D is not Sl‘mPle.

h35 = #H O-F all 53[0@ _ 5- Subﬂroup

JPHL._ he = L, ZF,17#1\q
ISy1(5)]

=) N

= ”s’ 7x\7 =

os|heoy = i Nsst D g) (-0 = 5lov
| {F ez ¥ = 5*(‘?“") =D 5*6 X
i ng=1F = e\ (17-) => SHé*
£ ong =0 = s) -y =2 stug >

W
= hg=1 => D has exad;ltj one Sylow- &- Subgroup
=\ Lo+ Hoors +he. SBI Glde 5 S.ubﬁv'ouzp = Ha D

f-‘\ e
= ~ e Nt Stemple.
o Theye Fore Dois RO ple-

D Al euiaw o 1F- Stdearou
Nz = 4 of al é:;jmg , ¥ S
L

. !‘LD-L_‘ = hiﬁii‘;ﬁ‘i‘% =D ﬁg':}t = f‘, ?f:?'/?ﬂs
a?jssga(ﬁ)! 3 o
= if niF=! = i"?!(ﬁ-*ﬁ\) :—? |=7[
=> I’r’i(ﬂi?-!-) = 1 pes = 70 = ‘ﬂ{fé;
£ g =7 HAED = !;\NV
1C nH:B»S:) 17 (3s-) =7
'
ks :?)é :
e |7 - Stlogroup

ng #1 = There  ate 36 Sylow -
so  we pave only 16 elenmen
_subgroup have

{ of order 1T

A ssume + of ovder ¥

but lel= L =

so Ahe 35 5310w—13
35y 16 = 960 elemen
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229 Solution for HW-Six



.;Eﬂmb,Zgai_ —Hwg
— Joovse476

_Question 1 £): et B= rihz} 224} 7 . D€ B:e;u‘.gfs? if yes then
]_53]‘4} gh‘-ﬁl
_Pz‘n.cl 4 . IF no Haen ex'mm‘n B [

_ Soluken . o .
W check if IB] € UR) = IBI= £, So by finding deterimant of B we
have -
= Bl 31,23:31,43 + -$2,4 $1,43
= 31,233,493 +32,9731,4)
= 3u220 3043 +3249)03 8] . 1
30 4 3549} = $13-3930U343-%513 = SL,9%
= Iri= 31,43
N NOgB_' Daes rot exist because Bis inverhible if and only i f
IBLE VA where DA=SFL | cince IBIZSLYY +Ff =IRIdURA)
There fore B is not invertible bac ha invers e =‘>B-'Doeg pofexist-

Note -32,:4% =32,43

ec) let p=] 323 3139} ] Does B exist Q2 if Yes then findit . TE no
l?ba,v} 52,43 |

ibzxgﬁqzlam —_— e
Saluliam

Bcheck £ IBIEUA => [BI=F sa by findiag the detecminat_we
have .

Bl= 32,3232,43 + - $1,3,42 51,3,4} Note -334%=51,3,4}

= 323303247 + 213,930 %1,3,4%
2%+ 513,43

o 523 -506,3,43 U $1,3,4), - 523

= 323 U 31,3,4}

= ?’) 213_1‘/5
= IBl= 2'12131‘:13 =F
= Bl € (J(A)=5F¢

wl ol ,. B’ exist Since IBI = F. Now Fnd B—' e




I = B - £ rgz,qg 31,3, j} £ [ 32,42 513,40
F 131341 32,32 31,3,43 72,3%

|

= B—’; r§2,q3 2113/‘*}
l 513,93 3233 -
| Check if BE'=[F 67 = Nete 3334333 @

| s F | B
| >eg' 3232 3u3,.9) ] (324F 3u3.42] _[323+503,93 5324333
I i':3:"f} 321‘{; 36,3, q} izf 5} I L3‘1‘3+ 347 z|13/‘4_?: 4‘52;
i = F cb_] There Fore B _has_inverse B - ({2""1 813,41
: 6 rJ 31395 323
[ il Let B= | T B I3] 1L pussible Fnd B
23 F 33| _

! 3 3% F | Note =$2,4% = 32,43
— First check if IBIEUA)=F

IBi= E T 3327 - 32,430 3L3% §33] +%13[3L38 F
' s | [ s F 72 32
" F( ENF+=3230138) + 32,43/ 1,30 QE+ - 3220%33) +%:2(§h3¥7§23_'iﬁo£l

~F(F+ o) + éz,ql(‘;'n 3Z+¢b)+;az/cb—r§22\
‘ = F ¢ -+ @ —-F ; (
_ sy lBl'—'J': — B exist. MNow Fnd B usioq réux'_aperaﬁon
. ] J

. F P o @
Vi 53 7o o Flmremar |8 o F iz ch
B
| F o t ; o
r L b E m ;Jsfi"_};’ me, o
¢ ¢ T is22 ¢ F | FIR+R>Re.

B - - TEB s E 33 ;

_ - . L :3 12%7,,, ¢),_,7 Fﬁ
h, = S T YA e R IS S




- I F 52, ‘IZj ) B
So B = léj ,3} ”_:_'F 3:‘;3}‘{#.#
522 & F A

I - 5

K 4hat BB = | " ]

Now chec a _‘ @ Fﬁ_—@"‘I
- |® & F

s F s3] |93 F w3p|°

=>E:B-;—;IF 2 2} 4]]" 5247 33 [

s 33 F s, @ F

SISl
&ﬂ&_
He a

Me Forc ) -*S Possfbl: For B 1o have_ an.. Invers e

)3 3 F  3n33

Where B }F 32,43 3137

|53 & F |




2 . ; -
~—Queskon 2..-___._Co.n_vi.n6f_me_-inbaf_8=_[_; ___?_;L],,:s_"wﬁdlblc_avcr’. g ‘
e _Salutian;- 33 5

- 2
% B s inverhble iff. 1Bl EU(Zg) = U(8) So Now chJ —

the determinant of B. “1BI”

IBl.= 91 27V —-gf)] 2] 44 17 -5 mod& =3
3 s 13 sf [3 3/ ~lmodg = 3

. _omod 8 =&
2(5-€) 43 (5-6" +H4(3-3) -
= _9(=1) + 3(-1) + 0 »
= 9(3) +3(F) =25 mod 3 =3
There Fore I1Bl= 3 Since  3€ U(Zg) = U(8) There Fore B i's a8
Now  Find 1he inverse using row operation B
J I
2 g 1 o o Ch - ro | o
y 15 Y :n | r\W f?atfi?ﬂrﬂ? 2 5 %J l’ L QO n7 -
2 3 $!'o o | Russ¥s 2 3 5.0 0 'J n
= = \ 1 2'0 T 0o
2RitR2 ,.i q' 3 ! ? .f 37 5R'+"?3 o 2 o 1L 6 o !_
A= 7o) | = T L L= -4 ;
c =2 £ | o o 1 / @ O ~{i 6 =3 | -
L= 5 - ' -
- =5 [V ! 2 o | Y1V 1 270 1T o -
amOdgi T T T g °] Rz‘ a1 o L 2 07 »
= £ o )
imodd ™ [ & @ [ 4 o 01 !2 5 1| o
C IR 7 + e
1l have ameanding in g Sinle 2E U{}ZQ\Z e = 3~ 'w\ =3¢ /Zg i
.3
1 have meawing in ilg Since F GUfZRLu(E_l%) Fixl= 360 .‘
7 some For § =>7 € U(Zg) = 7'xe= 3 €24
1t 210 1 07 R- ' 0 2% <3 = T
_—-—’,‘3'—9‘310 |R_§n103332|21 w
o ol g 3 . o6 ! g 3
’ L]
I o 2:5 3 o opaR. ] 1 06 0 TS5 | =W
. [n 0329 -0 L Rat R', o )0 .3 2 ol |
LO e 1 /0. 3 jL‘ 1leo + .0 3 %] _ . "
 -14modg<2 _ |1 0 O ‘g ) 2° - - b
Tty o | oy 2 0
o ey < i e , nILE. Wy



> BE=15_1 2
) 3 2 o .
o 3 7
- -1
Now _ Check BER =171 —
>pg'=(2 5 4[5 1 2 95 24 32] )
L 2 ]]32 2 of[=]8 a | med8
3 3 5/|0 3 3 2U 94 )
= | 0 O-
=> B invertible since B exist ot o
0 o |

_L(ue_uaf;&{baih/ _and __:fL_Jmurw _na_mean m3__.sm_g_2 & 0(22)
__and 4EUL(7 "o nd L _are_un debiad i the Ring o

X Also we  wmole de 14 ,_L_m: heand m_fz &lmc‘:_ﬁséﬁU(/Zx)q_,

and 5€ V(X2  sa ® 2 3€2¢g aund

s'xs= g Eidg N




Ju&hb@b&gﬁwﬁ_om that —4=-) times 4. et Abe a
ﬁ_tnhﬁ_wjitbgdmjﬁj . Prove +4hat —a=-1-a far evc,rgﬁaﬁél_w_
Soluton: -

e o e A proVe  —a = -l-q whete -a_ is the addatiwe

inverce

—_ “we Know _that a0=0.0a =0 _
let  (1+(-))=0
_— So._ o , -
0-a=(+(-MNa = (1+(-) =0

= (146D = 1.a+(-N6 =0

o = e+ (-0a=04(a) =0 ~
= loaz=a  and (-D-a=-a
Theve Fore ~a = (~1)-a.
i
- -~ S
_— )
i e — =
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2210 Solution for HW-Seven



?“\Eﬂfahlf_,ad HWY

—— 3000864 7¢
r. :

L Lot A be Hhe ring Ziz- Find () NILAL U(A) and Td ()
*—\—\SOL@
S Zi2= 31,2,3,4,5,6:912,9,10,113 -

—— * 7(A)YS 9x6-=0, 3x4=0, 4X9=0.6x6= 0,6x10=0)
' 5 gxg=01 Ex6=0

. = Z(N=30,2,3,49,6,2,9 103

o NIA) 2 let a€ Zip ywhere 4”0 so Wwe have 6l=0 R
= Nil(A) =30,6} B - o o

U U(2)= Ul = S 1557113

1d(A) > Ld qe 22 where o’z sy we have H=Hs 9=9,1% WS
= Jd(A) =30.1,4,93

2| lof A be 4l ring 2 @ 7m - How many tnits (invertible element)
(’1{){"% A bnu;» { .
Solution ;- Find [U(A
. wekKnow (ab) is inverkble in A iFF_a isinverithle in T
(o € O(2n)=U(n)) avd_bis invertible in Zm (be U( Zm) = U(m))

. | Since _UI?n) U(n) has ﬁf’fn) ﬁlemenfs this mean aih;S
) Paéslbtfg orchoices

e ——— R

. Sp_f ‘."‘,‘)-_ ]2055.#. b A ’a 0 _C__Cho, ices

e Y

Wﬁ FOre {a,B). has Wn)cé(mJ POS«S'bW +his mean

UMW) _has_Bn)glim)_bnits. = IU(A)JJKQM
, ThereFore A have  $(n)@m) il

e




J

’% /‘r HI
the r j_Z&@ZwF—_EncL_Cbar_[AJ;End,U(A% o F
{ — Soludign:- B 4
(- Fnd char () where A= 2@ iy A
] Chayr (&) = char(() ) =€ o
Ckar(?;q): Char () =14 g;
. = rloar(fJ:,m) = Ltm (Char () s Chac()) -
4 = leem (6,14) = 6xi4 = g4 Y42 o
= Char(4) = 42 )
S,
- Find U(A =0 (Z¢®Z14) = UZ)® UL(Z1y) - -
. U(Zg) = U= 51,52 \O(Ze)B [U(Z1e)] .
- VY = Ul = 31,3,5,4,1,13}) z 9%6 = 19 .
I

= TheveFore Ulp) = ?(bl\;(iﬁ), (1,8), G, 9, 0,00 (11‘3)2
3 (50)) (5.9, (6,5) 1(5.,9 1 (5:1) / (éﬂ&)} -

4l o+ A be a rl‘njw csuch +that A=ROR: where Ry and. Rz are h‘ngs_a

_Damaja-

Such that IR1=2 and [R21>2 prove that A _is never an in-\—egm,!

bt a€ R oand be Ra Prove Hhat A is not an indeare! dewmaln

J

-

Since G E R _then (a,0) e RIL®R2 and &ince be R2
then (ob) € RIBR2: '

)

(0,0) @ (o,b) = (0s0)

=

Tis  wmean (4,0) and (o,b) are Zervo divisars

%

= Since (4,0) and (0,8 are ILvo divisors

= Tve Fore A is not an im‘cg,m[ Aowd i




\@\&Lm@mmmmﬁ wlﬂ"—j——u € U(A) and, we MA)

——— prove that Utw € UA)

——__ Solut<on: o
Lt GEUCA and WENI(A) _where Wso 4 nx |

—— prove u+w E€U(A)

= yaw= U (l+d'w) s where J'WE NIl(A) = (W) =0
e if n is odd then we have . .

TN APED), [(U”w)n_'—Ju"w)niz-f W TR +J

—_—

L 0wy (') 4t N4y ] =6

| — - _
= (u'w)"" = (Ww+)a but (u"w\n=o Since WY EANL

(4)

= Theve Fore (u'w +) € D(A)

= Udw = U (Hu‘_’m_) , Since WEUAY and (tdk) € U/

= U+W € U(A)

__Qn_%{ Nofe if niseven we have (K'w)=0 if i muktiply it by/d

 we have wWw)': Gw) o = [u-'w)”” =a  Sa p+l _isodd

. & CanJo the came Step abow B
- W)t = (u uurl [Cu "W W )”‘ -+ (u w) m_ o lzf

;1_( (W) = (W) e = w)_-u] = o

el _

= since (u (1)
] e (Ww+d = Gwt € 0R) .

sy UtW = ulu'w+1) since ueUA) and (u. W 4,) g(/{/;)

w)




! o
7.

=
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Name , ID

MTH 532 Abstract Algebra II, 2020, 1-1 © copyright Ayman Badawi 2020

HW I (WARM UP), MTH 532, Spring 2020

Ayman Badawi

QUESTION 1. (i) Let D be a group and a € D. Given |a| = m < co. Show that D = {a,a?,a%, ...,a™} is a subgroup
of D with m elements [hint: Since D is finite, just show that D is closed ]

(i) Let D be a group and a € D. Given |a] = m < oo. Assume that a” = e (recall e is the identity of D). Prove that
m | n.

(iii) Let D be a group and a € D. Given |a| = m < co. Let b € D such that b = a* where ged(k,m) = 1. Prove that
|b] = m.

(iv) Let D = (Za0,+). Given H = {0, 4,8, 12,16} is a subgroup of D. Find all left cosets of H.

(v) Let D = (Q,+). Then H = (Z,+) is a subgroup of (Q, +). Prove that H has infinitely many left cosets. Give me
5 distinct left cosets of H.

(vi) Let F = {6, 12, 18,24}. Convince me that F' is a group under multiplication module 30 by constructing the Caley’s
Table. What is e? What is 127!? What is 241?

Submit your solution on Saturday Feb 15, 2020 at 12.

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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MTH 532 Abstract Algebra II, 2020, 1-1 © copyright Ayman Badawi 2020

HW II , MTH 532, Spring 2020

Ayman Badawi

QUESTION 1. (i) Let D be a group, a € D such that |[a] = n < co. Let m be a positive integer and r = ged(m,n).
Prove that |a™| = n/r. I do not want to see a proof of this, the proof exists in the solution-book that I posted,
but you need to know this fact and use it

(ii) Let D = (Za4,+). Find |9], |14], [18|, |11] (hint: note that Z»4 =< 1 > and for example 8 = 18, then use (i)).
(iii) Leta,b € D. Assume that |b| = m < oc. Prove that |a~!ba| = m.

(iv) Let D = Z,, & Z,,, n,m > 2 (of course the binary operations are addition mod n and addition mod m). Let
(a,b) € D. Prove that |(a,b)| = LCM]|al, |b|] [hint: note that if k, w are integers, then LCM[k, w] = kw/ged(k, w),
for example LCM[8, 12] = 8.12/4 = 24]

(v) Let D = Z,, ® Z,,. Prove that D is cyclic if and only if ged(n, m) = 1. [hint: use part [V]
(vi) Let D = Zg @ Z14.
a. Convince me that D is not cyclic. Find the value of the integer m such that the order of each element in D is
< m.
b. Find |(3,5)| and |(4, 10)| [Hint: note 3 = 1° and 5 = 1°, now use (i) and (iv)].
c. Give me two subgroups of D, say H;, H, such that |H;| = |H,| = 2.

d. Does D have a cyclic subgroup of size (order) 21? If yes find a generator to such subgroup.

Submit your solution any time on SUNDAY before midnight, Feb 23, 2020 .

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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Name , ID

MTH 532 Abstract Algebra II, 2020, 1-1 © copyright Ayman Badawi 2020

HW III , MTH 532, Spring 2020

Ayman Badawi

QUESTION 1. (i) Fact (you may use it whenever it is needed, for a proof just see it in any Algebra TextBook, but
you must KNOW this FACT). Let H be a subset of a group D (note that H can be finite or infinite). Then H is a
subgroup of D if and only if a~! * b € H for every a,b € H (a, b need not be distinct).

(i) Let F, L be subgroups of a group D. Prove that M = F'N L is a subgroup of D (hint: Use (i) above)
(iii) by (ii), N = 12Z N 15Z is a subgroup of (Z, +). Since Z is cyclic, we know N = aZ. Find a.

(iv) Let D be an abelian group with 9 elements. Given that D has two distinct subgroups, H,, H, such that |H,| =
|H,| = 3. Convince me that it is impossible that D = (Zg, +). What will be an example of such group D?

(v) Let f € S, such that f is m-cycle. Convince me that if m is odd integer, then f € A, and if m is an even integer,
then f & A,,.

1 23456 78
) Let f — Se.
(Vl)ef<43687215>68

a. Find |f|. Is F € Ag? explain

b. Does Ag has an abelian subgroup with 15 elements? [Hint: If you show that As has a cyclic subgroup with 15
elements, then you are done, since cyclic implies abelian]

(vii) Let f = (143)(14) € Sy. Find |f|. Let k = (14 3)(15) € Ss. Find |K|.

(viii) Given H = {(1),(1 4 3),(1 3 4)} is a subgroup of Ss (this is given, you do not need to check unless you do not
believe me). Find the left coset (1 5) o H and find the right coset H o(1 5). What do you observe? Can we say that
H is a normal subgroup of Ss5?

(ix) Let a,b be element of a group such that a x b = b * a. Assume |a| = n and |b| = m. Let k = |a x b|. Prove k | nm.

(x) Give me an example of two elements a, b in a group where |a| = n, |b| = m and |a * b| = k, but k { nm [hint: Stare
at the element £ in vii and some how find a and b !]

(xi) Let a,b be element of a group such that a x b = b * a. Assume |a| = n, |b| = m and ged(n,
Prove k = nm.[Hint: you may want to use the fact from number theory that if ged(w, d) =
wd | ¢, of course w, d, ¢ are some positive integers]

=1.Letk =|axb|
d | cand w | ¢, then

)
1,

(xii) Let F': (Dy,*1) — (D3, *;) be a group-homomorphism and H < D;. Prove that F'(H) is a subgroup of D, (note
it is possible that H = Dj)[Hint: Use part (i) above]

(xiil) Let F : (Zy,+) — (Zi5,+) be a group homomorphism such that F(1) # 0. Find F(Z,4). [Hint: Note that Z,, is
cyclic, F(Z»4) is a subgroup of Z;s by xii and |F'(a)| must be a factor of |a| for every a € Z»4 by class-Theorem ].
Find F(1), F(8), F(12).

Submit your solution (by EMAIL) any time / all HWs must be submitted by Wed. before midnight, March 4,
2020 .

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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MTH 532 Abstract Algebra II, 2020, 1-1 © copyright Ayman Badawi 2020

HW IV, MTH 532, Spring 2020

Ayman Badawi

QUESTION 1. (i) Let D be a group with 27 elements. You just observed that C(D) has at least 4 elements. Prove
that D is abelian.

(i1) You need this fact, so you must know it and make use of it. Assume that H, K are subgroups of a group (D, x).

Note that H x K ={h*k|h € H,k € K}. Then |H « K| = \Iglrig‘l (no proof is needed)

(iii) Let D be a finite group, K, H are normal subgroups of D such that H * K = D and H N K = {e}.

a. Prove that K ~ D/H [ Hint note that |D/H| = | K|, define f : K — D/H such that f(k) = k x H for every
k € K. Show that f is group homomorphism and then you only need to show that fis 1-1.]

b. Prove that H = D/K.

c. Prove that D ~ £ ® £ ~ K @ H. [hint: Define f : D — £ & £ such that f(d) = (d* H,d = K) for
every d € D. Show that f is a group homomorphism. Then show that f is 1-1 (note both groups have same
cardinality. Then use (a) and (b) and finish the proof.)]

(iv) Let H, K be subgroups of a group D. In general, H * K need not be a subgroup of D. However, if K is a normal
subgroup of D, then prove that K * H is a subgroup of D. [hint: Just show a~! xb € K % H for every a,b € K x H]

(v) Let D be a group with 38 elements, K, H are subgroups of D such that |K| = 19 and |H| = 2 such that H is a
normal subgroup of D. Prove that D ~ Zsg [hint: note that |D/K| = 2 and hence K is a normal subgroup of D by
class notes and use (iii (c)), Show that D is cyclic and hence by class notes D = Zsg )]

(vi) Let D be an infinite cyclic group. Prove that D has exactly two generators. [Hint: We know D ~ Z. Hence how
many generators does Z have?]

(vi) Let U(n) = {a € Z,|gcd(a,n) = 1}. Prove that U(n) is a group under multiplication mod n with ¢(n) elements.
[Hint: Closure is clear, if z,y € U(n), then ged(x,n) = ged(y,n) = 1 and hence ged(zy,n) = 1. Thus zy € U(n).
To prove the inverse, you need to use Fermat-Euler result: let a € U(n), since ged(a,n) we know that n|(a®™ — 1)
and this means that a®(™ = 1 mod(n). Thus ! = a(¢(")=1) mod(n)]. Example: U(12) = {1,5,7,11} is a group
(abelian) with ¢(12) = 4 elements under multiplication mod(12).

(viii) (must KNOW, no need for a proof, nice result on U(n)) . Assume n = p{'p3?---p* (prime factorization of n
where py < py < --- < pi). Then we know ¢(n) = (p1 — D)p\™ ™"+ (pp — )p\®* ") Then (BEAUTIFUL

RESULT) If n is even then (p; = 2) and

Un) = Za ® Zyioy-0 ® Zp,—1) ® Zpéarl) DD Zp—1) D prwl). (note if a; = 1 then remove Z; & Zya, -2,
note U(2) = {1} ). If n is odd, then

Un) ~ Zp,—1) @ Zpgal—w D Z(p,—-1) ® Zp;arw DD Zp—1) D Zpgf’“’”' Example Assume n = 2357113, Hence

#(n) = 22(4)5%(10)11%. (nis even). Hence U(n) ~ Z, ® Z, © Z4y & Zse © Z10 ® Z,12. Example n = (2)7813%. (n
is even). ¢(n) = (6)77(12)13'. Hence U(n) ~ Z¢ ® Z71 & Z12 ® Z13

(ix) Prove that U(n), n > 3, is cyclic if and only if n = 4 or n = p* or n = 2p* for some ODD prime p and k > 1.
[hint: note that if p is prime odd then ged(p — 1,p) = 1, also note that if p is odd, then p -1 is even. Use (viii) and
old HW!).

(x) Prove that U(64) has an element of order 16, but it has no elements of order 32. (Hint: of course you are not going
to calculate the order of each element!, use (viii) and old HW).

(xi) Prove that D = (Zs,+) @ U(18) is cyclic, and hence D =~ (Z,,,+). Find m.

(xii) prove that (Q*,.) is not cyclic. [Hint: We know Q* is a group under normal multiplication. Note that in an infinite
cyclic group D we have |a| = oo for each a € D — {e} (class notes).

Submit your solution (by EMAIL) any time / all HWs must be submitted by Wed. before midnight, March 18,
2020 .

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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MTH 532 Abstract Algebra II, 2020, 1-1 © copyright Ayman Badawi 2020

HW V , MTH 532, Spring 2020

Ayman Badawi

Observations

(i) Let p, g be two primes numbers (p, q need not be distinct) If H, K are two distinct groups with p elements and q
elements, respectively, then H N K = {e}. Note that if p = g, but H, K are distinct, we still have H N K = {e}.

(ii) If |[H| = p™and|K| = ¢", where g, p are distinct prime integers, then H N K = {e}.

(i) If D = Zs ® Zps @ Z3, then D has many subgroups with 25 elements. For, let H be a subgroup of Z,s with 5
elements. We know that such H is unique (since Z,s is cyclic). Hence W = Zs @ H ®{0} and K = {0} ® Z»5 ® {0}
are subgroups with 25 elements. Also since |(a, 1,0)| = 25 for every a € Zs, we conclude that for each a € Zs, the
group F, generated by (a, 1, 0) is a cyclic subgroup of D with 25 elements. Also note that W, K, F;, (a # 0) are
distinct subgroups and each is with 25 elements, note if a = 0, then F, = K.

UESTION 1. Let D be an abelian group with 2352 elements
Q group

(i) Suppose that D has exactly one subgroup with 4 elements. Find all non-isomorphic groups with these properties.
[hint: Observations above might be useful]

(i) Suppose that D has exactly one subgroup with 4 elements and it has exactly one subgroup with 5 elements. Find
all non-isomorphic groups with these properties.

QUESTION 2. Let D be a cyclic group with 100 elements. Convince me that (AUT'(D), o) is an abelian group and find
mi, ..., my such that AUT (D) = Z,,, @ -+ @ Zy,, . [hint: Use my lecture! and HW 4].

QUESTION 3. Prove that every group with n = 17.3% is abelian. Find all non-isomprphic groups with n elements.
[Hint: See my first lecture on Sylow !]

QUESTION 4. Let D be a group with 5.11.29. Prove that D has exactly one subgroup with 29 elements, say H, and
H C C(D). [hint: see my part 2 lecture on sylows].

QUESTION 5. Let D be a group with 216 elements. Prove that D is not simple. [hint: note that 216 = 23.3% and it is
possible that n3 = 4. Use the technique as in my part 2 lecture on Sylow’s Theorem to construct a group homomorphism
with non-trivial kernel.]

QUESTION 6. Let D be a group with 5.7.17 elements. Prove that D is not simple. Assume that n;7 # 1. How many
elements in D have order 17? [hint: Find ns...so you may discover that D is not simple. see OBSERVATION (i) above...,
then it should be clear how many elements in D have order 17]

Submit your solution (by EMAIL) any time by Wed. before midnight, March 25, 2020 .

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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HW six , MTH 532, Spring 2020

Ayman Badawi

(1) you need to know this fact: Fix n > 2 and A be a commutative ring with 1. Then B € U(A™*") if and only
if |[A| € U(A), i.e. using street language , an n x n matrix B is invertible over A if and only if determinant of B is
a unit of A (an element in a ring A is called unit, if it has inverse under multiplication)

For example A matrix B € U(Z"*") if and only if |B| € U(Z,,) = U(m). A matrix B € U(Z"*") if and only
if|BleU(Z) ={1,-1}

(2) You need to know the meaning of FRACTIONS in a ring: Let A be a commutative ring with 1 and a,b € A.
Then ¢ has a meaning in A if and only if b € U(A). If b € U(A), then ¢ means b~ 'a.

For example £ has a meaning in the ring Z since 5 € U(Zs) = U(6) and % means the element 5-'4 =2 € Z.
Since 4 ¢ U(Zy4) = U(14), 5 is undefined in the ring Z,4.

QUESTION 1. Let F' = {1,2,3,4} and A = P(F) (P(F) is the power set of F, note | P(F')| = 16). We know (A, +, .)
is a commutative ring with identity 1 = F (see class notes, a + b = (a — b) U (b — a) and ab = a N b for every a,b € A).
Also, we know that U(A) = {F} and hence a matrix B € U(A"*™) if and only if |B| = F. Also, from class notes, we
know —a = a and a> = a for every a € A

{1,3} {2,4}
{1,2,4} {1,2,3}
ring A. Then all techniques you learned from basic linear algebra can be applied on A. In a basic linear algebra course
your ring is R, but here your ring is A.

For example B = € U(F?*2). You only need to know what + means and what . means in the

b d -
For example we know that if B = “ d is invertible over R then B~! = ﬁ l ] . We can use this fact for
c —c a

any 2 x 2 matrix over a commutative ring with identity.
So |B] = {1,3}{1,2,3} + —{2,4}1{1,2,4} = {1,3} n {1,2,3} + {2,4} N {1,2,4} = {1,3} + {2,4} = ({1,3} -
1,2 2,4
{2,4})) U ({2,4} — {1,3}) = {1,2,3,4} = [ € U(A). Hence B is invertible. Thus B~! = £ W }] B

Fl1,2,4) {1,3}
. {1,2,3} {2,4}|  [{1,2,3} {2,4}
{1,2,4} {1,3}  [{1,2,4} {1,3}

Note that BB~! = B~'B = Z o1 _ I sinceinour A, 1 = F and 0 = ¢.
1,2 2.4
(i) Let B = 1,2} {2,4 . Does B~! exist? if yes, then find it. If no, then explain.
{3,4} {1,3}
2 1,3,4
(ii) Let B = 2,30 {1.3,4} . Does B~ ! exist? if yes, then find it. If no, then explain.
{1,3,4} {2,4}
{24 {1}
(iii) Let B = [{1,3} F {3}|. If possible find B~! [Hint: Use the techniques you learned from linear Algebra.
{21 {2y F
F o9 ¢ F ¢ ¢
Use row operations and try to change the matrix [B| |¢ F ¢| into[|¢ F ¢||C]. If you succeed then
¢ ¢ F ¢ ¢ F

C =B if you did not succeed, then B is not invertible over A.

2 5 4
QUESTION 2. Convince me that B = |1 1 2| is invertible over Zs. Again use the techniques you learned in
3 35

linear algebra but here addition means addition mod 8 and multiplication means multiplication mod 8 and in view of the
comments in (2) observe that 1/2, 1/4 have no meaning in Zg but 1/3, 1/5 have meaning!.

QUESTION 3. If our ring is R, we know that -4 = -1 times 4. Let A be a ring with identity. Prove that —a = —1.a for
every a € A (i.e., prove that the additive inverse of a equals the additive inverse of the identity "1" times a). (Hint: use
that fact that .0 = 0 = 0.a = O for every a € A)

Submit your solution (by EMAIL) any time by Friday midnight, April 17, 2020 .



2 Ayman Badawi

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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HW SEVEN , MTH 532, Spring 2020

Ayman Badawi

QUESTION 1. Let A be the ring Zj». Find Z(A), Nil(A), U(A) and Id(A).

QUESTION 2. Let A be the ring Z,, ® Z,,,. How many units (invertible elements) does A have? i.e., Find |U(A)| [Hint:
it is trivial to see that (a, b) is invertible in A iff a is invertible in Z,, and b is invertible in Z,,, some how the question is
related to ¢ (k)]

QUESTION 3. Let A be the ring Zs & Z4. Find Char(A). Find U(A).

QUESTION 4. Let A be a ring such that A = R; & R, , where R; and R, are rings such that |R;| > 2 and |Ry| > 2.
Prove that A is never an integral domain.

QUESTION 5. Let A be a commutative ring with 1, u € U(A) and w € Nil(A). Prove that u +w € U(A). (hint: Note
that u +w = u(1 +u~'w) and u='w € Nil(A). Also note that if m is an odd integer, then high school math tells us that
2+ 1= (x+ D)@' —a2m 24+ .+ —z+ 1))

QUESTION 6. Let A be a commutative ring with 1 and e € Id(A). Prove that 1 — e € Id(A) and 1 —2e € U(A).

QUESTION 7. Let B = {0,3,6,9,12}. Show that (B, +,.) is a subring of the ring (Zs,+,.). Is B an ideal of Z;5?
note that B is a ring too!. What is "1" of the ring B? Is the "1" of B the same "1" of Z;5? What is Char(B)? Is Char(B)
different from Char(Z;5)? Is B a field? [hint: Just do the Caley’s table of (B, +) and the Caley’s table of (B, .), stare
really well, then start answering the questions!, remember + means addition mod 15 and . means multiplication mod 15]

Submit your solution (by EMAIL) any time by Monday midnight, April 27, 2020 .
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Name , ID

MTH 532 Abstract Algebra , 2020, 1-1 © copyright Ayman Badawi 2020

EXAM 1, MTH 532, Spring 2020

Ayman Badawi

QUESTION 1. Given D is a group with 48 elements. Assume that D has an element ¢ € C(D) such that |a| = 16.
Prove that D is cyclic.

QUESTION 2. Does U (54) have an element of order 18? If yes, how many elements of order 18 does U(54) have?
QUESTION 3. Let f : (Z13,+) — (U(50),.) be a group homomorphism such that f(1) # 1. Find f(0). Find Ker(f).

QUESTION 4. Let D be a group with 100 elements. Assume that D has a subgroup H with 20 elements such that
H C C(D). Prove that D is an abelian group.

QUESTION 5. (i) EXTRA CREDIT, but you need it to solve (ii). Let D be a finite group and H be a subgroup of
D such that [D : H] = m for some integer m (note that [D : H| = |D|/|H| = number of all distinct left cosets of
H). Prove that there is a group homomorphism , say f, from D into S, such Ker(f) C H.

(ii) Let D be a finite simple group. Assume that H, K are subgroups of D such that [D : H| = py and [D : K| = p, for
some prime integers pj, p». Prove that p; = p;. (nice result!)

QUESTION 6. Let D be a group with p™ elements, where p is a prime integer and m > 2. Prove that D has a normal
subgroup with p™~! elements. [Hint : Show that D must have a subgroup H with p™~! elements by class note result
(which result?). Then use class - lecture (result) to show that A is normal in H (which result?)].

QUESTION 7. Let D be a group with (52)(7?) elements. Prove that D is an abelian group. Find all non-isomorphic
groups with (52)(72) elements?

QUESTION 8. Leta = (123)0(13425) € Se. Isa € Ag? Find |a|.
QUESTION 9. Let D be a group with 105 elements (105 = (3)(5)(7)).

(i) Prove that D is not simple. [Hint: Assume D is simple. How many elements of orders 7, 5, 3 does D have? is this
possible?

(i) Assume that n; = 1 (i.e., D has exactly one sylow-7-subgroup). Prove that D has a normal cyclic subgroup with
35 elements [hint: Use a result from HW, use a result from class notes! and of course sylow’s theorems] .

Submit your solution by 3 pm (as at most), March 28, 2020 .
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Name , ID
MTH 532 Abstract Algebra II, 2020, 1-1 © copyright Ayman Badawi 2020

EXAM IT, MTH 532, Spring 2020

Ayman Badawi

Submit your solution any time before 00: 15, (I will deduct points after 00 : 17) .

QUESTION 1. (i) Let A be a commutative ring with 1 and B be a commutative ring (B may not have "1"). Assume
[+ A — Bisaring-homomorphism. Prove that f(1) € Id(B) (i.e., show that f(1) is an idempotent element of B).

(i) Let A be a commutative ring with 1 and B = 2Z (B is the set of all even integers). Assume f : A — Bisa
ring-homomorphism. Prove that f(a) = 0 for every a € A.

(iii) Let A, B be fields and f : A — B is a ring-homomorphism such that f(a) # 0 for some a € A. Prove that f is
injective (i.e., prove that f is one-to-one).

(iv) Let f : Zg — Zg be a ring-homomorphism. Prove that f(a) = 0 for every a € Z.

QUESTION 2. Let A be a commutative ring with 1 and let I be a proper ideal of A that is not a maximal ideal of A.
Hence, we know that I C M for some maximal ideal M of A. Let a € M — I. Prove that ¢ + I is not an invertible
element of the ring A/I (i.e., show that a + I ¢ U(A/I)).

QUESTION 3. Let A be a finite commutative ring with 1 and a € A. Suppose that a ¢ Z(A). Prove that a € U(A).

QUESTION 4. Let A be a commutative ring with 1 and f(X) € A[X] such that f(X) # 0 and f(X) € Z(A[X]). For
every n > 1, prove that there exists a polynomial k(X ) € A[X] of degree n such that k(X)f(X) = 0.

QUESTION 5. Let A be a commutative ring with 1 and I be a prime ideal of A. Prove that Nil(A) C I.
QUESTION 6. (i) Let A = Z4 @ Zs. Find all prime ideals of A.

(ii) Let A = Zj» ® Zs. Find Nil(A).

4
. Is B invertible over Zo? If yes, then find B~!. If No, then explain.

i Let B —
(i) Le ) 9

(iv) Let A = Zyp[X] and f(X) =2X*+5X +4 € A. Is f(X) € Z(A)?
(v) Give me an example of a commutative ring A with 1 such that Char(A) =5 and Z(A) # {0}.

(vi) Let A = Zjg[X] and f(X) = 6X?+ 12X + 17 € A. Is there a polynomial k(X ) € A such that k(X)f(X) = 1? If
yes, then explain (you do not need to find k(X)). If no, then tell me why not.

Faculty information
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Final Exam , MTH 532, Spring 2020

Ayman Badawi

QUESTION 1. Let F be a finite field with 2'? elements.

(i) (3 points) Let a € F. Then a is a root of an irreducible monic polynomial of degree m over Z, Find all possibilities
of m.

(ii) (3 points) We know that (£™,.) is a cyclic group and hence (F™*,.) =< a > for some a € F™*. Prove that the degree
of Irr(a, Z,) = 127 (i.e., prove that the degree of the unique irreducible monic plolynomial over 7, that has a as a
root is 12)

(iii) (3 points) We know |F*| = 212 — 1 = 4095. Since 819 | 4095, then we know that F'* has a unique cyclic subgroup,
say H =< b > for some b € F* with 819 elements. What is the degree of Irr(b, Z;)? justify your answer

(iv) (4 points) Let P;; be the set of all irreducible monic polynomials of degree 12 over Z,. Find |Pj;|. Show the work.

(v) (8 points) Find all elements of the Galois group Aut(F/Z,). For each subgroup H of Aut(F/Z,) find the corre-
sponding subfield of F', say Ly, that is fixed by H.

QUESTION 2. Let F be the 5th cyclotomic extension field of @
(1) (2 points) E = Q(a) for some a € C (C is the ring (field) of all complex numbers). Find a.

(ii) (6 points)Let a as in (i), find Irr(a, Q), find [F : Q], and find all roots of Irr(a, Q) inside F. Is Aut(E/Q) a cyclic
group under composition? how many elements does Aut(E/Q) have?

(iii) (2 points) Find a basis B (in terms of a) of F over Q.
(iv) (2 points) write a® + a’ 4 a* as a linear combination of the elements in the basis B (B is as in iii).
(v) (4 points) For each subgroup of Aut(F/Q) with 2 elements, say H, find the corresponding subfield of F, say Ly,
that is fixed by H.
QUESTION 3. Let E = Q(v/5,V7).

(i) (3 points). We know that £ = Q(a) for some a € R. Find Irr(a,Q) (i.e., find the unique irreducible monic
polynomial over () that has a as a root. What is [E : Q]?

(ii) (3 points) It is clear that L = Q(+/35) is a subfield of E. Find the subgroup, say H, of Aut(E/Q) that fixes the
field L.

(iii) (3 points) Is the field Q(/5) isomorphic to the field Q(v/7)? If yes, then construct such ring-isomorphism (field-
isomorphism)? If no, then explain briefly why not?

QUESTION 4. (3 points) Let E be the splitting field of the polynomial f(z) = 2’ — 18. We know that E is a Galois
Extension of Q. Prove that Aut(E/Q) is a non-abelian group.

QUESTION 5. (i) (2 points) Give me an example of an integral domain that is not a UFD (Unique Factorization
Domain).

(ii) (2 points) Give me an example of a Unique Factorization Domain that is not a principal ideal domain

(iii) (4 points) Let A be a principal ideal domain. Prove that every prime ideal of A is a maximal ideal of A.[Hint: Every
proper ideal is a principal ideal, and every proper ideal is contained in a maximal ideal].

(iv) (4 points) Let A be a commutative ring with 1. Suppose that A has exactly one maximal ideal. Prove that Id(A) =
{0, 1}. [Hint: note if x ¢ U(A), then the ideal (z) = zA is a proper ideal of A].

(v) (4 points) Let A be an integral domain, P be a prime ideal of A, and I be a proper ideal of A such that /NP = {0}.
Prove that there exists a prime ideal F' of A such that I C F and FF N P = {0} [Hint: Let W = P — 0, note
INwW =0]

QUESTION 6. ( 4 points). Let F' be a group with 12 elements. Prove that F' must have a normal subgroup with 3
elements OR F must have a normal subgroup with 4 elements.
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