MTH 532 Abstract Algebra 2020, 1–121

\_\_\_\_, ID \_\_

### MTH532-Course Portfolio-Spring 2020

Ayman Badawi

**Table of contents** 

| Та | ble of | f contents                                  | 1               |
|----|--------|---------------------------------------------|-----------------|
| 1  | Se     | ection 1: (No change )Course Syllabus       | 2               |
| 2  | Se     | ection 2: Instructor Teaching Material      | 7               |
|    | 2.1    | HANDOUTS                                    | 7               |
|    |        | 2.1.1 Handout on the Unit-Group of $Z_n$    | 8               |
|    |        | 2.1.2 Handout on Rings                      | 10              |
|    |        | Handout on Fields                           | 12              |
|    | 2.2    | Worked out Solutions for all Assessment Too | 1c              |
|    | 2.2    | Solution for Exam One                       | 21              |
|    |        | 222 Solution for Exam Two                   | $\frac{21}{24}$ |
|    |        | 223 Solution for The Final Exam             | 27              |
|    |        | 2.2.4 Solution for HW-ONE                   | 31              |
|    |        | 2.2.5 Solution for HW-Two                   | 35              |
|    |        | 2.2.6 Solution for HW-Three                 | 45              |
|    |        | 2.2.7 Solution for HW-Four                  | 57              |
|    |        | 2.2.8 Solution for HW-Five                  | 75              |
|    |        | 2.2.9 Solution for HW-S1X                   | 83              |
|    |        | 2.2.10 Solution for Hw-Seven                | 90              |
| 3  | Se     | ection 3: Assessment Tools (unanswered)     | 97              |
|    | 3.1    | Homework                                    | 98              |
|    |        | 3.1.1 <b>HW-One</b>                         | 99              |
|    |        | 3.1.2 $HW-IWO$                              | 101             |
|    |        | 3.1.3 HW-Inree                              | 103             |
|    |        | 3.1.4 HW-FOUR                               | 105             |
|    |        | 3.1.5 $\Pi W - \Gamma V e$                  | 107             |
|    |        | 3.1.6 $\Pi$ W-SIX                           | 109             |
|    |        | $\mathbf{F}_{\mathbf{v}}$                   | 112             |
|    | 3.2    | Examone                                     | 114             |
|    |        | 3.2.1  Exam Two                             | 115             |
|    |        | 323 Final Exam                              | 11/<br>110      |
|    |        |                                             | エエブ             |

1 Section 1: (No change )Course Syllabus

# الجـــامعـة الأمــِـركـيــة فـي الـشــارقـة American University of Sharjah

| Α | Course Title<br>& Number              | ABSTRACT ALGEBRA: MTH 532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |    |                       |     |         |   |
|---|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----|-----------------------|-----|---------|---|
| В | Pre/Co-<br>requisite(s)               | Admission to MSMTH program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |    |                       |     |         |   |
| С | Number of<br>credits                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |    |                       |     |         |   |
| D | Faculty Name                          | Ayman Baday                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | wi      |    |                       |     |         |   |
| Е | Term/ Year                            | Spring 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |    |                       |     |         |   |
| F | Sections                              | CRN Course Day Time Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |    |                       |     |         |   |
|   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MTH 532 | S  | 12—14                 | :45 | Nab 007 |   |
|   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | II |                       |     | 1       | - |
| G | Instructor                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |    |                       |     |         |   |
| U | Information                           | Instructor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Offi    | се | Telephon<br>e         |     | Email   |   |
|   |                                       | Ayman NAB 262 XXX I prefer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |    | prefer:<br>wi@aus.edu |     |         |   |
|   |                                       | Office Hours: By appointment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |    |                       |     | -       |   |
| н | Course<br>Description<br>from Catalog | Covers basic properties of groups, normal subgroups and direct sum of groups; homomorphism and isomorphism between groups; classification of finite abelian groups; and applications of Sylow's Theorems. Introduces rings, ideals, polynomial rings, irreducible and prime elements of rings, unique factorization domains, fields and their extensions including finite fields.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |    |                       |     |         |   |
| I | Course<br>Learning<br>Outcomes        | <ul> <li>ideals, polynomial rings, irreducible and prime elements of rings, unique factorization domains, fields and their extensions including finite fields.</li> <li>Upon completion of the course, students will be able to: <ul> <li>Develop mathematical proofs and reason abstractly in exploring properties of rings and groups. (Exam I, Exam II, and Final)</li> <li>Demonstrate an understanding of Lagrange Theorem and its applications, symmetric groups, quotient groups, cyclic groups. (Exam I and Final)</li> <li>Demonstrate an understanding of the structure of finite abelian groups (Exam I and Final).</li> <li>Demonstrate an understanding of Sylow's Theorems and their applications (Exam I and Final)</li> <li>Demonstrate an understanding of the intellectual structure of rings, ideals, prime ideals, primary ideals, 2-absorbing ideals, maximal ideals, prime elements, irreducible elements and quotient rings. (Exam II and Final)</li> <li>Use and apply homomorphism and isomorphism theory between rings and groups. (Exam II and Final)</li> <li>Demonstrate an understanding of fields, and field extension (Exam II</li> </ul> </li> </ul> |         |    |                       |     |         |   |



|   |                                                                     | • D<br>G                                                                                                                                                                                                                                                                                             | emonstr<br>alois fie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rate an<br>Id, finit                                                                                                                                               | underst<br>e fields,                                                                            | anding of separable fields, splitting fields,<br>and cyclotomic field extension. (Exam II and              |
|---|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| J | Textbook and<br>other<br>Instructional<br>Material and<br>Resources | Primary: Instructor class notes. I-Learn, my personal webpage<br><u>http://ayman-badawi.com/MTH%20530.html</u> and<br><u>http://ayman-badawi.com/MTH%20531.html</u><br>Reference:<br>David S. Dummit and Richard M. Foote, <i>Abstract Algebra</i> - Third Edition<br>Any graduate textbook will do. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                    |                                                                                                 |                                                                                                            |
| к | Teaching and<br>Learning<br>Methodologies                           | The teach<br>include<br>assignme                                                                                                                                                                                                                                                                     | hing and<br>white l<br>ents, two                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d learni<br>board<br>b exam                                                                                                                                        | ing tools<br>and m<br>s and a                                                                   | used in this course to deliver the subject matter<br>parkers, formal lectures, class discussions,<br>final |
| L | Grading Scale,<br>Grading<br>Distribution,<br>and Due Dates         | Below I           B+           B-           C+           Fail           F           Academ           Violatio  | Scale<br>Scale<br>0, A-: 8:<br>63-66.<br>M<br>Equals<br>points<br>Equals<br>points<br>Equals<br>points<br>Equals<br>points<br>Equals<br>points<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>point<br>Equals<br>Point<br>Equals<br>Point<br>Equals<br>Point<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals<br>Equals | 0 exam         184.99         99 , F          4.00         0n         3.80         3.30         3.00         100         2.70         2.30         0.00         In | grade<br>grade<br>grade<br>grade<br>grade<br>grade<br>grade<br>grade<br>grade<br>grade<br>grade | final<br>7 80.99, B: 74 76.99, B-: 70 – 73.99 , C+: 67                                                     |

# الجـــامعـة الأميـركـيـة فـي الـشــارقـة | American University of Sharjah

Μ

Ν

| XF    | Equals points    | 0.00 | grade |
|-------|------------------|------|-------|
| Withd | rawal Fa         | il   |       |
| WF    | WF Equals points |      | grade |

### **Grading Distribution**

|                                                    | Assessment                                                                                                                                            | Weight           | Date               |  |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|--|
|                                                    | Homework                                                                                                                                              | 15 %             |                    |  |
|                                                    | Mid-Term one                                                                                                                                          | 25 %             |                    |  |
|                                                    | Mid-Term two                                                                                                                                          | 25%              |                    |  |
|                                                    | Final Exam                                                                                                                                            | 35%              | Comprehensive      |  |
|                                                    | Total                                                                                                                                                 | 100 %            |                    |  |
|                                                    |                                                                                                                                                       |                  |                    |  |
| Explanation of<br>Assessments                      | Exams, homework assignments will include proofs. So students are expected to master some of the techniques that are commonly used in Abstract Algebra |                  |                    |  |
| Student<br>Academic<br>Integrity Code<br>Statement | Student must adhere to the Academic Int catalog.                                                                                                      | egrity code stat | ed in the graduate |  |

### SCHEDULE

### Note: **Tests and other graded assignments due dates are set.** No addendum, make-up exams, or extra assignments to improve grades will be given.

| # | WEEKS | CHAPTER/SECTIONS                                                                                                                                                                                                               | NOTES                            |
|---|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
|   | 16    | Groups, subgroups, cyclic groups,<br>symmetric groups, quotient groups,<br>product of groups, normal subgroups,<br>Sylow's groups, classification of finite<br>abelian groups, group homomorphism<br>and isomorphism<br>EXAM I | Definitions, Examples, proofs    |
|   | 7-13  | Rings, ideals, prime ideals, primary ideals,<br>2-absorbing ideals, maximal ideals,<br>quotient rings, quotient fields, prime<br>elements, irreducible elements, product of<br>rings, localized rings, fields                  | Definition<br>Examples<br>Proofs |

| <b>ATIC</b> | الجامعة الأميركية في الشارقة   |
|-------------|--------------------------------|
| AUS         | American University of Sharjah |

|      | Exam II                                                                                      |  |
|------|----------------------------------------------------------------------------------------------|--|
| 1416 | separable fields, splitting fields,<br>cyclotomic fields, finite fields, and Galois<br>field |  |

## 2 Section 2: Instructor Teaching Material

# 2.1 HANDOUTS

# $\frac{8}{2.1.1}$ Handout on the Unit-Group of $Z_n$

MTH 532 Abstract Algebra II, 2020, 1-1

-. ID -

### U(n) is cyclic?, MTH 532, Spring 2020

#### Ayman Badawi

 $n \ge 3$ . Then U(n) is cyclic iff n = 4,  $n = p^m$ , or  $n = 2p^m$  for some odd prime p and integer  $m \ge 1$ . Suppose that n = 4 or  $n = p^m$ , or  $n = 2p^m$  for some odd prime p and integer  $m \ge 1$ . We show that U(n) is cyclic. If n = 4,  $U(4) \approx Z_2$  is cyclic. If  $n = p^m$  for some odd prime p and integer  $m \ge 1$ , then  $\phi(n) = (p-1)p^{m-1}$ . Hence  $U(n) \approx z_{p-1} \oplus z_{p^{m-1}}$ . Since  $gcd(p-1, p^{m-1}) = 1$ , U(n) is cyclic. If  $n = 2p^m$  for some odd prime p and integer  $m \ge 1$ , then  $\phi(n) = (n-1)p^{m-1}$ . Hence  $U(n) \approx z_{n-1} \oplus z_{m-1}$ . Since  $gcd(n-1, p^{m-1}) = 1$ . U(n) is cyclic.

, then  $\phi(n) = (p-1)p^{m-1}$ . Hence  $U(n) \approx z_{p-1} \oplus z_{p^{m-1}}$ . Since  $gcd(p-1, p^{m-1}) = 1$ , U(n) is cyclic. Now assume that  $n \neq 4$  and  $n \neq p^m$ , and  $n = 2p^m$  for some odd prime p and integer  $m \ge 1$ . We show that U(n) is not cyclic.

Case 1. Assume  $n = 2^m$ ,  $m \ge 3$ . Then  $U(n) \approx z_2 \oplus z_{2^{m-2}}$ . Since  $gcd(2, 2^{m-2}) \ne 1$ , U(n) is not cyclic.

Case 2. Assume  $n = 2^k p^m$ , p is odd prime,  $k \ge 2$ , and  $m \ge 1$ . Then  $\phi(n) = 2^{m-1}(p-1)p^{m-1}$ . Thus  $U(n) \approx D = z_2 \oplus z_{2^{m-2}} \oplus z_{p-1} \oplus z_{p^{m-1}}$ . Now  $H = z_2 \oplus \{0\} \oplus z_{p-1} \oplus \{0\}$  is a subgroup of D. Since  $gcd(2, p-1) \ne 1$ , H is not a cyclic subgroup of D. Thus D is not not cyclic (we know every subgroup of a cyclic group is cyclic). Hence U(n) is not cyclic.

Case 3. Assume  $n = 2p_1^{k_1}p_2^{k_2}\cdots p_m^{k_m}$ , where  $m \ge 2$ ,  $p_1, ..., p_m$  distinct prime odd integers. Then  $\phi(n) = (p_1 - 1)p^{k_1-1}(p_2 - 1)p_2^{k_2-1}...(p_m - 1)p_m^{k_m-1}$ . Thus  $U(n) \approx D = z_{(p_1-1)} \oplus z_{p^{k_1-1}} \oplus z_{(p_2-1)} \oplus z_{p_2^{k_2-1}} \oplus .... \oplus z_{(p_m-1)} \oplus z_{p_m^{k_m-1}}$ (note  $m \ge 2$ ). Now  $H = z_{p_1-1} \oplus \{0\} \oplus z_{p_2-1} \oplus \{0\} \oplus ... \oplus \{0\}$  is a subgroup of D. Since  $gcd(p_1 - 1, p_2 - 1) \neq 1$ , H is not a cyclic subgroup of D. Thus D is not not cyclic. Hence U(n) is not cyclic.

Case 4. Assume  $n = 2^k p_1^{k_1} p_2^{k_2} \cdots p_m^{k_m}$ , where  $m \ge 2$  and  $k \ge 2$ ,  $p_1, \dots, p_m$  distinct prime odd integers. Then  $\phi(n) = 2^{m-1}(p_1-1)p^{k_1-1}(p_2-1)p_2^{k_2-1}\dots(p_m-1)p_m^{k_m-1}$ . Thus  $U(n) \approx D = z_2 \oplus z_{2^{m-2}} \oplus z_{(p_1-1)} \oplus z_{p^{k_1-1}} \oplus z_{(p_2-1)} \oplus z_{p_2^{k_2-1}} \oplus \dots \oplus z_{(p_m-1)} \oplus z_{p_m^{k_m-1}}$  (note  $m, k \ge 2$ ). Now  $H = \{0\} \oplus \{0\} \oplus z_{p_1-1} \oplus \{0\} \oplus z_{p_2-1} \oplus \{0\} \oplus \dots \oplus \{0\}$  is a subgroup of D. Since  $gcd(p_1-1,p_2-1) \ne 1$ , H is not a cyclic subgroup of D. Thus D is not not cyclic. Hence U(n) is not cyclic.

Case 5. Assume n is odd. Then  $n = p_1^{k_1} p_2^{k_2} \cdots p_m^{k_m}$ , where  $m \ge 2, p_1, \dots, p_m$  distinct prime odd integers. Then  $\phi(n) = (p_1-1)p^{k_1-1}(p_2-1)p_2^{k_2-1}\dots(p_m-1)p_m^{k_m-1}$ . Thus  $U(n) \approx D = z_{(p_1-1)} \oplus z_{p^{k_1-1}} \oplus z_{(p_2-1)} \oplus z_{p_2^{k_2-1}} \oplus \dots \oplus z_{(p_m-1)} \oplus z_{p_m^{k_m-1}}$ (note  $m \ge 2$ ). Now  $H = z_{p_1-1} \oplus \{0\} \oplus z_{p_2-1} \oplus \{0\} \oplus \dots \oplus \{0\}$  is a subgroup of D. Since  $gcd(p_1-1, p_2-1) \neq 1$ , H is not a cyclic subgroup of D. Thus D is not not cyclic. Hence U(n) is not cyclic.

#### **Faculty information**

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

# 10 2.1.2 Handout on Rings

### Useful Information for Second Exam, Final, Common Knowledge , MTH 532, Spring 2020

### Ayman Badawi

**Fact 1.** Let A be a commutative ring with 1 and  $f(X) \in A[X]$ . Then  $f(X) \in Nil(A[X])$  if and only if the coefficients of f(X) are nilpotent elements of A.

**Example:**  $f(X) = 3X^3 + 6X^2 + 12X + 24$  is a nilpotent element of the polynomial ring  $Z_{27}[X]$  (i.e.,  $f(X) \in Nil(Z_{27}[X])$ ), i.e., there exists a positive integer n such that  $f(X)^n = 0$  in  $Z_{27}[X]$  since the coefficients of f(x) are nilpotent elements of  $Z_{27}$ . (note that 3, 6, 12, 24  $\in Nil(Z_{27})$ )

**Example** :  $f(X) = 5X^3 + 2x + 4$  is not a nilpotent element of  $Z_8[X]$  since  $5 \notin Nil(Z_8)$ .

**Fact 2.** Let A be a commutative ring with 1 and  $f(X) = a_n X^n + \cdots + a_1 X + a_0 \in A[X]$ . Then  $f(X) \in U(A[X])$  if and only if  $a_n, ..., a_1 \in Nil(A)$  and  $a_0 \in U(A)$ .

**Example**:  $f(X) = 3X^3 + 6X^2 + 12X + 7$  is a unit (invertible) element of the polynomial ring  $Z_{27}[X]$  (i.e.,  $f(X) \in U(Z_{27}[X])$ , i.e., there exists a polynomial  $k(X) \in Z_{27}[X]$  such that f(X)k(X) = 1 in  $Z_{27}[X]$  since 3, 6, 12 are nilpotent elements of  $Z_{27}$  and the constant term  $a_0 = 7 \in U(Z_{27})$ .

**Example** :  $f(X) = 2X^3 + 5X + 4$  is not a unit (invertible) element of  $Z_8[X]$  since  $5 \notin Nil(Z_8)$  and the constant term  $a_0 = 4 \notin U(Z_8)$ .

**Example** :  $f(X) = 2X^3 + 5X + 3$  is not a unit (invertible) element of  $Z_8[X]$  since  $5 \notin Nil(Z_8)$ .

**Fact 3.** (Surprising result!) Let A be a commutative ring with 1 and  $f(X) = a_n X^n + \cdots + a_1 X + a_0 \in A[X]$ . Then  $f(X) \in Z(A[X])$  if and only if  $a_n, ..., a_1 \in Z(A)$  and bf(X) = 0 for some nonzero  $b \in Z(A)$ .

**Example:**  $f(X) = 3X^3 + 2X^2 + 3X + 2$  is not a zero-divisor element of the polynomial ring  $Z_6[X]$  (i.e.,  $f(X) \notin Z(Z_6[X])$ ), i.e., there is no nonzero-polynomial  $k(X) \in Z(Z_6[X])$  such that f(X)k(X) = 0 in  $Z_6[X]$ . Why? because  $Z(Z_6) = \{0, 2, 3\}$ , but  $bf(X) \neq 0$  for every nonzero  $b \in Z(Z_6)$ .

**Example** :  $f(X) = 10X^3 + 20X + 10$  is a zero-divisor element of the polynomial ring  $Z_{30}[X]$  (i.e.,  $f(X) \in Z(Z_{30}[X])$ , i.e., there is a nonzero-polynomial  $k(X) \in Z(Z_{30}[X])$  such that f(X)k(X) = 0 in  $Z_{30}[X]$ . Why? because  $3 \in Z(Z_{30})$  and 3f(X) = 0.

Fact 4. Let A be a commutative ring with 1. Then Nil(A) is a proper ideal of A.

**Trivial:** Let  $a, b \in Nil(A)$ . Then  $a^n = b^m = 0$  for some positive integers n, m. Hence by EXPANSION, we have  $(a - b)^{n+m} = 0$  Thus  $a - b \in Nil(A)$ . Also,  $(ab)^m = a^m b^m = a^m . 0 = 0$ . Hence  $ab \in Nil(A)$ . Thus Nil(A) is a subring of A. Now let  $f \in A$ . Then  $(fa)^n = f^n a^n = f^n . 0 = 0$ . Hence  $fa \in Nil(A)$ . Thus Nil(A) is a proper ideal of A (note  $Nil(R) \cap U(A) = \emptyset$ ).

Fact 5. (Nice result on how to find nilpotent elements in  $Z_n$ ). Write  $n = p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k}$  (of course  $p_1, \dots, p_k$  are distinct prime integers) and let  $m = p_1 p_2 \cdots p_k$ . Then  $Nil(Z_n) = (m) = mZ_n = span\{m\}$  is the ideal of  $Z_n$  generated by  $m \in Z_n$ .

**Example:** Let  $A = Z_{75}$ . Then  $n = 75 = 3.5^2$  and m = 3.5 = 15. Hence  $Nil(A) = (15) = 15A = span\{15\} = \{0, 15, 30, 45, 60\}$ .

**Example** : Let  $A = Z_{30}$ . Then n = 30 = 2.3.5 and  $m = 2.3.5 = 0 \in Z_{30}$ . Hence  $Nil(A) = (0) = 0A = span\{0\} = \{0\}$ .

Fact 6. (Recall (from lecture) this is nice result on how to find prime ideals and maximal ideal in  $Z_n$ ). Write  $n = p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k}$  (of course  $p_1, \dots, p_k$  are distinct prime integers). Let  $A = Z_n$ . Then a proper ideal I of A is a prime ideal of A if and only I is a maximal ideal of A if and only if  $I = (p_i) = p_i A$  for some  $1 \le i \le k$ .

**Example**: Let  $A = Z_{75}$ . Then  $n = 75 = 3.5^2$ . Hence  $3A = \{0, 3, 6, 9, 12, ..., 72\}$  and  $5A = \{0, 5, 10, ..., 70\}$  are the only prime (maximal) ideals of A.

**Example** : Let  $A = Z_{30}$ . Then n = 30 = 2.3.5. Hence  $2A = \{0, 2, 4, 6, 12, ..., 28\}$ ,  $3A = \{0, 3, 6, ..., 27\}$ , and  $5A = \{0, 5, 10, ..., 25\}$  are the only prime (maximal) ideals of A.

Fact 7. (Recall (from lecture) this is a nice result, it is called the Chinese remainder Theorem): Let A be a commutative ring with 1 and  $I_1, I_2, ..., I_k$  are proper ideals of A that are relatively prime ideals of A (i.e.,  $I_i + I_j = A$  for every  $i \neq j, 1 \leq i, j \leq k$ , some authors call such ideals co-prime ideals). Let  $F = I_1 \cap I_2 \cap \cdots \cap I_k$ . Then A/F is ring-isomorphic to  $A/I_1 \oplus A/I_2 \oplus \cdots \oplus A/I_k$ . In particular, if  $F = \{0\}$ , then A is ring-isomorphic to  $A/I_1 \oplus A/I_2 \oplus \cdots \oplus A/I_k$ .

Fact 8. (Nice result, make sure that you know it): Let B, C be commutative rings with 1 and  $A = B \oplus C$ . Let F be a proper ideal of A. Then  $F = I_1 \oplus I_2$  for some ideal  $I_1$  of B and some ideal  $I_2$  of C. Furthermore (nice), A/F is ring-isomorphic to  $B/I_1 \oplus C/I_2$ . Furthermore (from Lecture):

(a) F is a prime ideal of A if and only if either  $F = I \oplus C$  for some prime ideal I of B or  $F = B \oplus J$  for some prime ideal J of C.

(b) F is a maximal ideal of A if and only if either  $F = I \oplus C$  for some maximal ideal I of B or  $F = B \oplus J$  for some maximal ideal J of C.

\_\_\_\_, ID \_\_\_\_\_

**Fact 9.** Let A be a commutative ring with 1 and I be a proper ideals of A. Then I is a prime ideal of A if and only if A - I is a multiplicative subset of A (recall from lecture that what I call multiplicative subset of A, some authors call it multiplicatively closed subset of A). The proof is so trivial (just use definitions)

**REMARKS** Let *A* be a commutative ring with 1.

(a) Note that every subring of A is a multiplicative subset of A.

(b) Note that every subgroup of U(A) is a multiplicative subset of A

(c) Chose an element  $a \in A$ . Then  $D = \{a, a^2, a^3, ..., a^n, ...\} = \{a^m \mid m \text{ is a positive integer }\}$  is a multiplicative subset of A.

d) an ideal I of A is proper if and only if  $1 \notin [$  Easy: Suppose I is an ideal and  $1 \notin I$ . We claim that I is proper. Deny. Hence  $I \cap U(A) \neq \emptyset$ . Suppose there is a unit (invertible) element  $u \in I$ . Since I is an ideal of A and  $u^{-1} \in A$ , we have  $1 = u^{-1}u \in I$ , a contradiction.

e) A proper ideal of I of Z is prime if and only if I is a maximal ideal of Z if and only if I = pZ = (p) for some prime integer p of Z. Thus the prime ideals of Z are maximal ideals of Z and they are of the form pZ for some prime integer p. (Proof is trivial : We know that the proper ideals of Z has the form nZ for some positive integer n. Now assume that nZ is a prime ideal of Z. Hence Z/nZ is an integral domain. But Z/nZ is  $Z_n$ . Thus  $Z_n$  is a finite integral domain and hence a field. Thus n must be a prime number and nZ must be a maximal ideal.

f) A commutative ring A with 1 is called Noetherian if every proper ideal of R is finitely generated., i.e. if I is a proper ideal of A, then  $I = span\{a_1, ..., a_n\}$  over A for some elements  $a_1, ..., a_n \in I$ , i.e., if  $x \in I$ , then there are  $b_1, ..., b_n \in A$  such that  $x = b_1a_1 + ... + b_na_n$ . Interesting result about Noetherian rings : If A is Noetherian, then  $A[x_1, ..., x_n]$  is Noetherian (i.e., the polynomial ring with n variables is Noetherian)

g) Let A be a commutative ring with 1. Then the radical of A (denoted by Rad(A)) = Intersection of ALL prime ideals of A. It is Known, that the RADICAL of A = Nil(A). (the proof relies on the fact that I proved in the class if I is a proper ideal of A and S is a multiplicative system such that  $I \cap S = \emptyset$  then there is a prime ideal P of A such that  $I \subseteq P$  and  $P \cap S = \emptyset$ 

h). Let A be a commutative ring with 1. Jacobson radical of A (denoted by J(A)) is the intersection of all MAXIMAL ideals of A. Nice result about the Jacobson Radical of A : For every  $x \in J(A)$ ,  $x + u \in U(A)$  for every  $u \in U(A)$ . Also  $Rad(A) \subseteq J(A)$  Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

# 2.1.3 Handout on Fields

-, ID -

### Useful Information about FIELDS and Galois Extension, Common Knowledge, MTH 532, Spring 2020

Ayman Badawi

### 1 Q, fields of characteristic 0

**QUESTION 1.** Assume that  $[Q(\alpha) : Q] = n$  and  $f(x) \in Q[x]$  is a monic polynomial of degree n such that  $f(\alpha) = 0$ . Prove that f(x) is an irreducible polynomial over Q. In fact, prove that  $f(x) = Irr(\alpha, Q)$ .

Solution: Let  $k(x) = Irr(\alpha, Q)$ . Since  $[Q(\alpha) : Q] = n$ , we know that deg(k(x)) = n (note that k(x) is the unique monic irreducible polynomial over Q such that  $k(\alpha) = 0$ ). Since  $f(\alpha) = 0$ , we know (class notes) that k(x)|f(x). Since f(x) and k(x) are monic and deg(f(x)) = deg(k(x)) = n, we conclude that k(x) = f(x).

**QUESTION 2.** Let  $\alpha = e^{\frac{2\pi i}{10}}$  and  $E = Q(\alpha)$ ).

(i) Find [E:Q]

Solution: By last lecture, note that E is the 10th cyclotomic extension field of Q (i.e, E is the splitting field of the polynomial  $x^{10} - 1$ , i.e. INSIDE E, we have  $x^{10} - 1 = (x - \alpha)(x - \alpha^2)....(x - \alpha^n)$ . By class notes, we know  $[E : Q] = \phi(10) = 4$ .

(ii) What are the roots of  $Irr(\alpha, Q)$ ? Then find  $Irr(\alpha, Q)$  written in the general form.

Solution: Let  $k(x) = Irr(\alpha, Q)$ . Then  $deg(k(x)) = \phi(10) = 4$  and by class notes (last lecture), the roots of k(x) are the  $\alpha^k$ 's, where gcd(k, n) = 1,  $1 \le k < 10$ . Hence the roots are  $a_1 = \alpha$ ,  $a_2 = \alpha^3$ ,  $a_3 = \alpha^7$  and  $a_4 = \alpha^9$ . Hence  $k(x) = (x - a_1)(x - a_2)(x - a_3)(x - a_4)$ . Now how to find k(x) written in the general form (note deg(k) = 4).

Note that  $x^{10} - 1 = (x^5 - 1)(x^5 + 1)$ . Let  $h(x) = x^5 + 1$ . Then it is clear that  $h(\alpha) = \alpha^5 + 1 = [e^{\frac{2\pi i}{10}}]^5 + 1 = e^{\pi i} + 1 = -1 + 1 = 0$ . Thus we know k(x)|h(x). Now observe, we know  $x^5 + 1 = (x+1)(x^4 - x^3 + x^2 - x + 1)$ . Let  $d(x) = x^4 - x^3 + x^2 - x + 1$ . Then  $h(x) = x^5 + 1 = (x+1)d(x)$ . Since  $h(\alpha) = 0$ , we conclude that  $d(\alpha) = 0$ . Since deg(d(x)) = deg(k(x)) = 4 and  $d(\alpha) = k(\alpha) = 0$ , by Question 1 we conclude that  $k(x) = d(x) = x^4 - x^3 + x^2 - x + 1$ .

(iii) Find a basis, B, for E over Q. Then Write  $w = \alpha^7 + 4\alpha^6 + 7\alpha^5$  in terms of the elements in the basis B. Solution: Since [E : Q] = 4, by class notes we know  $B = \{1, \alpha, \alpha^2, \alpha^3\}$  is a basis of E over Q, i.e., if  $b \in E$ , then  $b = a_0 + a_1\alpha + a_2\alpha^2 + a_3\alpha^3$  for some  $a_0, ..., a_3 \in Q$ .

Now remember from the lecture, how we got the basis B: Let  $k(x) = Irr(\alpha, Q)$  as in (ii). Then  $k(x) = x^4 - x^3 + x^2 - x + 1$  and M = (k(x)) is a maximal ideal of Q[X] and L = Q[x]/M is a field. Then by mapping  $x + M \to \alpha$ , we concluded that L is field-isomorphic to E. Since  $\{1 + M, x + M, x^2 + M, x^3 + M\}$  is a basis for L over Q and  $x + M \to \alpha$ , we conclude that  $B = \{1, \alpha, \alpha^2, \alpha^3\}$  is a basis of E over Q. Hence if  $a \in L$ , then we know that  $a = a_0 + a_1x + a_2x^2 + a_3x^3 + M$  and thus  $a = a_0 + a_1x + a_2x^2 + a_3x^3 + M$  in  $L \leftrightarrow b = a_0 + a_1\alpha + a_2\alpha^2 + a_3\alpha^3$  in E. Hence  $w = \alpha^7 + 4\alpha^6 + 7\alpha^5$  in  $E \leftrightarrow x^7 + 4x^6 + 7x^5 + M$  in L. But we know how to find  $x^7 + 4x^6 + 7x^5 + M$  in L. Recall we divide  $x^7 + 4x^6 + 7x^5$  by  $k(x) = x^4 - x^3 + x^2 - x + 1$  (high school math (division a polynomial by another polynomial)) and you find the remainder r(x). I did the calculation, I got r(x) = -4x - 7 (if I made a mistake, then just correct it, I do not need to know about it!). Hence  $x^7 + 4x^6 + 7x^5 + M = -4x - 7 + M$  in L. Hence  $w = \alpha^7 + 4\alpha^6 + 7\alpha^5 = -4\alpha - 7$  in E (if this is not beautiful, then nothing is beautiful!). (see the below Question...to see more beauty )

(iv) Let  $a \in E$ . Find all possibilities of deg(Irr(a, Q)).

Solution: From class notes deg(Irr(a, Q)) is a factor of [E : Q]. Why? Let  $a \in E$ . Then Q(a) is a field between Q and E. Hence [E : Q] = [E : Q(a)][Q(a) : Q] and we know that [Q(a) : Q] = deg(Irr(a, Q)). Thus deg(Irr(a, Q)) is a factor of 4 (since [E : Q] = 4). Thus deg(Irr(a, Q)) = 1 or deg(Irr(a, Q)) = 2 or deg(Irr(a, Q)) = 4. Note that if deg((Irr(a, Q)) = 1, then  $a \in Q$  and Irr(a, Q) = x - a.

(v) Is E a Galois extension field of Q?

Solution: Yes. Why? because [E : Q] is a finite number. Since E is the splitting field of  $x^{10} - 1$  (in particular, E is the splitting field of  $k(x) = Irr(\alpha, Q) = x^4 - x^3 + x^2 - x + 1$ ), then E is a normal EXTENSION of Q (remember that E is a normal extension of Q means that for each  $a \in E$ , Irr(a, Q) has all its roots inside E, i.e.,  $Irr(a, Q) = (x - a_1)(x - a_2)...(x - a_k)$  for some k that is a factor of 4 (note that we just proved that if  $a \not inQ$ ), then Irr(a, Q) has degree 2 or 4 and thus it has 2 distinct roots or 4 distinct roots).

(vi) Find all elements of the Galois group Aut(E/Q). How many subgroups does Aut(E/Q) have? Find them all. Solution: Since E is a Galois extension of Q, we know that |Aut(E/Q)| = [E : Q] = 4. Since E is the 10th cyclotomic extension of Q, by class notes we know that Aut(E/Q) is group-isomorphic to U(10). Thus

#### Ayman Badawi

 $|Aut(E/Q)| = [E:Q] = |U(10)| = \phi(10) = 4$ . Now let  $f \in Aut(E/Q)$ . Then  $f: E \to E$  is a field isomorphism such that f(c) = c for every  $c \in Q$  (i.e., f is one to one, f is onto, f(a + b) = f(a) + f(b) and f(ab) = f(a)f(b)).

To construct these function, observe that if  $a \in E$  is a root of Irr(a, Q), then f(a) must be a root of Irr(a, Q)(Why? because f is an isomorphism from E to E). Since each each element in E is a linear combination of 1,  $\alpha$ ,  $\alpha^2, \alpha^3$ , we conclude that f can be determined completely if we know what  $f(\alpha)$  maps to . For example if  $f(\alpha) = b$ , then  $f(a_0 + a_1\alpha + a_2\alpha^2 + a_3\alpha^3) = a_0 + a_1b + a_2b^2 + a_3b^3$ . Now what are the choices of  $f(\alpha)$ ? Since f is an isomorphism from E to E,  $f(\alpha)$  must be a root of  $Irr(\alpha, Q) = k(x) = x^4 - x^3 + x^2 - x + 1$ . Now we know what to do: From part II, the roots of of k(x) are  $\alpha, \alpha^3, \alpha^7, \alpha^9$ .

Thus here are all elements of Aut(E/Q):  $f_1 : E \to E$  such that  $f(\alpha) = \alpha$  (identity map),  $f_2 : E \to E$  such that  $f_2(\alpha) = \alpha^3$ ,  $f_3 : E \to E$  such that  $f_3(\alpha) = \alpha^5$ , and  $f_4 : E \to E$  such that  $f_4(\alpha) = \alpha^9$ . If you want, you can write  $\alpha^5, \alpha^7, \alpha^9$  as linear combination of  $1, \alpha, \alpha^2$ , and  $\alpha^3$  (as I did in part III, for example  $\alpha^5 = -1$ ), but here we do not need to. Now since |Aut(E/Q)| = |U(8)| = 4 and U(10) is cyclic (Why? see class notes, 10 = (2)(5)), we know that the group Aut(E/Q) is isomorphic to  $Z_4$ . Let us calculate the order of each element in Aut(E/Q).  $|f_1| = 1$  (note  $f_1$  is the identity map).  $|f_2| = 4$ . Why? note that Aut(E/Q) is a group under composition. Hence we need to find the smallest integer m such that  $f_2^m = f_2 \circ f_2 \circ \ldots \circ f_2(mtimes) = f_1$ . But here  $f_2$  is determined by  $f_2(\alpha) = \alpha^3$ . Thus we need to find m such that  $[f_2(\alpha)]^m = \alpha$ . Now  $[f_2(\alpha)]^2 = f_2(f_2(\alpha)) = f_2(\alpha^3) = [f_2(\alpha)]^3 = (\alpha^3)^3 = \alpha^9 \neq \alpha$ . Since  $|f_2| \neq 2$  and  $|f_2|$  must be a factor of 4 (lagrange Theorem), we conclude that  $|f_2| = 4$ . Important observation, in general, if  $f(\alpha) = c^k$  and the operation is composition, then  $[f(\alpha)]^m = (f \circ o \ldots \circ f)(\alpha)(mtimes) = c^{k^m}$ . So, to see that  $[f_2(\alpha)]^4 = \alpha$  (the identity map),  $[f_2(\alpha)]^4 = \alpha^{3^4} = \alpha^{81}$ . From class notes, observe that the set of all roots of the polynomial  $x^{10} - 1$  under normal multiplication is a cyclic group and  $\alpha$  generates such groups, i.e.,  $|\alpha| = 10$ . Hence  $\alpha^{81} = \alpha^{80} \alpha$  and since  $\alpha^{10} = 1$ , we conclude  $\alpha^{80} = 1$ . Thus  $\alpha^{81} = \alpha$ .

Hence we have Exactly one subgroup of order 1,  $G_1 = \{f_1\}$ , we have EXACTLY one subgroup of order 2,  $G_2 = \{f_1, f_4\}$  (note that  $[f_4(\alpha)]^2 = \alpha^{9^2} = \alpha^{81} = \alpha$ ), and exactly one subgroup of order 4,  $G_3 = Aut(E/Q) = \{f_1, f_2, f_3, f_4\} = \langle f_2 \rangle$ .

(vii) Find all distinct fields between Q and E (including Q, and E). For each subfield L between Q and E find [L : Q].

Solution: By last lecture, Galois Theorem tell us that number of all fields between Q and E (including Q and E) is exactly the number of all subgroups of Aut(E/Q) (including the identity map, and Aut(E/Q)). From Part VI, Aut(E/Q) has exactly 3 subgroups. Hence there are exactly 3 fields between Q and E (including Q and E). Hence there is exactly one field L between Q and E such that  $L \neq Q$  and  $L \neq E$ . So how to find L. Recall from last lecture, Galois Theorem tell us that each subgroup of Aut(E/Q) fix one and only one field between Q and E. What do we mean with "fix one and only one field between Q and E? here is the meaning (read it CAREFULLY): If G is a subgroup of Aut(E/Q), then there is a largest field , say L, between Q and E such that for every (read carefully for every)  $f \in G$ , we have f(i) = i for every  $i \in L$  and |G| = |Aut(E/L)| = [E : L].

So from part 1. Q is the fixed field that corresponds to the group  $G_3 = Aut(E/Q) = \{f_1, f_2, f_3, f_4\}$ . E is the fixed field that corresponds to the group  $G_1 = \{f_1\} = Aut(E/E)$ . Now we need to find a field L that is fixed by  $G_2 = \{f_1, f_4\}$ , i.e, we need to find the largest field L between Q and E such that for every  $i \in L$ , we have  $f_1(i) = i$  and  $f_4(i) = i$ . Note that in our case, L = Q(v) for some  $v \in E - Q$ . So how to find v. Here is a technique that work, here  $f_1(\alpha) = \alpha$  and  $f_4(\alpha) = \alpha^9$ . Take  $v = \alpha + \alpha^9$ . Check that  $v \notin Q$ . HOW can I CHECK? write  $\alpha^9$  in terms of 1,  $\alpha$ ,  $\alpha^2$ , and  $\alpha^3$  as I did in part iii. My calculation, showed that  $\alpha + \alpha^9 \notin Q$ . OBSERVE that  $a_3\alpha^3 + a_2\alpha^2 + a_1\alpha + a_0 \in Q$  for some  $a_3, ..., a_0 \in Q$  if and only if  $a_0 \in Q$ ,  $a_3 = a_2 = a_1 = 0$ . For if  $a_3\alpha^3 + a_2\alpha^2 + a_1\alpha + a_0 = a_4 \in Q$ , then consider the polynomial  $f(x) = a_3x^3 + a_2x^2 + a_1x + a_0 - a_4$ . Then  $f(\alpha) = 0$ . Hence we know that  $k(x) = x^4 - x^3 + x^2 - x + 1 = Irr(\alpha, Q)$  must divide f(x), impossible since deg(k) = 4 and  $deg(f) \leq 3$ . So let  $v = \alpha + \alpha^9$ . Then  $f_1(v) = v$  and  $f_4(v) = f_4(\alpha + \alpha^9) = f_4(\alpha) + f_4(\alpha^9) = \alpha^9 + f_4(\alpha)^9 = \alpha^9 + (\alpha^9)^9 = \alpha^9 + \alpha^{81} = \alpha^9 + \alpha = v$  (since  $\alpha^{80} = 1$ ). Thus  $G_2$  fixed the field Q(v). We know by Galois Theorem that  $|G_2| = [E : Q(v)]$ . Since  $|G_2| = 2$ , we have [E : Q(v)] = 2, we conclude that [Q(v) : Q] = 2. Thus note that Irr(v, Q) is a monic irreducible polynomial of degree 2 over Q.

Fact 1. Assume that E is a Galois extension of Q and L is a field between Q and E. If L is not a normal extension of Q, then the group Aut(E/Q) is not abelian group! (waw waw !)

**QUESTION 3.** Let E be a splitting field of  $f(x) = x^7 - 12$ , by class notes  $E = Q(a_1, ..., a_7)$  where  $a_1, ..., a_7$  are the roots of f(x). Show that Aut(E/Q) is a non-abelian group.

Solution: We know every splitting field of a polynomial over Q is a Galois extension of Q. By Einstein result, let p = 3, then p|-12 and  $3^2 = 9 \nmid -12$ . Thus f(x) is IRREDUCIBLE. Clearly  $a = \sqrt[7]{12}$  is a root of f(x). Thus L = Q(a) is a field between Q and E and [L : Q] = 7. Clearly,  $B = \{1, a, a^2, ..., a^6\}$  is a basis of L over Q. Hence all elements in L are real numbers and  $i \notin L$ . Since f(x) has roots that are not real, f(x) does not SPLIT completely inside L. Hence L is not a normal extension of Q. Thus by the FACT, Aut(E/Q) is not abelian.

**QUESTION 4.** Let  $E = Q(\sqrt{2}, \sqrt[3]{2})$ . Find [E : Q]. Prove that E is not a Galois extension of Q. Let  $a \in E - Q$ . Find all possibilities of degree(Irr(a, Q)).

Solution: This is how you view E. Let  $L = Q(\sqrt{2})$ , and  $H = Q(\sqrt[3]{2})$ . Then  $E = L(\sqrt[3]{2}) = H(\sqrt{2})$ .

Now, it is clear that  $Irr(\sqrt[3]{2}, Q) = x^3 - 2$  and  $Irr(\sqrt{2}, Q) = x^2 - 2$ . Now  $x^3 - 2$  has no roots in L. Thus  $x^3 - 2$  stays irreducible over L, i.e.,  $Irr(\sqrt[3]{2}, L) = x^3 - 2$  (note that  $Irr(\sqrt[3]{2}, L) = f(x)$  is the unique irreducible polynomial with coefficient from L such that  $f(\sqrt[3]{2}) = 0$ ). Thus  $[E = L(\sqrt[3]{2}) : L = Q(\sqrt{2})] = 3$ . It is clear that  $[L = Q(\sqrt{2}) : Q] = 2$ . Hence  $[E : Q] = [E = L(\sqrt[3]{2}) : L][L = Q(\sqrt{2}) : Q] = (3)(2) = 6$ .

Also note that [E : Q] = [E : H][H : Q] = (2)(3) = 6. We show that E over Q is not a normal Extension, and hence E is not a Galois Extension of Q. Choose  $a = \sqrt[3]{2}$ . Then  $a \in E$ .  $Irr(a, Q) = x^3 - 2$ . Since all elements of Eare real numbers and  $x^3 - 2$  has 2 non-real roots,  $x^3 - 2$  doest not SPLIT over E (i.e.,  $x^3 - 2$  cannot completely factored as product of linear factors over E, i.e.,  $x^3 - 2$  does not have all its roots inside E). Hence E over Q is not a normal Extension, and thus E is not a Galois extension of Q.

Now let  $a \in E - Q$ . Then we know deg(Irr(a, Q)) must be a factor of [E : Q] = 6. Thus all possibilities of degree(Irr(a, Q)) are 2, 3, 6.

**Fact 2** (NICE!). Def:  $F \subseteq E$  (of course F and E are fields) and E = F(b) for some  $b \in E$ . Then we say E is a simple extension of F. Let  $E = Q(a_1, a_2, ..., a_k)$  such that  $[E : Q] < \infty$ . Then there exist  $b \in E$  such that E = Q(b). So, in general if E is a field extension of Q and [E : Q] is finite number, then E = Q(b) for some  $b \in E$ , i.e., E is a simple extension of Q.

**QUESTION 5.** Let *E* be the field in Question 4, i.e.,  $E = Q(\sqrt{2}, \sqrt[3]{2})$ . By the fact above find  $b \in E$  such that E = Q(b). Then find Irr(b, Q).

Solution: You will like this technique!. Here is the idea, recall from basic linear algebra. If K is a subspace of V and dim(V) = dim(K), then K = V. Claim:  $b = \sqrt{2} + \sqrt[3]{2}$ . We show E = Q(b). Since  $b \in E$ , Q(b) is a subspace of E. If we show that [Q(b) : Q] = 6 = [E : Q], then E = Q(b). Here is the Technique! we find f(x) = Irr(b, Q) by "back ward" method.

Set (\*)

$$x = \sqrt{2} + \sqrt[3]{2}$$

Use minimum calculations on (\*) in order to eliminate all radical. Then we get a polynomial with coefficients in Q. This polynomial will be Irr(b, Q). ONE WAY :

$$x - \sqrt{2} = \sqrt[3]{2}$$
$$(x - \sqrt{2})^3 = 2$$
$$x^3 - 3\sqrt{2}x^2 + 6x - \sqrt{8} = 2$$

Now move all radicals to the right side

$$x^3 + 6x - 2 = 3\sqrt{2}x^2 + \sqrt{8}$$

$$(x^{3}+6x-2)^{2} = (3\sqrt{2}x^{2}+\sqrt{8})^{2} = 18x^{4}+24x^{2}+8$$

Thus all radicals are eliminated. Now we move the right side to the left, then we get our f(x) = Irr(b,Q) of degree 6 such that f(b) = 0.

$$Irr(b,Q) = f(x) = (x^{3} + 6x - 2)^{2} - 18x^{4} - 24x^{2} - 8 \in Q[x]$$

If you want you can simplify f(x) but here there is no need. It is clear that deg(f) = 6 and f(b) = 0. Thus [Q(b) : Q] = 6.

Since [E:Q] = [Q(b):Q] = 6 and Q(b) "lives" inside E, we conclude that E = Q(b).

**QUESTION 6.** Let  $a = \sqrt{3}$  and  $b = \sqrt{7}$  and E = Q(a, b). Show that Q(a, b) is a Galois extension of Q. Find all subgroups of Aut(E/Q). For each subgroup H of Aut(E/Q), find the field that is fixed by H.

Solution: Recall from last lecture if  $E = Q(a_1, a_2, ..., a_k)$  such that for every  $i, 1 \le i \le k$ ,  $Irr(a_i, Q)$  has all its roots in E (i.e.,  $Irr(a_i, Q)$  splits in E), then E is a Galois extension of Q. Clearly,  $f_a(x) = Irr(a, Q) = x^2 - 3$  and  $f_b(x) = Irr(b, Q) = x^2 - 7$ . Both polynomials split in E. Thus E is a Galois extension of Q. By similar argument as in Question 4, [E : Q] = 4. Hence Aut(E/Q) is a group with 4 elements. We know that every group with  $p^2$  elements for some prime p is abelian. As I stated in Question 2 (vi, and vii). If d is a root of a polynomial k(x) and  $f \in Aut(E/Q)$ , then f(d) must be a root of k(x). Now  $a = \sqrt{3}, -a = -\sqrt{3}$  are the roots of  $f_a(x) = x^2 - 3, b = \sqrt{7}$ ,  $-b = -\sqrt{7}$  are the roots of  $f_b(x) = x^2 - 7$ . Hence we can now state all elements of Aut(E/Q) (note again that if  $h \in Aut(E/Q)$  then h is a field-isomorphism from E ONTO E such that h(c) = c for every  $c \in Q$ .)

So let  $f_1, f_2, f_3, f_4 : E \to E$  be field isomorphisms (note all of them determined by mapping a root of  $f_a(x)$  to a root of  $f_b(x)$  to a root of  $f_b(x)$ . Hence

 $f_1(d) = d$  for every  $d \in E$  (the identity map),  $f_2(a) = -a$  and  $f_2(b) = b$  (note that  $a = \sqrt{3}$  and  $b = \sqrt{7}$ ),  $f_3(a) = a$  and  $f_3(b) = -b$ ,  $f_4(a) = -a$  and  $f_4(b) = -b$ . Now since |Aut(E/Q)| = 4. Hence  $|f_i| = 2or4$ ,  $i \neq 1$ .

Note  $|f_1| = 1$  ( $f_1$  is the identity map). It is clear that  $[f_i(a)]^2 = f_i(f_i(a)) = a$  and  $[f_i(b)]^2 = f_i(f_i(b)) = b$  for every  $2 \le i \le 4$ . Thus  $|f_i| = 2$  for every  $2 \le i \le 4$ . Hence Aut(E/Q) is isomorphic to  $Z_2 \times Z_2$ . Thus we have exactly 5 subgroups of Aut(E/Q) (including  $\{f_1\}$  and Aut(E/Q)). The subgroups are

1)  $G_1 = \{f_1\}$  and the corresponding fixed field is E since  $f_1(d) = d$  for every  $d \in E$  and  $|Aut(E/E)| = |G_1| = 1$ . 2)  $G_2 = \{f_1, f_2\}$  and the corresponding fixed field is Q(b) since  $b \notin Q$  and  $f_2(b) = b$  and  $|Aut(E/Q(b))| = |G_2| = 2 = [E : Q(b)]$ .

3)  $G_3 = \{f_1, f_3\}$  and the corresponding fixed field is Q(a) since  $a \notin Q$  and  $f_3(a) = a$  and  $|Aut(E/Q(a))| = |G_3| = 2 = [E : Q(a)]$ .

4)  $G_4 = \{f_1, f_4\}$  and the corresponding fixed field is  $Q(ab) = Q(\sqrt{6})$  WHY? since  $f_4(a) = -a$  and  $f_4(b) = -b$ , we have  $f_4(ab) = f_4(a)f_4(b) = (-a)(-b) = ab$  and  $|Aut(E/Q(ab))| = |G_4| = 2 = [E : Q(ab)]$ . 5)  $G_5 = Aut(E/Q) = \{f_1, f_2, f_3\}$  and the corresponding fixed field is Q and  $|Aut(E/Q)| = |G_5| = 4 = [E : Aut(E/Q)]$ 

**5**)  $G_5 = Aut(E/Q) = \{f_1, f_2, f_3, f_4\}$  and the corresponding fixed field is Q and  $|Aut(E/Q)| = |G_5| = 4 = [E : Q]$ .

THUS ALL fields between Q and E are Q, Q(b), Q(a), Q(ab), E = Q(a, b).

**QUESTION 7.** Let  $E = Q(\sqrt{5}, \sqrt{6})$ . Find  $b \in E$  such that Q(b) = E. Find Irr(b, Q).

Solution : By the methods as in Question 4, and 5. We conclude that [E : Q] = 4. (Note that  $Irr(\sqrt{5}, Q) = x^2 - 5$  and  $Irr(\sqrt{6}, Q) = x^2 - 6$ ). We claim :  $b = \sqrt{5} + \sqrt{6}$ 

We claim :  $b = \sqrt{5} + \sqrt{5}$ So let

$$x = \sqrt{5} + \sqrt{7}$$
$$x^{2} = 12 + 2\sqrt{5}\sqrt{7}$$
$$(x^{2} - 12)^{2} = (2\sqrt{5}\sqrt{7})^{2} = 140$$

 $f(x) = Irr(b, Q) = (x^2 - 12)^2 - 140$  is an Irreducible monic polynomial of degree 4 such that f(b) = 0. Hence [E : Q] = [Q(b) : Q] = 4 and Q(b) = E.

I end this section with the following amazing result.

**QUESTION 8.** (nice Question). Prove that if f(x) is a polynomial of degree  $n \ge 1$  in R[x] (the polynomial ring with REAL coefficient, then  $f(x) = ua_1(x)a_2(x)...a_k(x)$  where u is a nonzero number in R and each  $a_i(x)$  is a monic irreducible polynomial of degree 1 or 2 (not necessarily that the  $a_i(x)$ 's are distinct)

Solution: Since R is a field, we know R[x] is a UFD (Unique factorization domain). Hence we know that  $f(x) = ua_1(x)a_2(x)...a_k(x)$  where u is a nonzero number in R and each  $a_i(x)$  is a monic irreducible polynomial (not necessarily the  $a_i(x)$ 's are distinct). The only thing we need to prove that each  $a_i(x)$  is of degree 1 or 2. Now  $f(x) = x^2 + 1$  is an irreducible polynomial over R and hence M = (f(x)) is a maximal ideal of R[x]. Thus R[x]/M is a field. Note that  $E = R[X]/M = \{a + bx + M | a, b \in R\}$  and [E : R] = 2 and  $E = span\{1 + M, x + M\}$  over R. Since i is a root of the irreducible polynomial f(x), we know that E is field-isomorphic to R(i) by mapping x + M to i. Hence R(i) is a field and [R(i) : R] = 2. Thus  $R(i) = span\{1, i\}$  over R. Hence  $R(i) = \{a + bi | a, b \in R\} = C$  ( the set of all complex numbers). Since R(i) = C and [R(i) : R] = 2, we have [C : R] = 2. Let  $a \in C$ . Then the degree of Irr(a, R) must be a factor of [C : R] = 2. Hence for every  $a \in C$ , the degree of Irr(a, R) is either 1 or 2, i.e., R[x] has no IRREDUCIBLE polynomials of degree  $\geq 3$ . Thus each  $a_i(x)$  is a monic irreducible polynomial of degree 1 or 2. Done

### **2** FINITE FIELDS, fields of characteristic *p*

- **Fact 3.** (i) Every finite field, say F, has exactly  $p^n$  elements for some prime integer p and a positive integer n and  $Z_p \subseteq F$ . Furthermore, if  $F_1, F_2$  are fields with same number of elements, then  $F_1, F_2$  are isomorphic as FIELD. (Class notes)
- (ii) Let F be a finite field with  $p^n$  elements. Then  $(F^*, .)$  is a cyclic group with  $p^n 1$  elements. Hence  $x^{p^n} = x$  for every  $x \in F$  (i.e.,  $x^{p^n} x = 0$  for every  $x \in F$ ) (class notes)
- (iii) Let F be a finite field with  $p^n$  elements and m|n. Then F has a UNIQUE subfield with  $p^m$  elements. Furthermore if H is a subfield of F with  $p^m$  elements, then m|n (note that  $[F : Z_p] = [F : H][H : Z_p]$ ) (class notes)
- (iv) Let F be a finite field with  $p^n$  elements. Let f(x) be an IRREDUCIBLE monic polynomial of degree n in  $Z_p[x]$ , then F is field-isomorphic to  $Z_p[x]/(f(x))$  (class notes).
- (v) Let F be a field with  $p^n$  elements,  $a \in F$ . Then a is a root of an IRREDUCIBLE monic polynomial f(y) in  $Z_p[y]$  of degree m such that m|n. Furthermore, let H be the unique subfield of F with  $p^m$  elements, then f(y) splits completely inside H (i.e., f(y) has all its roots (exactly m distinct roots)) and the roots of f(y) are  $a, a^p, a^{p^2}, ..., a^{p^{m-1}}$ . Also note that  $H = Z_p(a) = span\{1, a, a^2, ..., a^{m-1}\}$  over  $Z_p$ .
- (vi) Let f(y) be an irreducible monic polynomial over  $Z_p$  of degree m. Then f(y) splits completely inside a field with  $p^m$  elements.
- (vii) (in view of the above). Let f(y) be an irreducible monic polynomial over  $Z_p$  of degree m. Then the splitting field of Then f(y) splits completely inside a field with  $p^m$  elements.

- (viii) Let F be a finite field with  $p^n$  elements. Then F is a Galois extension of  $Z_p$ . Furthermore,  $Aut(F/Z_p)$  is a cyclic group with n elements. Hence  $|Aut(F/Z_p)| = n$ ,  $Aut(F/Z_p)$  is group-isomorphic to  $Z_n$ , and  $|Aut(F/Z_p)| = n = [F : Z_p]$ . [ $Aut(F/Z_p)$  is cyclic, it is trivial, since F has unique subfields of particular order and each subgroup of  $Aut(F/Z_p)$  FIXED a unique subfield of F!!)
  - (ix) THIS RESULT is clear and true for any field F (finite or not). Assume that  $S_1$  be the set of all roots of an IRREDUCIBLE monic polynomial f(x), and  $S_2$  be the set of all roots of an IRREDUCIBLE monic polynomial h(x). If  $h(x) \neq f(x)$ , then  $S_1 \cap S_2 = \emptyset$
  - (x) (Freshman Dream, class notes). Let F be a finite field with  $p^n$  elements. Then for every integer  $k \ge 1$  and for every  $a, b \in F$ ,  $(a+b)^{p^k} = a^{p^k} + b^{p^k}$

**QUESTION 9.** Let  $P_3$  be the set of all distinct irreducible monic polynomial of degree 5 over  $Z_3$ . Find  $|P_3|$  (i.e., HOW MANY MONIC IRREDUCIBLE POLYNOMIALS of degree 5 in  $Z_p[y]$  are there?)

Solution: Let  $f(y) \in P_3$ . By Fact(vi), f(y) has all its roots (exactly 5 distinct roots) inside a field F with  $3^5$  elements. Let  $a \in F$ . Then by fact (v) a is a root of a unique monic irreducible polynomial in  $Z_3[y]$  of degree m such that m|5. Hence Each element in F is a root of an Irreducible polynomial of degree 1 or 5 in  $Z_3[y]$ . But  $Z_3[y]$  has exactly 3 irreducible monic polynomials of degree 1 (namely, y, y + 1, y + 2). Thus each element in  $F - Z_3$  is a root of an irreducible monic polynomial of degree 5 in  $Z_3[y]$ . Now  $|F - Z_3| = 3^5 - 3$ . By Fact (ix) two distinct polynomials in  $P_3$  have no COMMON root (also note that each polynomial in  $P_3$  has exactly 5 distinct roots in  $F - Z_3$ ). Hence  $|P_3| = \frac{3^5-3}{5}$ . (nice!)

**QUESTION 10.** Let  $P_6$  be the set of all distinct irreducible monic polynomial of degree 6 over  $Z_2$ . Find  $|P_6|$ 

Solution: Again, let  $f(y) \in P_6$ . By Fact(vi), f(y) has all its roots (exactly 6 distinct roots) inside a field F with  $2^6$  elements. Let  $a \in F$ . Then by fact (v) a is a root of a unique monic irreducible polynomial in  $Z_2[y]$  of degree m such that m|6. Hence Each element in F is a root of an Irreducible polynomial of degree 1 or 2 or 3 or 6 in  $Z_2[y]$ . Thus let  $P_1$  be the set of all distinct irreducible monic polynomial of degree 1 over  $Z_2$ , let  $P_2$  be the set of all distinct irreducible monic polynomial of degree 3 over  $Z_2$ ,  $H_2$  be the unique subfield of F with  $2^2$  elements, and  $H_3$  is the unique subfield of F with  $2^3$  elements. Now by fact (v) each polynomial in  $P_2$  has all its roots (exactly 2 distinct roots) in the subfield  $H_2$  of F and each polynomial in  $P_3$  has all its roots in the subfield  $H_3$  of F. Thus each element in  $D = F - (H_3 \cup H_2)$  is a root of an irreducible monic polynomial of degree 6 in  $Z_2[y]$  (note that  $Z_2$  is inside every finite finite with  $2^n$  elements, thus if  $a \in D$ , then  $d \notin Z_2$ , in fact  $H_3 \cap H_2 = Z_2$ ). Now we calculate  $|F - (H_3 \cup H_2|$ . First  $|H_2 \cup H_3| = |H_2| + |H_3| - |H_2 \cap H_3| = 2^3 + 2^2 - 2 = 10$ . Thus  $|F - (H_3 \cup H_2)| = 2^6 - 10 = 54$ . By Fact (ix) two distinct polynomials in  $P_6$  have no COMMON root (also note that each polynomial in  $P_6$  has exactly 6 distinct roots in  $F - (H_2 \cup H_3)$ ). Hence  $|P_6| = 54/6 = 9$  (nice!)

**QUESTION 11.** Let  $f(y) = y^3 + y + 1 \in Z_2[y]$ . Show that f(y) is irreducible over  $Z_2$ . Find a splitting field of f(y) and write it as a product of linear factors.

Solution: Since deg(f) = 3, to show that f(y) is irreducible, it suffices to show that f(y) has no roots in  $Z_2$ . Thus since  $f(0) \neq 0$  and  $f(1) \neq 0$ , f(y) is irreducible over  $Z_2$ . We know that the splitting field of f(y) is a field with  $2^3$  elements. Now  $M = (f(x)) = (x^3 + x + 1)$  is a maximal ideal of  $Z_2[x]$  and  $F = Z_2[x]/M$  is a field with  $2^3$  elements and  $F = span\{1 + M, x + M, x^2 + M\}$  over  $Z_2$ . Now we "view" f(y) inside F[y] as  $f_2(y) = (1+M)y^3 + (1+M)y + (1+M)$  (class notes). We know (class notes) that x + M is a root of  $f_2(y)$ . Hence by Fact (v),  $a_1 = x + M$ ,  $a_2 = x^2 + M$ , and  $a_3 = x^4 + M$  are all the roots of  $f_2(y)$  inside F. Note that if you want then you reduce  $x^4 + M$  to  $a_0 + a_1x + a_2x^2 + M$  (by dividing  $x^4$  by  $x^3 + x + 1$  and taking the remainder). Thus  $f_2(y) = ((1+M)y - a_1)((1+M)y - a_2)((1+M)y - a_3)$ .

**QUESTION 12.** Let *F* be a field with 5<sup>6</sup> elements. Find all elements of  $Aut(F/Z_5)$ . Find all subgroups of  $Aut(F/Z_5)$ . For each subgroup *H* of  $Aut(F/Z_5)$  find the corresponding field inside *F* that is FIXED by *H*.

Solution: First  $|Aut(F/Z_5)| = [F : Z_5] = 6$  and  $Aut(F/Z_5)$  is cyclic with 6 elements (isomorphic to  $Z_6$ ) (see Fact (viii)). We know that (F, \*) is a cyclic group with  $5^6 - 1$ . Thus  $(F^*, .) = \langle a_1 \rangle$  for some  $a_1 \in F$  such that  $|a_1|_x = 5^6 - 1$ . Let f(y) be a monic irreducible polynomial over  $Z_5$  such that  $f(a_1) = 0$ . Then it is clear that deg(f) = 6. Then f(y) has all its roots inside F. Say  $a_1 \in F$  is a root of f(y). Then we know that all roots of f(y) are  $a_1, a_1^{5^2}, a_1^{5^3}, a_15^4, a_15^5$  by Fact (v). Let  $f \in Aut(F/Z_5)$  (i.e., f is a field-isomorphism from F ONTO F and it fixes  $Z_p$ , i.e., f(a) = a for every  $a \in Z_p$ ). Also note that  $F = span\{1, a_1, a^2, a^3, a^4, a^5\}$  over  $Z_5$ . Then as I discussed in Question 2(vi) f can be determined by mapping a root of f(y) to a root of f(y). Hence let  $f_1, f_2, f_3, f_4, f_5, f_6 : F \to F$  be field-isomorphism that fixed  $Z_p$ . Then the elements of  $Aut(F/Z_5)$  are:

 $f_1(b) = b$  for every  $b \in F$  (the identity map),  $f_2(a_1) = a_1^5$ ,  $f_3(a_1) = a_1^{5^2}$ ,  $f_4(a_1) = a_1^{5^3}$ ,  $f_5(a_1) = a_1^{5^4}$  and  $f_6(a_1) = a_1^{5^5}$ . We know  $Aut(F/Z_5)$  is cyclic. Hence we will find a generator, i.e., at least one of the  $f_i$  has order 6 (under composition). Now  $f_2$  (i.e.,  $f_2(a_1) = a_1^p$ ) is always such generator. Note that  $|a_1| = 5^6 - 1$ . and  $a_1^{5^6} = a_1$  and 6 is the least positive integer such that  $a_15^6 = a_1$ . Hence clearly that  $f_2$  is a generator of  $Aut(F/Z_5)$ . For  $[f_2(a_1)]^6$  (composition  $f_2$  6 times) =  $a_1^{5^6} = a_1$ . Thus  $Aut(F/Z_5) = \langle f_2 \rangle$ . Since  $Aut(F/Z_5)$  is cyclic with 6 elements,  $Aut(F/Z_5)$  has exactly one cyclic subgroup of order 1, 2, 3, 6. Since  $|f_2| = 6$ . Then we know  $|[f_2]^2| = |f_3| = a_1$ .

6/gcd(2,6) = 3,  $|[f_2]^3| = |f_4| = 6/gcd(3,6) = 2$ ,  $|[f_2]^4| = |f_5| = 6/gcd(4,6) = 3$ ,  $|[f_2]^5| = 6/gcd(5,6) = 6$ . Let  $H_2$ ,  $H_3$  be the unique cyclic subgroups of  $Aut(F/Z_5)$  of order 2 and 3 respectively. Then  $H_2 = \{f_1, f_4\}$  and  $H_3 = \{f_1, f_3, f_5\}$ . Thus here are the subgroups:

1)  $H_1 = \{f_1\}$  and the corresponding fixed field is E since  $f_1(d) = d$  for every  $d \in E$  and  $|Aut(E/E)| = |G_1| = 1$ . 2)  $H_2 = \{f_1, f_4\}$ . Let  $K_1$  be the field inside F that is fixed by each function in  $H_2$ . We know by Galois Theorem,  $[F : K_1] = |H_2| = 2$ . Since  $[F : Z_5] = [F : K_1][K_1 : Z_5]$ , we have  $6 = 2[K_1 : Z_5]$  Thus  $[K_1 : Z_5] = 3$ . Hence  $K_1$  is the unique subfield of F with  $5^3$  elements.

3)  $H_3 = \{f_1, f_3, f_5\}$ . Let  $K_2$  be the field inside F that is fixed by each function in  $H_3$ . We know by Galois Theorem,  $[F : K_2] = |H_3| = 3$ . Since  $[F : Z_5] = [F : K_2][K_2 : Z_5]$ , we have  $6 = 3[K_2 : Z_5]$  Thus  $[K_1 : Z_5] = 2$ . Hence  $K_2$  is the unique subfield of F with  $5^2$  elements.

4)  $H_4 = Aut(F/Z_5) = \langle f_2 \rangle = \{f_1, f_2, f_3, f_4, f_5, f_6\}$  and  $Z_5$  is the fixed field by each element in  $H_4$ .

#### **Faculty information**

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

# 2.2 Worked out Solutions for all Assessment Tools

## 2.2.1 Solution for Exam One

MTH 532 Abstract Algebra II, 2020, 1-2

-, ID -

### EXAM I, MTH 532, Spring 2020

### Ayman Badawi

**QUESTION 1.** Given D is a group with 48 elements. Assume that D has an element  $a \in C(D)$  such that |a| = 16. Prove that D is cyclic.

Solution

By Sylow's Theorems, we must have a subgroup H with 3 elements. Let  $h \in H - e$ . Then |h| = 3. Since  $a \in C(D)$ ,  $a^*h = h^*a$ . Since a \* h = h \* a and gcd(|a|, |h|) = gcd(16, 3) = 1, by a HW problem we conclude that |b = a \* h| = (16)(3) = 48. Then  $D = \langle b \rangle = \langle a * h \rangle$ . So  $D \approx Z_{48}$ .

**QUESTION 2.** Does U(54) have an element of order 18? If yes, how many elements of order 18 does U(54) have? **Solution** 

54 = (2)(3<sup>3</sup>). Hence  $\phi(54) = (2)(9)$ . By a HW problem  $U(54) \approx Z_2 \oplus Z_9 \approx Z_{18}$  (since gcd(2,9) = 1). By class notes  $Z_{18}$  has exactly  $\phi(18) = 6$  distinct generators. Since  $U(54) \approx Z_{18}$ , we conclude that U(54) has

exactly 6 elements of order 18.

**QUESTION 3.** Let  $f : (Z_{18}, +) \to (U(50), .)$  be a group homomorphism such that  $f(1) \neq 1$ . Find f(0). Find Ker(f). Solution

Note that 0 is the identity of  $Z_{18}$  and 1 is the identity of U(50) ( $U(50) = \{a \in Z_{50} | gcd(a, 50) = 1\}$  is group under multiplication). Since f is a group homomorphism, we know f(0) = 1.

We know  $Z_{18}/Ker(f) \approx Range(f) < U(50)$ . Now we know by HW problem that  $U(50) \approx Z_{20}$ .

Thus  $Z_{18}/Ker(f) \approx$  to a subgroup of  $Z_{20}$ . Thus  $m = |z_{18}/kerf| = |Z_{18}|/|Ker(f)|$  must be a factor of 18 and m must be a factor of 20. Hence m = 1 or m = 2.

If m = 1, then  $Ker(f) = Z_{18}$  and hence f(a) = 1 for every  $a \in Z_{18}$ , a contradiction since  $f(1) \neq 1$ . Thus m = 2.

m = 2 implies  $2 = |Z_{18}|/|Ker(f)| = 18/|Ker(f)|$ . Thus |Ker(f)| = 9. Since  $Z_{18}$  is cyclic,  $Z_{18}$  has unique subgroup with 9 elements. Thus  $Ker(f) = \{0, 2, 4, 6, 8, 10, 12, 14, 16\} = <2>$ .

**QUESTION 4.** Let *D* be a group with 100 elements. Assume that *D* has a subgroup *H* with 20 elements such that  $H \subseteq C(D)$ . Prove that *D* is an abelian group.

Solution

We know C(D) is a normal subgroup of D. Let m = |C(D)|. We know that m|100. Since C(D) is a group (subgroup of D) and H is a subgroup of D that lives inside C(D), we conclude that H is a subgroup of C(D). Thus 20 | m. Since 20|m and m|100, we conclude that m = 20 or m = 100. Assume m = 20. Then D/C(D) is a cyclic group (since |D/C(D)| = 5). Hence D must be abelian by class notes, and thus C(D) = D and m = 100 a contradiction. Hence  $m \neq 20$ . Thus m = 100, and therefore C(D) = D. Hence D is abelian.

QUESTION 5. (i) EXTRA CREDIT, but you need it to solve (ii). Let D be a finite group and H be a subgroup of D such that [D:H] = m for some integer m (note that [D:H] = |D|/|H| = number of all distinct left cosets of H). Prove that there is a group homomorphism, say f, from D into  $S_m$  such  $Ker(f) \subseteq H$ .

#### Solution

Let  $L = \{H, a_2 * H, ..., a_m * H\}$  be the set of all distinct left cosets of H.

Now define 
$$f: D \to S_m$$
 such that  $f(a) = \begin{pmatrix} H & a_2 * H & \dots & a_m * H \\ a * H & a * a_2 * H & \dots & a * a_m * H \end{pmatrix}$  for every  $a \in D$ .

It is clear that f(a) is a bijective function for every  $a \in D$  and thus  $f(a) \in S_m$  for every  $a \in D$ .

It is trivial to check that  $f(a * b) = f(a) \circ f(b)$  for every  $a, b \in D$ . Thus f is a group homomorphism.

Let  $w \in Ker(f)$ . Then  $f(w) = \begin{pmatrix} H & a_2 * H & \dots & a_m * H \\ w * H & w * a_2 * H & \dots & w * a_m * H \end{pmatrix} = \begin{pmatrix} H & a_2 * H & \dots & a_m * H \\ H & a_2 * H & \dots & a_m * H \end{pmatrix}$ . Thus w \* H = H and hence  $w \in H$ . Thus  $Ker(f) \subseteq H$ . Note that ker(f) = H only if H is a normal subgroup of D. Thus by the first isomorphism theorem , we conclude that  $D/Ker(f) \approx$  to a subgroup of  $S_m$ .

(ii) Let D be a finite simple group. Assume that H, K are subgroups of D such that  $[D:H] = p_1$  and  $[D:K] = p_2$  for some prime integers  $p_1, p_2$ . Prove that  $p_1 = p_2$ . (nice result!)

#### Solution

Let n = |D|. First note that  $p_1, p_2$  are prime factors of |D| (i.e.,  $p_1|n$  and  $p_2|n$ ).

Case 1. Assume  $p_2 > p_1$ . By part (i), there is a group homomorphism , say f, from D into  $S_{p_1}$  such  $Ker(f) \subseteq H$ . Thus  $D/ker(f) \approx$  to a subgroup of  $S_{p_1}$ . Since  $H \neq D$  and  $ker(f) \subseteq H$ , we conclude that  $Ker(f) \neq D$ . Since D is simple and  $Ker(f) \neq D$ , we conclude that  $ker(f) = \{e\}$  and hence  $D \approx$  to a subgroup of  $S_{p_1}$ .

Note that  $|S_{p_1}| = p_1!$ . Thus  $n|p_1!$ . Since  $p_2|n$  and  $n|p_1!$ , we conclude that  $p_2|p_1!$ , which is impossible since  $p_2$  is PRIME and  $p_2 > p_1$  (i.e.,  $p_2$  is not a PRIME factor of  $p_1!$ ). Thus  $p_2 \ngeq p_1$ .

Case 2. Assume  $p_1 > p_2$ . By similar argument as in case 1. By part (i), there is a group homomorphism , say f, from D into  $S_{p_2}$  such  $Ker(f) \subseteq K$ . Thus  $D/ker(f) \approx$  to a subgroup of  $S_{p_2}$ . Since  $K \neq D$  and  $ker(f) \subseteq K$ , we conclude that  $Ker(f) \neq D$ . Since D is simple and  $Ker(f) \neq D$ , we conclude that  $ker(f) = \{e\}$  and hence  $D \approx$  to a subgroup of  $S_{p_2}$ . Note that  $|S_{p_2}| = p_2!$ . Thus  $n|p_2!$ . Since  $p_1|n$  and  $n|p_2!$ , we conclude that  $p_1|p_2!$ , which is impossible since  $p_1$  is PRIME and  $p_1 > p_2$  (i.e.,  $p_1$  is not a PRIME factor of  $p_2!$ ). Thus  $p_1 \not\geq p_2$ .

Since  $p_2 \not\geq p_1$  and  $p_1 \not\geq p_2$ , we conclude that  $p_1 = p_2$ .

**QUESTION 6.** Let *D* be a group with  $p^m$  elements, where *p* is a prime integer and  $m \ge 2$ . Prove that *D* has a normal subgroup with  $p^{m-1}$  elements. [Hint : Show that *D* must have a subgroup *H* with  $p^{m-1}$  elements by class note result (which result?). Then use class - lecture (result) to show that *H* is normal in H (which result?)].

Solution

By Sylow's Theorems (lecture) D has a subgroup with  $p^i$  elements for every  $1 \le i \le m$ . Hence D has a subgroup H with  $p^{m-1}$  elements. Since [D:H] = p is the smallest prime factor of |D|, by class notes we conclude that H is a normal subgroup of D.

**QUESTION 7.** Let *D* be a group with  $(5^2)(7^2)$  elements. Prove that *D* is an abelian group. Find all non-isomorphic groups with  $(5^2)(7^2)$  elements?

#### Solution

By Sylow's Theorems, since  $n_7 = 1$ , we conclude that D has a normal subgroup H with  $7^2$  elements. Also, since  $n_5 = 1$ , we conclude that D has a normal subgroup K with  $5^2$  elements. Since  $H \cap K = \{e\}$  and D = H \* K, by a HW problem we conclude that  $D \approx H \oplus K$ . Since  $|H| = 7^2$ , we know (class notes) that H is abelian and thus  $H \approx Z_{49}$  or  $H \approx Z_7 \oplus Z_7$ . Since  $|K| = 5^2$ , we know (class notes) that K is abelian and thus  $K \approx Z_{25}$  or  $K \approx Z_5 \oplus Z_5$ . Thus D is isomorphic to one and only one of the following groups:

 $Z_{49} \oplus Z_{25} \approx Z_{(49)(25)} \text{ is cyclic OR}$   $Z_{49} \oplus Z_5 \oplus Z_5 \text{ OR}$   $Z_7 \oplus Z_7 \oplus Z_{25} \text{ OR}$  $Z_7 \oplus Z_7 \oplus Z_5 \oplus Z_5.$ 

**QUESTION 8.** Let  $a = (1 \ 2 \ 3) \ o \ (1 \ 3 \ 4 \ 2 \ 5) \in S_6$ . Is  $a \in A_6$ ? Find |a|.

#### Solution

a = (2 5) o (3 4) is a product of 2 2-cycles. Hence  $a \in A_6$ . We know |a| = LCM[2, 2] = 2.

**QUESTION 9.** Let D be a group with 105 elements (105 = (3)(5)(7)).

(i) Prove that *D* is not simple. [Hint: Assume *D* is simple. How many elements of orders 7, 5, 3 does D have? is this possible?

### Solution

Assume that  $n_7 \neq 1$  and  $n_5 \neq 1$ . Hence we conclude that  $n_7 = 15$  and  $n_5 = 21$ . Thus by a HW problem, D has exactly (15)(6) = 90 elements of order 7 and D has exactly (21)(4) = 84 elements of order 5. Thus D must have at least 90 + 84 = 174 elements, which is impossible since |D| = 105. Hence  $n_7 = 1$  or  $n_5 = 1$ . Thus D has a normal subgroup with 7 elements or a normal subgroup with 5 elements. Thus D is not simple

(ii) Assume that  $n_7 = 1$  (i.e., D has exactly one sylow-7-subgroup). Prove that D has a normal cyclic subgroup with 35 elements [hint: Use a result from HW, use a result from class notes! and of course sylow's theorems].

#### Solution

Since  $n_7 = 1$ , we conclude that D has a normal subgroup H with 7 elements. Also, we know that D has a subgroup K with 5 elements. By a HW problem F = H \* K is a subgroup of D. Since  $H \cap K = \{e\}$ , we conclude that |F| = |H||K| = 35. Since [D : F] = 3 and 3 is the smallest prime factor of |D|, by class notes we know that F = H \* K is a normal subgroup of D.

Now |F| = (5)(7) and F is a group (subgroup of D), so we can apply sylow's Theorems on F. It is clear that  $n_7 = 1$  and  $n_5 = 1$ . Hence H, K are normal subgroups of F. Since  $H \cap K = \{e\}$ , by a HW problem we know  $F \approx H \oplus K \approx Z_7 \oplus Z_5 \approx Z_{35}$ . Hence F is cyclic. Thus F is a cyclic normal subgroup of D.

Submit your solution by 3 pm (as at most), March 28, 2020.

#### **Faculty information**

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

# 24 TABLE OF 2.2.2 Solution for Exam Two

-, ID -

### Solution EXAM II, MTH 532, Spring 2020

### Ayman Badawi

**QUESTION 1.** (i) (3 points) Let A be a commutative ring with 1 and B be a commutative ring (B may not have "1"). Assume  $f : A \to B$  is a ring-homomorphism. Prove that  $f(1) \in Id(B)$  (i.e., show that f(1) is an idempotent element of B).

**Proof.** Since f is a ring-homomorphism, we have  $f(1) = f(1) \cdot f(1) = f(1) \cdot f(1) = f(1)^2$ . Thus  $f(1) \in Id(B)$ .

(ii) (3 points) Let A be a commutative ring with 1 and B = 2Z (B is the set of all even integers). Assume  $f : A \to B$  is a ring-homomorphism. Prove that f(a) = 0 for every  $a \in A$ .

**Proof.** By part (i), f(1) must be idempotent element of B = 2Z. Now  $Id(B) = \{0\}$ . Thus f(1) = 0. Hence  $f(a) = f(a._A1) = f(a)._B f(1) = f(a)._B 0 = 0$  for every  $a \in A$ .

(iii) (3 points) Let A, B be fields and  $f : A \to B$  is a ring-homomorphism such that  $f(a) \neq 0$  for some  $a \in A$ . Prove that f is injective (i.e., prove that f is one-to-one).

**Proof.** By part (i),  $f(1_A)$  must be idempotent element of *B*. Since *B* is a field, it is clear that  $Id(B) = \{0_B, 1_B\}$ . Hence  $f(1_A) = 0_B$  or  $f(1_A) = 1_B$ . Assume  $f(1_A) = 0$ . Then  $f(a) = f(a._A1_A) = f(a)._Bf(1) = f(a)._a0_B = 0$ , a contradiction since  $f(a) \neq 0_B$ . Thus  $f(1_A) = 1_B$ . We know Ker(f) is an ideal of *A*. Since *A* is a field and Ker(f) is an ideal of *A*, we conclude that Ker(f) = A or  $Ker(f) = \{0_A\}$ . If Ker(f) = A, then  $f(b) = 0_B$  for every  $b \in A$ , which is a contradiction since  $f(1_A) = 1_B$ . Hence  $Ker(f) = \{0_A\}$ . Now assume that f(b) = f(c)for some  $b, c \in A$ . Thus  $f(b) +_B - f(c) = 0_B$ . Since *f* is a ring-homomorphism,  $f(b +_A - c) = 0_B$ . Since  $Ker(f) = \{0_A\}$ , we conclude that  $b +_A - c = 0_A$ . Thus b = c.

(iv) (3 points) Let  $f: Z_6 \to Z_9$  be a ring-homomorphism. Prove that f(a) = 0 for every  $a \in Z_6$ .

**Proof.** Again by part (i), f(1) must be idempotent element of  $Z_9$ . By investigation,  $Id(Z_9) = \{0, 1\}$ . Hence f(1) = 0 or f(1) = 1. Assume f(1) = 0. Then f(a) = f(a.1) = f(a).f(1) = f(a).0 = 0 for every  $a \in Z_6$  and we are done. Hence assume that f(1) = 1. We know that f(0) = 0. Hence for every  $n \in Z_6$ ,  $0 < n \le 5$ , we have f(n) = f(1 + ... + 1 (n times) ) = f(1) + f(1) + ... + f(1) (n times) = n (since 9 > 6). Thus  $Range(f) = \{0, 1, 2, 3, 4, 5\}$  is a subring of  $Z_9$ . In particular, Range(f) is a subgroup of  $Z_9$  UNDER ADDITION. Thus |Range(f)| must be a factor of 9 (Lagrange Theorem for groups), which is impossible since |Range(f)| = 6 and 6 is not a factor of 9. Thus  $f(1) \neq 1$ , and hence f(1) = 0. Therefore f(a) = 0 for every  $a \in Z_6$ .

(v) EXTRA (example where  $f(1) \neq 0$  and  $f(1) \neq 1$ ) Let  $f : Z_6 \rightarrow Z_{10}$  be a ring-homomorphism such that  $f(a) \neq 0$  for some  $a \in Z_6$ . Find Range f and Ker(f).

Again by part (i), f(1) must be idempotent element of  $Z_{10}$ . By investigation,  $Id(Z_{10}) = \{0, 1, 6, 5\}$ . Assume that f(1) = 0. Hence as before, we conclude that f(b) = 0 for every  $b \in Z_6$ , which is a contradiction since  $f(a) \neq 0$  for some  $a \in Z_6$ . Also as before  $f(1) \neq 1$ . For if f(1) = 1, then  $Range(f) = \{0, 1, 2, 3, 4, 5\}$ , which impossible since 6 is not a factor of 10. Assume that f(1) = 6. Then by calculation,  $Range(f) = \{0, 6, 2, 4\}$ . Again, it is impossible since |Range(f)| = 4 and 4 is not a factor of 10. Now assume that f(1) = 5. Then, by calculation, we conclude that f is a ring-homomorphism,  $Range(f) = \{0, 5\}$  and  $Ker(f) = \{0, 2, 4\}$ .

**QUESTION 2.** (5 points) Let A be a commutative ring with 1 and let I be a proper ideal of A that is not a maximal ideal of A. Hence, we know that  $I \subset M$  for some maximal ideal M of A. Let  $a \in M - I$ . Prove that a + I is not an invertible element of the ring A/I (i.e., show that  $a + I \notin U(A/I)$ ).

Proof First, M is not UNIQUE. Maybe there are infinitely many maximal ideals of A. All of you assumed that M is unique (i.e., M is the only maximal ideal of A) and hence I has to be the maximal ideal M. Note that if you prove that for every nonzero element  $a \in A - I$ , we have a + I is an invertible element of A/I, then you can conclude that I is a maximal ideal of A.

So, let  $a \in M - I$  (note I am not taking  $a \in A - I$  !) and assume that a + I is invertible in A/I. Thus a + I.b + I = ab + I = 1 + I for some  $b \in A$ . Hence  $1 - ab \in I$ . Thus  $1 - ab = i \in I$ , and hence 1 = ab + i. Since  $a \in M$  and M is an ideal of A and  $a \in M$ , we conclude that  $ab \in M$ . Since  $I \subset M$ , we have  $i \in M$ . Since  $ab \in M$  and  $i \in M, 1 = ab + i \in M$ , which is impossible since M is a proper ideal of  $A (M \cap U(A) = \emptyset)$  (note by definition a maximal ideal is a proper ideal). Thus a + I is not an invertible element of A/I.

**QUESTION 3. (5 points)** Let A be a finite commutative ring with 1 and  $a \in A$ . Suppose that  $a \notin Z(A)$ . Prove that  $a \in U(A)$ .

Proof. Since A is a finite commutative ring with 1, we may assume that  $A = \{0, 1, a_3, ..., a_n\}$ . Let  $a \in A - Z(A)$ . Since A is finite, there exist positive integers m > k such  $a^m = a^k$ . Thus by distributive law,  $a^m = a^k$  implies  $a^k(a^{m-k}-1) = 0$ . Since  $a \notin Z(A)$ , it is clear that  $a^f \notin Z(A)$  for every positive integer  $f \ge 1$ . Thus  $a^k(a^{m-k}-1) = 0$  implies  $a^{m-k} - 1 = 0$ . Thus  $a^{m-k} = 1$ . Hence  $a \in U(A)$ . [THIS is a nice result, so now you have this FACT (add to your dictionary): If A be a finite commutative ring with 1 and  $a \in A$ , then EITHER  $a \in Z(A)$  OR  $a \in U(A)$ , A is finite is very CRUCIAL. For let A = Z (A is infinite). Let  $a \in A - \{0, 1, -1\}$ . Then NEITHER  $a \in Z(A)$  NOR  $a \in U(A)$ ]

**QUESTION 4. (5 points)** Let A be a commutative ring with 1 and  $f(X) \in A[X]$  such that  $f(X) \neq 0$  and  $f(X) \in Z(A[X])$ . For every  $n \ge 1$ , prove that there exists a polynomial  $k(X) \in A[X]$  of degree n such that k(X)f(X) = 0.

**Proof.** By Class notes (I-Learn), there exists a nonzero element  $b \in Z(A)$  such that bf(X) = 0. Let  $n \ge 1$  and  $k(X) = bX^n$ . Then deg(k(X)) = n and by normal multiplications of polynomials, we have  $k(X)f(X) = bX^n f(X) = 0$  (since bf(X) = 0).

**QUESTION 5.** (5 points) Let A be a commutative ring with 1 and I be a prime ideal of A. Prove that  $Nil(A) \subseteq I$ .

**Proof.** Since I is prime, we know that A/I is an integral domain. Hence  $Z(A/I) = \{0 + I\}$ . Also note that for any ring B,  $Nil(B) \subseteq Z(B)$ . Hence let  $a \in Nil(A)$ . Then  $a^n = 0$  for some integer  $n \ge 1$ . Hence  $(a + I)^n = a^n + I = 0 + I$ . Thus  $a + I \in Nil(A/I)$ . Since  $Z(A/I) = Nil(A/I) = \{0 + I\}$  and  $a + I \in Nil(A/I)$ , we conclude that a + I = 0 + I. Hence  $a \in I$ . Thus  $Nil(A) \subseteq I$ .

another Proof. Let  $a \in Nil(A)$ . Hence  $a^n = 0 \in I$  for some integer  $n \ge 2$ . Hence  $a^n = a.a^{n-1} = 0 \in I$ . Thus  $a^n = a.a^{n-1} = 0 \in I$ . Since I is prime,  $a \in I$  or  $a^{n-1} \in I$ . If  $a \in I$ , then we are done. Hence assume that  $a^{n-1} \in I$  and  $n \ge 3$ . Since I is prime and  $a^{n-1} = a.a^{n-2} \in I$ , again we conclude that  $a \in I$  or  $a^{n-2} \in I$ . By repeating as before, we conclude that  $a^2 \in I$ . Since  $a^2 = a.a \in I$  and I is prime, we conclude that  $a \in I$ .

**QUESTION 6.** (i) (3 points) Let  $A = Z_4 \oplus Z_6$ . Find all prime ideals of A.

See class notes:  $2Z_4 \oplus Z_6$ ,  $Z_4 \oplus 2Z_6$ ,  $Z_4 \oplus 3Z_6$ .

(ii) (3 points). Let  $A = Z_{12} \oplus Z_8$ . Find Nil(A).

Note Nil(A) subset of  $Z_{12} \oplus Z_8$ , i.e., each element in Nil(A) has the form (a, b), where  $a \in Nil(Z_{12})$  and  $b \in Nil(Z_8)$ . By notes,  $Nil(Z_{12}) = 6Z_{12} = \{0, 6\}$  and  $Nil(Z_8) = 2Z_8 = \{0, 2, 4, 6\}$ . Hence |Nil(A)| = 2.4 = 8 and  $Nil(A) = \{(0, 0), (0, 2), (0, 4), (0, 6), (6, 0), (6, 2), (6, 4), (6, 6)\}$ .

(iii) (3 points) Let  $B = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix}$ . Is *B* invertible over  $Z_9$ ? If yes, then find  $B^{-1}$ . If No, then explain.

Yes since  $|B| = -4 = 5 \in Z_9$  and  $5 \in U(Z_9)$  (gcd(5,9) = 1). Since 1/5 in  $Z_9$  is  $5^{-1} \cdot 1 = 2 \cdot 1 = 2$ , by class notes  $B^{-1} = 2 \begin{bmatrix} 2 & -4 \\ -2 & 2 \end{bmatrix} = 2 \begin{bmatrix} 2 & 5 \\ 7 & 2 \end{bmatrix} = \begin{bmatrix} 4 & 1 \\ 5 & 4 \end{bmatrix}$ .

(iv) (3 points) Let  $A = Z_{10}[X]$  and  $f(X) = 2X^3 + 5X + 4 \in A$ . Is  $f(X) \in Z(A)$ ?

 $Z(A) = \{0, 2, 4, 5, 6, 8\}$ . By investigation,  $bf(X) \neq 0$  for every nonzero  $b \in Z(A)$ . Hence, the answer is NO

- (v) (3 points) Give me an example of a commutative ring A with 1 such that Char(A) = 5 and  $Z(A) \neq \{0\}$ .  $A = Z_5 \oplus Z_5$ . Char(A) = LCM(|1|, |1|) = 5. Since (1, 0)(0, 1) = (0, 0), we conclude that  $Z(A) \neq \{(0, 0)\}$ .
- (vi) (3 points) Let  $A = Z_{18}[X]$  and  $f(X) = 6X^2 + 12X + 17 \in A$ . Is there a polynomial  $k(X) \in A$  such that k(X)f(X) = 1? If yes, then explain (you do not need to find k(X)). If no, then tell me why not. Since the coefficients of  $X^2$ , X in  $Nil(Z_{18})$  and  $17 \in U(Z_{18})$ , by class notes  $f(X) \in U(A)$ .

#### **Faculty information**

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.

E-mail: abadawi@aus.edu, www.ayman-badawi.com

## 2.2.3 Solution for The Final Exam

MTH 532 Abstract Algebra II, 2020, 1–3

### Final Exam, MTH 532, Spring 2020

Ayman Badawi

**QUESTION 1.** Let F be a finite field with  $2^{12}$  elements.

-, ID -

(i) (3 points) Let  $a \in F$ . Then a is a root of an irreducible monic polynomial of degree m over  $Z_2$  Find all possibilities of m.

**Solution:** m|12 **implies** m = 1, 2, 3, 4, 6, 12

(ii) (3 points) We know that  $(F^*, .)$  is a cyclic group and hence  $(F^*, .) = \langle a \rangle$  for some  $a \in F^*$ . Prove that the degree of  $Irr(a, Z_2) = 12$ ? (i.e., prove that the degree of the unique irreducible monic plolynomial over  $Z_2$  that has a as a root is 12)

Solution: Assume degree  $Irr(a, Z_2) = m$ . Then we know  $[Z_2(a) : Z_2] = m$ . Thus  $Z_2(a)$  is a subfield of F with  $2^m$ . Since  $|a|_x = 2^{12} - 1$ , we conclude that m = 12

(iii) (3 points) We know  $|F^*| = 2^{12} - 1 = 4095$ . Since 819 | 4095, then we know that  $F^*$  has a unique cyclic subgroup, say  $H = \langle b \rangle$  for some  $b \in F^*$  with 819 elements. What is the degree of  $Irr(b, Z_2)$ ? justify your answer

Solution: Assume degree  $Irr(b, Z_2) = m$ . Then we know  $[Z_2(a) : Z_2] = m$ . Thus  $Z_2(b)$  is a subfield of F with  $2^m$ . Since  $|a|_x = 809$ , we conclude that  $m \neq 1, 2, 3, 4, 6$  (since  $809 > 2^m$ , m = 1, m = 2, m = 3, m = 4, m = 6). Thus m = 12

(iv) (4 points) Let  $P_{12}$  be the set of all irreducible monic polynomials of degree 12 over  $Z_2$ . Find  $|P_{12}|$ . Show the work.

Solution: Since 1 | 6, 2|6, 3|6, and 6|6. Every monic irreducible polynomial over  $Z_2$  of degree 1 or 2 or 3 or 6 has all its roots in the subfield H of F with  $2^6$  elements. Hence for every  $a \in W = F - H$ , degree $(Irr(a, Z_2))$  is 4 or 12. Thus  $|W = F - H| = 2^{12} - 2^6$ . Hence

Let K be the subfield of F with  $2^4$  elements and L be the subfield of F with  $2^2$  elements. Thus each element in X = K - L is a root of an irreducible monic polynomial over  $Z_2$  of degree 4. Thus  $|X = K - L| = 2^4 - 2^2$ .

Hence each element in W - X is a root of an irreducible monic polynomial over  $Z_2$  of degree 12.

**Thus** 
$$|P_{12}| = |W - X|/12 = (2^{12} - 2^6 - 2^4 + 2^2)/12 = 335$$

(v) (8 points) Find all elements of the Galois group  $Aut(F/Z_2)$ . For each subgroup H of  $Aut(F/Z_2)$  find the corresponding subfield of F, say  $L_H$ , that is fixed by H.

Solution: We know  $F^* = \langle a \rangle$  and  $a, a^2, a^{2^2}, ..., a^{2^{11}}$  are the roots of  $Irr(a, Z_2)$  and  $Aut(F/Z_2) = [F : Z_2] = 12$ . Let  $f_i : F \to F$  such that  $f_i(a) = a^{2^i}$  (note  $f_0$  is the identity map). Hence  $Aut(F/Z_2) = \{f_0, f_1, ..., f_{11}\}$  is a cyclic group with 12 elements and it is clear that  $Aut(F/Z_2) = \langle f_1 \rangle$ . For each  $m|12 Aut(F/Z_2)$  has exactly one subgroup (cyclic) of order m.

For  $m = 1, G_1 = \{f_0\}$  and F is the fixed field by  $G_1$ 

For  $m = 2, G_2 = \{f_0, f_6\}$  and the unique subfield  $H_2$  with  $2^6$  elements is fixed by  $G_2$  (note that  $[F : Z_2] = [F : H_2][H_2 : Z_2]$  and since  $[F : H_2] = 12$  and  $[F : H_2] = |G_2| = 2$ , we conclude  $[H_2 : Z_2] = 6$ ) For  $m = 3, G_3 = \{f_0, f_4, f_8\}$  and the unique subfield  $H_3$  with  $2^4$  elements is fixed by  $G_3$ .

For m = 4,  $G_4 = \{f_0, f_3, f_6, f_9\}$  and the unique subfield  $H_4$  with  $2^3$  elements is fixed by  $G_4$ 

For m = 6,  $G_6 = \{f_0, f_2, f_4, f_6, f_8, f_{10}\}$  and the subfield  $H_6$  with  $2^2$  elements is fixed by  $G_6$ .

For m = 12,  $G_{12} = Aut(F/Z_2)$  and  $Z_2$  is the unique subfield fixed by  $G_{12}$ .

**QUESTION 2.** Let E be the 5th cyclotomic extension field of Q

- (i) (2 points) E = Q(a) for some a ∈ C (C is the ring (field) of all complex numbers). Find a.
   a = e<sup>2iπ/5</sup> = cos(2π/5) + sin(2π/5)i
- (ii) (6 points)Let a as in (i), find Irr(a, Q), find [E : Q], and find all roots of Irr(a, Q) inside E. Is Aut(E/Q) a cyclic group under composition? how many elements does Aut(E/Q) have?

We know  $[E:Q] = \phi(5) = 4 = degree(Irr(a,Q))$ . It is clear that  $x^5 - 1 = (x-1)(x^4 + x^3 + x^2 + x + 1)$ and hence  $Irr(a,Q) = f_a(x) = x^4 + x^3 + x^2 + x + 1$ . Also, we know  $a, a^2, a^3, a^4$  are the roots of  $f_a(x)$  (since for every  $i, 1 \le i < 5$ , we have gcd(i,5) = 1 and thus  $|a^i| = 5$  for every  $1 \le i < 5$ ). We know Aut(E/Q)is group-isomorphic to U(5) and since U(5) is cyclic, we conclude that Aut(E/Q) is a cyclic group with 4 elements.

(iii) (2 points) Find a basis B (in terms of a) of E over Q.

Solution: Since [Q(a) : Q] = 4, we know  $E = Q(a) = span\{1, a, a^2, a^3\}$  over Q.

- (iv) (2 points) write  $a^6 + a^5 + a^4$  as a linear combination of the elements in the basis B (B is as in iii).
  - Solution: We know  $a^6 + a^5 + a^4$  in  $E \leftrightarrow x^6 + x^5 + x^4 + (f_a(x))$  in  $Q[x]/(f_a(x))$ . Now dividing  $x^6 + x^5 + x^4$  by  $f_a(x)$  and taking the remainder, we conclude  $x^6 + x^5 + x^4 + (f_a(x)) = -x^3 x^2 + (f_a(x))$  in  $Q[x]/(f_a(x))$ . Thus  $a^6 + a^5 + a^4 = -a^3 a^2$
- (v) (4 points) For each subgroup of Aut(E/Q) with 2 elements, say H, find the corresponding subfield of E, say  $L_H$ , that is fixed by H.

Solution: Since Aut(E/Q) is a cyclic group with 4 elements Aut(E/Q) has exactly one subgroup with 2 elements, say H. Let I be the identity map on E and  $f_4 : E \to E$  such that  $f_4(a) = a^4$ . Then  $H = \{I, f_4\}$  is the unique subgroup of Aut(E/Q) with 2 elements. Since  $a + a^4 \notin Q$  and  $f_4(a + a^4) = f_4(a) + f_4(a^4) = a^4 + a$ , we conclude that  $Q(a + a^4)$  is the subfield of E that is fixed by H.

**QUESTION 3.** Let  $E = Q(\sqrt{5}, \sqrt{7})$ .

(i) (3 points). We know that E = Q(a) for some  $a \in R$ . Find Irr(a, Q) (i.e., find the unique irreducible monic polynomial over Q that has a as a root. What is [E : Q]?

**Solution: We know**  $a = \sqrt{5} + \sqrt{7}$ **.** 

 $x = \sqrt{5} + \sqrt{7} \rightarrow x^2 = 12 + 2\sqrt{35} \rightarrow (x^2 - 12)^2 = 140$ . Hence  $Irr(a, Q) = (x^2 - 12)^2 - 140 = x^4 - 24x^2 + 4$ . Thus [Q(a):Q] = 4.

(ii) (3 points) It is clear that  $L = Q(\sqrt{35})$  is a subfield of E. Find the subgroup, say H, of Aut(E/Q) that fixes the field L.

Solution: Since Let I be the identity map on E = Q(a) and  $f : E \to E$  such that  $f(\sqrt{5}) = -\sqrt{5}$  and  $f(\sqrt{7}) = -\sqrt{7}$ . It is clear that  $H = \{I, f\}$  is the subgroup that fixed the field  $L = Q(\sqrt{35})$ .

(iii) (3 points) Is the field  $Q(\sqrt{5})$  isomorphic to the field  $Q(\sqrt{7})$ ? If yes, then construct such ring-isomorphism (field-isomorphism)? If no, then explain briefly why not?

Solution: No. Why? Assume that  $f: Q(\sqrt{5}) \to Q(\sqrt{7})$  is a ring-isomorphism. First we know that f(q) = q for every  $q \in Q$ . Hence f(a root of  $x^2 - 5$ ) must map to a root of  $x^2 - 5$ . Thus  $f(\sqrt{5})$  must be  $\sqrt{5}$  or  $-\sqrt{5}$ . But neither  $\sqrt{5}$  nor  $-\sqrt{5}$  is in  $Q(\sqrt{7})$ . Thus such f does not exist.

**QUESTION 4. (3 points)** Let *E* be the splitting field of the polynomial  $f(x) = x^7 - 18$ . We know that *E* is a Galois Extension of *Q*. Prove that Aut(E/Q) is a non-abelian group.

Solution: We know that f(x) is irreducible over Q by Einstein's Result. Thus  $[E = Q(\sqrt[7]{18}) : Q] = 7$ . It is clear that  $E \subset R$  and  $\sqrt[7]{18}$  is the only real root of f(x). Hence f(x) does not split in E. Since E is not a normal extension of Q, we know by a class result that Aut(E/Q) must be a non-abelian group.

**QUESTION 5.** (i) (2 points) Give me an example of an integral domain that is not a UFD (Unique Factorization Domain).

Let  $A = Z + x^2 Z[x]$ . Then  $x^2$  is an irreducible element of A (note  $x \notin A$ ), but  $x^2$  is not a prime element of A since  $x^2|x^3.x^3$  but  $x^2 \nmid x^3$  in A. Thus A can not be a UFD (in a UFD every irreducible element is prime).

(ii) (2 points) Give me an example of a Unique Factorization Domain that is not a principal ideal domain.

Solution: We know that Z[x] is a UFD, but the ideal (x, 2) of Z[x] is not a principal ideal

(iii) (4 points) Let *A* be a principal ideal domain. Prove that every prime ideal of *A* is a maximal ideal of *A*.[Hint: Every proper ideal is a principal ideal, and every proper ideal is contained in a maximal ideal].

Solution: Let I be a proper ideal of A. We know I = (a) = aA for some prime element a of A. Thus I is contained in a maximal ideal M. Since every maximal ideal is prime, we conclude that M = (x) for some prime element x of A. Since  $I \subseteq M$ , we conclude that a = ux for some  $u \in A$ . Since A is a UFD, we know that an element, say b, in A is prime if and only if b is irreducible. Hence a is a irreducible element A. Since a is irreducible and a = ux, by definition of irreducible elements, we conclude that  $u \in U(A)$  or  $x \in U(A)$ . Since  $M = (x), x \notin U(A)$ . Hence  $u \in U(A)$ . Thus  $u^{-1}a = x$ . Thus  $x \in (a)$ , and hence  $(x) \subseteq (a)$ . Since  $(a) \subseteq (x)$  and  $(x) \subseteq (a)$ , we conclude that M = (x) = (a) = I. Thus I is a maximal ideal of A.

(iv) (4 points) Let A be a commutative ring with 1. Suppose that A has exactly one maximal ideal. Prove that  $Id(A) = \{0, 1\}$ . [Hint: note if  $x \notin U(A)$ , then the ideal (x) = xA is a proper ideal of A].

Solution: Let M be the maximal ideal of A. Assume there is  $e \in Id(A)$  such that  $e \neq 0, 1$ . Hence we know that  $1 - e \in Id(A)$ . Since (e) and (1 - e) are proper ideals of A and M is the only maximal ideal of A, we conclude that the ideals (e) and (1 - e) "live" inside M. In particular,  $e, 1 - e \in M$ . Hence  $e + 1 - e = 1 \in M$ , which is impossible since M is a proper ideal of A. Thus  $id(A) = \{0, 1\}$ .

(v) (4 points) Let A be an integral domain, P be a prime ideal of A, and I be a proper ideal of A such that  $I \cap P = \{0\}$ . Prove that there exists a prime ideal F of A such that  $I \subseteq F$  and  $F \cap P = \{0\}$  [Hint: Let W = P - 0, note  $I \cap W = \emptyset$ ] Solution: Let  $W = P - \{0\}$ . Since A is an integral domain, W is a multiplicative subset of A (i.e., W is a multiplicatively closed subset of A). Since  $W \cap I = \emptyset$ , we know by a class result, there is a prime ideal F of A that contains I and  $F \cap W = \emptyset$ . Hence  $F \cap P = \{0\}$  **QUESTION 6.** (4 points). Let F be a group with 12 elements. Prove that F must have a normal subgroup with 3 elements **OR** F must have a normal subgroup with 4 elements.

Solution :  $|F| = 12 = 3.2^2$ . We know to show that  $n_3 = 1$  or  $n_2 = 1$ . Deny. Then  $n_3 = 4$  and  $n_2 = 3$ . Now  $n_3 = 4$  implies that F has exactly 8 elements of order 3. Since |F| = 12, there is a room for one and only one subgroup with 4 elements, a contradiction. Thus  $n_3 = 1$  or  $n_2 = 1$ . Hence F must have a normal subgroup with 3 elements OR F must have a normal subgroup with 4 elements.

### **Faculty information**

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

# 2.2.4 Solution for HW-ONE

(HWI, Abstract Algebra)  
• Amoni Ali Algebra)  
• good 57115  
(i) Let P be a group and a (A. Given 1al = m < w. Show that  

$$D = [a, a, a, a], a^m is a subgroup of P with m elements.$$
  
 $a = m - a^m = e$   
 $et a^m, a^m \in D$  where  $h, k \in \mathbb{Z}$ , want  $: a^{k+n} \in D$   
• If  $a < k + h < m$  then  $a^{k+n} \in D$ , sink  $a = a^m = e < ED$   
• If  $k + h > m$ , by division algorithem  $\exists q \ si \ s.t$   
 $k + h = qm + i$  where  $a < i < m$   
 $a^{m+n} = a^m a^r$   
 $= a^{qm} a^r$   
 $= a^{qm} a^r$   
 $= a^{qm} a^r$   
 $= a^{qm} a^r$   
Hence  $a^{k+h} \in D$  and D is closed  $m$   
 $k = a^m = e$ , want  $: m \ln$   
By division algorithem  $\exists q \ si \ s.t$   
 $a = a^m = e$ , want  $: m \ln$   
By division algorithem  $\exists q \ si \ s.t$   
 $n = qm + r$  where  $a < i < m$   
 $given e = a^m$   
 $= a^m = e$ ,  $m = 1 = m < \infty$ . Assume that  $a^m = e$   
 $a = a^m = e$   
 $= a^m = a^m = e$   
 $= a^m = a^m = e$ ,  $m = m \ln n$   
 $a = a^m = e$   
 $= a^m = a^m = e$ 

(iii) let D be a group and a CD. Given tal=
$$m < \omega$$
, let bED such that  
 $b = a^{k}$  where  $gcd(k,m) = 1$ . Prove that  $tbl = m$ .  
 $tal=m \rightarrow \alpha^{m} = e$   
 $b = a^{k}$   
 $gcd(k,m) = 1$ . wont:  $tbl=m \rightarrow b^{m} = (a^{k})^{m} = e$   
Let  $b^{k} = e$  for some  $h \in \mathbb{Z}$ , wont to show  $h = m$ .  
 $e = b^{h} = (a^{k})^{h}$   
 $= a^{m}$   
 $= a^{m}$   

(v) Let D = (Q, +). Then H = (Z, +) is a subgroup of (Q, +). Prove that H has infinitely many left cosets. Give me 5 distinct left cosets of H. let  $a \in D$  s.t  $a \leq a \leq 1$ 

then there are infinitly many sets [q+H]

There are left cosets of H + of the form +

a+1+ = 1 a+h 1 hEH & O Sadi

- . Five distinct left cosets :
  - (1) 0.1+1-1
- (2) 0.2+1-1
- (3) 0.3+1-1
- (4) 0.4+H
- (5) 0.5+H
- (vi) Let F= 16,12, 18, 24) Convince me that F is a group under multiplication module 30 by constructing the Caley's Table. What is e? What is N??? what is 24-1?
  - 24 G 12 18 12 18 6 24 6 12 24 6 18 12 24 12 18 6 18 6 12 24/24 18
  - . F is closed under multip. since Va, bEF, a. bEF
  - · e = 6, 6.9 = 9.6 = 6 VaEF
  - · 24-1 = 24, 12 = 18, 18 = 12, 6 = 6
  - (a.b).c = a. (b.c) V a, b, c EF

# 2.2.5 Solution for HW-Two

Israq Alhamuma 
$$\underbrace{MTH 532}_{Hiv22} g_{000} \otimes 1566$$
  
i) Let D be a group, as D such that  $1a|=n, coo.$  Let  $m$  be  
a positive integer and  $r = gcd(m, n) \Rightarrow 1a^m|=n/r$   
(prived in solution - book)  $\cdot Just know this fact and ase H.$   
ii) Let  $D = (Z_{24}, +)$ . Find  $191, 1141, 1181, 1111$   
(hont : note that  $Z_{24} = <1>$  and for  $ex. \otimes = 1^n$ , then use(b)).  
First of all  $1D1 = 1Z_{24}| = 24$   
and since  $Z_{24} = <1>$   $\Rightarrow 111 = 24$ .  
 $191 = 11^9$  and  $111 = 24$   
where  $r = gcd(9, 24) = 3$   
 $9n \quad 12n \geq 12(3) \otimes 4 \ll$ .  
 $r=3$ .  
Hence by (i)  $\Rightarrow \boxed{191 = \frac{24}{3} = 8}$   
 $1141 = 11^{14}$  and  $111 = 24$   
 $r = gcd(14, 24) \Rightarrow r=2$ .  
 $r = gcd(14, 24) \Rightarrow r=2$ .  
 $r = 1 = 11^8$  and  $111 = 24$   
 $r = gcd(18, 124)$   
 $by (i) \Rightarrow \boxed{118] = 24} \Rightarrow r=gcd(24, 10)$   
 $by (i) \Rightarrow \boxed{118] = 24} \Rightarrow r=gcd(24, 10)$   
 $r = 1$   
 $by (i) \Rightarrow \boxed{118] = 24} \Rightarrow r = gcd(24, 10)$   
 $r = 1$ 

Scanned with CamScanner
iv) Let 
$$D = Z_n \oplus Z_n$$
  $n \to n \to 2$   
(of cause the binary operations one delition mades and addition  
mades).  
Let  $(a,b) \in D$ . Prove that  $|(a,b)| = LCM[Ial,Ib]$   
(hint: Note that if kill are integers. then LCMEKINI = Kill  
(hint: Note that if kill are integers. then LCMEKINI = Kill  
(hint: Note that if kill are delited  
Let  $(a,b) \in D$  where  $d \in Z_n$  and  $b \in Z_n$   
and let  $Ial = K$  and  $Ibl = D$   
Sor identify of Zounder addition.  
 $\Rightarrow a^{K} = 0$  modes  
 $\Rightarrow b^{D} = 0$  modes  
 $\Rightarrow identify of Zounder addition.$   
 $Dows: Let I (a,b) I = t - 0$   
 $\Leftrightarrow (a,b)^{t} = (at,b^{t}) = (0,0).$   
 $\Rightarrow (a,b)^{t} = (at,b^{t}) = (0,0).$   
 $\Rightarrow (a,b)^{t} = (at,b^{t}) = (0,0).$   
 $\Rightarrow k/t and w/t.$   
then, t is a common multiple of both  $k,w = -0$   
 $and IF r = LCM(K_{10}) \xrightarrow{i} (aib)^{r} = (0,0) - -3$   
 $by (D and 3) \Rightarrow t \leq r since t/r.$   
 $by (2) and (3) \Rightarrow t \leq r since t/r.$   
 $by (2) and (3) \Rightarrow t \leq r since t/r.$   
 $by (2) and (3) \Rightarrow t \leq r since t/r.$   
 $by (2) and (3) \Rightarrow t \leq r since t/r.$   
 $by (2) and (3) \Rightarrow t \leq r since t/r.$   
 $by (2) and (3) \Rightarrow t \leq r since t/r.$   
 $by (2) and (3) \Rightarrow t \leq r since t/r.$   
 $by (2) and (3) \Rightarrow t \leq r since t/r.$   
 $by (2) and (3) \Rightarrow t \leq r since t/r.$   
 $by (2) and (3) \Rightarrow t \leq r since t/r.$   
 $by (2) and (3) \Rightarrow t \leq r since t/r.$   
 $by (2) and (3) \Rightarrow t \leq r since t/r.$   
 $by (2) and (3) \Rightarrow t \leq r since t/r.$   
 $by (2) and (3) \Rightarrow t \leq r since t/r.$   
 $by (2) and (3) \Rightarrow t \leq r since t/r.$   
 $by (2) and (3) \Rightarrow t \leq r since t/r.$   
 $by (2) and (3) \Rightarrow t \leq r since t/r.$   
 $by (2) and (3) \Rightarrow t \leq r since t/r.$   
 $by (2) and (3) \Rightarrow t \leq r since t/r.$   
 $by (2) and (3) \Rightarrow t \leq r since t/r.$   
 $by (2) and (3) \Rightarrow t \leq r since t/r.$   
 $by (2) and (3) \Rightarrow t \leq r since t/r.$   
 $by (2) and (3) \Rightarrow t \leq r since t/r.$   
 $by (2) and (3) \Rightarrow t \leq r since t/r.$   
 $by (2) and (3) = r \leq t since t/r.$   
 $by (2) and (3) = r \leq t since t/r.$   
 $by (2) and (3) = r \leq t since t/r.$   
 $by (2) and (3) = r \leq t since t/r.$   
 $by (2) and (3) = r \leq t since t/r.$   
 $by (2) and (3) = r \leq t since t/r.$   
 $by (2) and (3) = r \leq t since t/r.$   
 $by (2) and (3) = r \leq t since t/r.$ 

3

) Let 
$$gcd(n,m) = 1$$
, show that  $D$  is  $cgclic.$   
 $prof$   $IZnI=n$ ,  $IZmI=m$ ,  $IDI=nm < \infty$ .  
 $IZnI=n$ ,  $IZmI=m$ ,  $IDI=nm < \infty$ .  
 $Ict (a,b) \in D$ , and.  $Zn = \langle a \rangle = [a, a^2, -.., a^2 = c]$   
 $Zm = \langle b \rangle = [b, b^2, -.., b^2 = c]$ .  
 $Ict [(a,b)] = S < \infty$  for some two integer S.  
 $Ict [(a,b)] = S < \infty$  for some two integer S.  
 $Now by Hwall$   
 $we can construct a subgroup of D of order S.$   
 $Sit = [(a,b), (a,b)^2, (a,b)^3, --.., (a,b)^3]$ .

• by (iv) 
$$\Rightarrow |(a,b)| = 5$$
  
 $= \frac{|a||b|}{gcd(|a|,||b|)}$   
 $= \frac{nm}{gcd(n,m)}$   
 $= \frac{nm}{1} = \sin n$   
 $\Rightarrow |(a,b)| = s = nm = |D|$   
 $E(a,b), (a,b)^{2}, - \cdots, (a,b)^{nm} S$   
Hence,  $D = f(a,b) > \cdot$   
 $\Rightarrow D is cyclic \mathbb{R}$ 

 $Vi) \quad Let \quad \bigcirc = Z_{6} \oplus Z_{14}$ a) convince me that D is not cyclic. Find the value of integer m such that the order of each element in D is em is Em  $gcd(6, 14) = 2 \neq 1$ , Hence, by (V) D is Not cyclic. as Disof the form En DEM and it is on iff statement. [ also, note part (d) y Wes a Counter example if we assume Discyclic] 1D1 = 16(14) = 84. and by Thm in class if (a, b) ED then ( (a, b) / 1D) 1 (a,b) / 84. → [1,84], 2,42, 3,28,4,21,6,14,7,12] possible so; by iv) [1,84], 2,42, 3,28,4,21,6,14,7,12] of (a,b) also, by iv)  $|(a,b)| = LCM(6,14) = \frac{84}{2} = 42$ → m=42. of both the least Common multiple of the max order of an element a in Zo = 6. and the max order of an element

bin Z14 = 14

(c) Give me two subgroups of D. suy 
$$H_1, H_2$$
 such  
Hut  $|H_1| = |H_2| = 2$ .  
 $Z_5 = \frac{1}{5} 0, 1, 2, 3, 9, 5$   $\oplus$   $Z_{14} = \frac{1}{5} 0, 1, 2, ----, 1/3$ .  
 $(a,b) \in H_1 \stackrel{e}{\to} H_2$ .  
 $|(a,b)| / 1 H_1| \stackrel{e}{\to} 1H_2|$   
 $|(a,b)| / 2 \implies |(a,b)| = 2 \xrightarrow{} LCM(|a|,|b|)$   
 $|(a,b)| / 2 \implies |(a,b)| = 2 \xrightarrow{} LCM(|a|,|b|)$   
 $|(a,b)| / 2 \implies |(a,b)| = 2 \xrightarrow{} LCM(|a|,|b|)$   
 $|(a,b)| / 2 \implies |(a,b)| = 2 \xrightarrow{} LCM(|a|,|b|)$   
 $|a| = 2 \mod 6$ .  
 $\Rightarrow a = 3$   
 $|b| = 2 \mod 6$ .  
 $\Rightarrow a = 3$   
 $|b| = 2 \mod 14 \implies b = 7$ .  
 $H_1 = \frac{1}{5} (0,0), (3,7)$   $\Rightarrow (3,7)^2 = (3^2,7^2) = (0,0)$ .  
 $H_2 = \frac{1}{5} (0,0), (3,7)$   $\Rightarrow (3,7)^2 = (0,0) -$   
 $(d) \cos D have a cyclic subgroup of order 21?$   
 $If yes find a generator f such yroup.$   
 $(O) D is an a belien group and  $\frac{2}{1/84}$   
 $\Rightarrow so D has a subgroup of order 21$   
 $(2) from part (b) ((1,1,0)) = 21$ , then by  $HwO$   
 $we can have a subgroup as  $\frac{1}{5} (u_1(0), (4,10)^2, -- (1,4,10)^2]^2$   
 $\Rightarrow Th subgroup is cyclic
and (4,1,0) can be a generator of such a.
 $subgroup$ .  
 $(1,4,10) = [subgroup].$$$$ 

or in general:  $(a,b)^{2l} = (o,o)$  $(a^{21}, b^{21}) = (0, 0)$ .  $a \in \mathbb{Z}_{6}$  and  $b \in \mathbb{Z}_{14}$ . 1a1/21 and 161/21. end ycd(1a1,161)=1 to be cyclic (V) and since 15/01 56, 15/01/514 lal=3, , 161=3, ₹. Hence, (2,2). is another example of the generator of a cyclic subgroup of order 21. > yes, D has a cyclic subgroup of order 21 and examples of the generatur. (2,2) and (4,10). \* Note for part (a) :this can be unother way to prove that D is Not cyclic, where if we assume D cyclic the contradiction appars since we have 2 different subgroups of the same size (Not unique) Huna, D is Not cyclic

## 2.2.6 Solution for HW-Three

(iii) by (iii), 
$$N=122 AUZ$$
 is a subgroup of  $(Z, +)$ .  
Since Z is cyclic, we know  $N=uZ$ , find a.  
Using a class-Note.  
Every subgroup of  $(Z, +) = <17$  for some  $nGZ$ .  
 $12Z = <127 = <1^{12}7$   
 $15Z = <157 = <1^{12}7$   
 $N = 12Z AISZ$   
 $= 1CM(12, 15)Z$   
 $= 60Z = <1^{15}7$ .  
N Let D be an abelian group with 9 elements. Given that  
D has two distinct subgroups,  $H_1, H_2$  such that  $|H_1| = |H_2| = 3$   
Convince me that it is impossible that  $D = (Z_4, +)$ .  
What will be an example of such group D?  
 $(Z_9, +)$  is cyclic group, so although it is abelian  
of 9 elements it is impossible that i Has more  
than are unique subgroups. of the same order (319)  
and since D here has 2 distinct subgroups of order 3  
than D can't be  $(Z_9, +)$ .  
 $D = Z_3 \oplus Z_3$  (by Hiv 2)  
 $D = Z_3 \oplus Z_3$  (by Hiv 2)  
 $example (H_2 = [(a, a), (1, 1), (2, 2)]$   
 $example (H_2 = [(a, a), (1, 1), (2, 2)]$   
 $d subgroups. - (H_1) = H_2| = 3$ , where  $H_1 \neq H_2$ . (2)

- · (V) Let FESA such that f is m-cycle. Convince me that if m is add integer, then fEAn and it m is an even integer the f\$An m-cycle Let  $F = (q_1 q_2 - \dots q_m) \in S_n$ . . We know by class - Theorem that any bijective function fESn can be written us composition of 2-cycles as Following:  $f = (a_1 a_2 - - - a_m) = (a_1 a_m)(a_1 a_{m-1}) - - - - (a_1 a_2)$ (m-1), 2-cycles. , by staring and few example . Nike :  $(a_1 a_2 a_3) = (a_1 a_3)(a_1 a_2)$  $(a_1 a_2 a_3 a_4 a_5 a_6) = (a_1 a_6)(a_1 a_5)(a_1 a_4)(a_1 a_3)(a_1 a_6)$ (\*) we notice that I can be written as (m-1)2-cycles. Hence,
  - Hence, when m is odd => (m-1) is even => FE An.

• when m is eum ⇒ (m-1) is odd ⇒ f & An.

m/ky

(3)

(4)

Compile VI)

"(b) Does As has an abelian subgroup with 15 elements." [ Hint : If you show that As has a cyclic subgroup with 15 elements, then you are done, since cyclic implies abelian ].

Inorder to show abelian Subgroup. we need to find a cyclic subgroup with 15 elements. and to do so, we should show that I FE As sit | F| = 15 CIIC2 disjonit = LCM ( length of G , length of Cz). = LCM(5,3)= (12345)(678).= 15. Z a cyclic subgroup < f> s.t: Hence, by H.W P  $\{f, f^2, f^3, ---, f^{15}\}$ ⇒ As has a cyclic subgroup of 15 elements So, it has an abelian subgroup of 15 elements since. cyclic emplies abelian.

Vii) let f=(143)(14)ESy. Find Ifl. let K=(143)(15)ESS rot-disjoint. Find IKI.

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix} \implies f = (1 & 3).$$

$$\boxed{|IF| = 2|}$$

$$k = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 1 & 3 & 4 \end{pmatrix} \implies k = (15 & 4 & 3)$$

$$\boxed{|Ik| = 4|}$$
Viii) Given  $H = [(1), (143), (134)] is a subgroup of S_{5}.$ 
(this is given, you do not need to check). Find the left cosel (II) of the and find the right cosel Ho(IS). When the you observe?  
Can we say that H is a normal subgroup of S\_{5}?  
\* $12FF cosef = (15) \circ H = [(15)(1), (15)(143), (15)(134)]$ 

$$\cdot (15)(143) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 4 & 5 & 1 \end{pmatrix} = (13 & 45)$$

$$\Rightarrow (15) \circ H = [(15), (1435), (1345), (1345)]$$

$$\cdot (143)(15) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 1 & 3 & 4 \end{pmatrix} = (15 & 43)$$

$$\circ (134)(15) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 4 & 1 & 3 \end{pmatrix} = (15 & 34)$$

⇒ Ho(15) = [(15), (1543), (1534)]. My  
we notice that (15) off ≠ Ho(15)  
Hence H Carlt be a normal subgroup of S.  
Since ∃ (15) ESS where left coset ≠ right coset  
which gives a counter example and according to class-loke  
if is enough to show not normal subgroup.  
(iv) Let ab be element of a group such that ato = b \*a  
Assume Ial=n and Ibl=m. let K= laxbl. power K/nm.  

$$a + b = b *a$$
 for aybED. ⇒ arbED   
 $a + b = b *a$  for aybED. ⇒ arbED   
 $(by group Closure. under)$   
let Ial=n and Ibl=m.  
 $a + b = (a + a)(b k a)(b + b) = --(a + b) group
 $a = (a + a)(b k a)(b + b) = --(b + b) = orb-beat
= (a + a)(b k a)(b + b) = --(b + b) = orb-beat
= (a + a)(b k a)(b + b) = --(b + b) = orb-beat
= (a + a)(b k b) = --(b + b) = orb-beat
= (a + a)(b k b) = --(b + b) = orb-beat
= (a + a)(b k b) = --(b + b) = orb-beat
= (a + b)^m = (a)(b k b + --b)
= (a + b)^m = (a)(b k b + --b)
= (a + b)^m = (a)(b k b + --b)
= (a + b)^m = (b)^m w (b)^m$$ 

7)

(X) Give me an example of two elements a, b in a group Where laten, 161=m and laxbl=k but K/nm. [hint: Stare at the element K in Vil und sometow finda, b].

$$k = (143)(15) \in S_{5}$$

$$K = (143)(15) \in S_{5}$$

$$a = (143) \in S_{5} \quad \text{und} \quad b = (15) \in S_{5}$$

$$|a| = 3 = n, \quad |b| = 2 = m$$

$$K = a \times b = (143)(15) \quad (* = 0)$$

$$|1c| = 4$$

$$mm = 3.2 = 6$$

$$if (143) = 7 m$$

Xi) let u, b be element of a group such that u \* b = b \*a Assume |a|=n, |b|=m and gcd(n,m)=1.let k=|a\*b| Prove k=nm [Hint: you may want to use the fact from number Thing that it gcd(w,d)=1, d/c and w/c then wcl/c where wide c are the integers].

• by (ix) we know that if a, bED where axb=b\*a lal=n and | bl=m und | u\*b|=k then K/nm - D

• So we only need to show 
$$nm/K$$
 since all bolows  
 $|a \neq b| = k \Leftrightarrow (a \neq b)^{k} = e \Rightarrow a^{k} \neq b^{k} = e$   
 $\Rightarrow a^{kn} \neq b^{kn} = e$  for the integer  $n$   
 $\Rightarrow (a^{n})^{k} \neq b^{kn} = e \Rightarrow e \neq b^{kn} = e \Rightarrow b^{kn} = e$   
Hence,  $m/kn$  but  $gcd(m,n) = 1$   
 $\Rightarrow [m/k]$  (Good).

8)

Now, Similarly for 
$$m$$
 the integer.  $(ak_{k}bk_{j}) = dm_{k}b^{km} = dm_{k}b^{km} = e$   
 $a^{km} * b^{km} = e$   
 $a^{km} * (b^{m})^{k} = e \Rightarrow a^{km} * e^{k} = e$   
 $\Rightarrow a^{km} = e$ .  
Thun,  $n/km$  and  $gcd(n,m) = 1$ .  
 $\Rightarrow [n/k]$   
using the hint,  $m/k$ ,  $n/k$ , and  $gcd(n,m) = 1$ .  
 $\Rightarrow [n/k]$   
 $bg()$  and  $@[k=nm]$   
 $bg()$  and  $@[k=nm]$   
 $M(k) = @[mn/k] =$ 

:••

XIII) Let Fi(Z24,+) ~> (Z15,+) be a group homomorphism such that F(1) =0 . Find F(Zzy). [ Hint: Note that Zn is cyclic, F(Zu) is a subgroup of Zu- by XII and [Fau] must be a factor of lal for every at Zzy by Class - Theorem ]. Find F(1), F(8), F(12).  $F'_{1}(\overline{z}_{24,1}+) \longrightarrow (\overline{z}_{15-1}+)$ F(a+b mod 24) = (F(a) + F(b)) mod 15 Zy=[0,1,2,3,---,23], Z15=[0,1,2,--,14].  $F(Z_{2u}) < Z_{15}(by xi)$ · by lagrange | F(Z24) / 15 order it Z15=(cyclic) · Also, by class big Thm IF(a)// Ial Yae Eu and since Zu is cyclic => | F(Zu) / 24 (#) factors of 24: D, 24, 2, 12, 3, 8, 4, 6. Hence , by (\*) | F(Z24) | = 1 or 3. Now, by class - Most important-Result after Lagrange. we have  $(**) - F' \left( \begin{array}{c} Z_{2'} \\ / \ell er(F) \end{array}; \Delta \right) \longrightarrow F(Z_{2'})$ where Zzy/ker(F) ~ F(Zzy). Hence, IF(Zu) = since If IF(Zu) = 1, then  $|Z_{24}|_{ker(F)}| = | \implies Z_{24} = ker(F)$ which means Yag Zzy => F(a) =0 contradiction since given F(1) =0. 10

Hence, we are only left with  

$$|F(Z_{2u})| = 3. \quad \text{and} \quad ; \frac{15}{3} = 5.$$

$$\text{than} \left[ \frac{F(Z_{2u})}{F(Z_{2u})} = \overline{[0,5,10]} < \overline{Z_{15}} \right]$$
Subgroup of cyclic soi cyclic Answer.  

$$\frac{F(Z_{2u}) = \overline{[0,5,10]} = 5 \overline{Z_{15}} \quad \text{fme Zis is cyclic} \\ f(Z_{2u}) = \overline{[0,5,10]} = 5 \overline{Z_{15}} \quad \text{fme Zis is cyclic} \\ f(Z_{2u}) = \overline{[0,5,10]} = 5 \overline{Z_{15}} \quad \text{fme Zis is cyclic} \\ \frac{F(1)}{2} = \overline{f(0)} = \overline{f(0)} \frac{F(1)}{2} \text{ for and } \frac{F(1)}{2} = \overline{f(0)} \frac{F(1)}{2} \text{ for and } \frac{F(1)}{2} = \overline{f(1)} \frac{F(1)}{2} \frac{F(1)}{2}$$

## 2.2.7 Solution for HW-Four

Israe Albertonia MTH 532  
Hudt 
$$goods 1526$$
,  
(2) (i) Let D be a group with 27 elements. You just observed  
that CCD) has at least 4 elements. Prove that D is abelian.  
 $101 = 27$ , given  $|COD| \gg 4$ .  
 $101 = 27$ , given  $|COD| \gg 4$ .  
 $101 = 27$ , given  $|COD| \gg 4$ .  
 $101 = 27$ , given  $|COD| \gg 4$ .  
 $101 = 27$ , given  $|COD| \gg 4$ .  
 $101 = 27$ , given  $|COD| \gg 4$ .  
 $101 = 27$ , given  $|COD| \gg 4$ .  
 $101 = 27$ , given  $|COD| \gg 4$ .  
 $101 = 27$ , given  $|COD| \gg 4$ .  
 $10000$ ,  
 $101 = 1000$ ,  $101$  then.  
 $10000$ ,  
 $100 = 1000$ ,  $101$  then.  
 $10000$ ,  $101$  then.  
 $10000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $1000$ ,  $10000$ ,  $1000$ ,  $10000$ ,  $10000$ ,  $1000$ ,  $10000$ ,

(iii) Let D be a trite group, K, H are named subgroups of U  
such that H+K=O and H()K= Ic3.  
(a) prove that 
$$K \approx D/H$$
  
E Hint note that I D(H) = |K|. define f: K  $\rightarrow$  O(H such that  
 $R(K) = K + H$  for every Ke K. Show that f is group heavy phism  
and the you only need to show that f is group heavy phism  
and the you only need to show that F is I-I]  
Let F: K  $\rightarrow$  D(H, i) such that  $\overline{F(K)} = K + H$  for every Ke K.  
• to show heavy phism: K  $\rightarrow$  O.  
I et K; K\_2  $\in$  K, want  $F(K_1 + K_2) = F(K_1) \land F(K_2)$   
 $F(K_1 + K_2) = (K_1 + K_2) + H$  "by Def  $A((\frac{D}{H}, \Delta))$ "  
 $= K_1 + H \Delta K_2 + H$   
 $= F(K_1) \Delta F(K_2)$  TD  
Hence  $\overline{F}$  is howe phism] - O  
• Since IO/H| = |K| then I-I is enough for  $\overline{F}$  to be  
 $bijechus:$   
so, I et  $\overline{F(K_1)} = \overline{F(K_2)}$  for any  $K_1/K_2 \in K$   
 $(K_1 + H) = K_2 + H) \times K_2^{-1}$   
Now,  $K_2^{-1} + K_1 \in H$  "by Def of Cosets"  
We also know thet, by K being asubgroup.  
 $K_2^{-1} + K_1 \in K$   $\rightarrow K_1^{-1} = K_2$  "unique economic elevent  
but we showed  $H$ .  
 $\Rightarrow K_1^{-1} \times K_1 = \overline{E(S_1)} \Rightarrow K_1^{-1} = K_2^{-1}$  "unique economic elevent  
 $K_2^{-1} \times K_1 = \overline{E(S_1)} \Rightarrow K_1^{-1} = K_2^{-1}$  "unique economic elevent  
 $K_2^{-1} \times K_1 = \overline{E(S_1)} \Rightarrow K_1^{-1} = K_2^{-1}$  "unique et  $K_1$  in group.

Thus, 
$$f$$
 is  $I-1 - (2)$   
by  $O$  and  $(2)$   $K \approx O/H$ .  
(b) prove  $H \approx O/K$ . (\*)  
Let  $g: H \longrightarrow (D/K, A) \approx t (g(h) = h \times K) \forall h \in H$ .  
• [Honserphism]: by  $(A)$   
 $g(h_1 \times h_2) = (h_1 \times h_2) \times K$  for any  $h_1, h_2 \in H$ .  
 $= (h_1 \times k) a(h_1 \times k)$  "  $O = f = O/k$ "  
 $= g(h_1) \land g(h_2) = 0$   
•  $I = I$   $|K| = 1D/K|$   
it is enough to shows  $g$  is  $I-1$ , to be bijective.  
So, far any  $h_{11} h_2 \in H$   $D$   
Let  $g(h_1) = g(h_2)$   
 $(h_1 \times K = h_2 \times K) + h_2^{-1}$   
 $h_2^{-1} \times h_1 \in H$   $\exists h_1 = h_2 \in H$ .  
But given  $H \cap K = I \in S$   
 $\Rightarrow h_2^{-1} \times h_1 \in K = K$   $\Rightarrow uniquess of indexe.$   
 $\prod_{i=1}^{n} h_2^{-1} = 0$   
by  $O$  and  $O$   $H \approx D/K$ .

3

(c) prove that 
$$D \approx \bigcap_{H}^{(G, \Delta_{3})} \approx k \oplus H$$
.  
 $(\bigcap_{H, \Delta_{1}}) \quad (\bigcap_{H, \Delta_{2}})$   
Let  $f: D \rightarrow \bigcap_{H} \bigoplus_{K} \bigoplus_{K} colore for \forall J \in D$ .  
 $f(d) = (d \times H_{1} d \times K)$ .  
• Honorphism:-  
 $for any d_{11}d_{2} \in D$ .  
 $f(d_{1} \times d_{2}) = ((d_{1} \times d_{2}) \times H_{1}, (d_{1} \times d_{2}) \times K))$   
 $\stackrel{by}{}_{D} \stackrel{Def}{}_{Df} = (d_{1} \times H_{2} d_{1} \times K) \Delta_{3} (d_{2} \times H_{2} d_{2} \times K)$   
 $= f(d_{1}) \Delta_{3} f(d_{2}) \oplus Honorphism .$   
• Now since  $1D = (\bigcap_{H} \bigoplus_{K} \bigcap_{K}]$   
 $(d_{1} \times H) = f(d_{2}) for any d_{1} d_{2} \in D$ .  
 $(d_{1} \times H) = f(d_{2}) for any d_{1} d_{2} \in D$ .  
 $(d_{1} \times H) = d_{2} \times H ) \times d_{2}^{-1} = d_{1}^{-1} \times d_{1} \times H = H$   
 $d_{1} \times K = d_{2} \times K$ .  
 $d_{2}^{-1} \times d_{1} \in H = d_{2} \times K$ .  
 $d_{2}^{-1} \times d_{1} \in H \cap K$ .  
 $d_{1} \times K = d_{2} \times K$ .  
 $d_{2}^{-1} \times d_{1} \in H \cap K$ .  
 $d_{2}^{-1} \times d_{1} \in H \cap K$ .  
 $d_{1} \times K = d_{2} \times K$ .  
 $d_{2}^{-1} \times d_{1} \in H \cap K$ .  
 $d_{1} \times K = d_{2} \times K$ .  
 $d_{2}^{-1} \times d_{1} \in H \cap K$ .  
 $d_{1} \times K = d_{2} \times K$ .  
 $d_{2}^{-1} \times d_{1} \in H \cap K$ .  
 $d_{1} \times K = d_{2} \times K$ .  
 $d_{2}^{-1} \times d_{1} \in H \cap K$ .  
 $d_{1} \times K = d_{2} \times K$ .  
 $d_{2}^{-1} \times d_{1} \in H \cap K$ .  
 $d_{1} \times K = d_{2} \times K$ .  
 $d_{2}^{-1} \times d_{1} \in H \cap K$ .  
 $d_{1} \times K = d_{2} \times K$ .  
 $d_{2}^{-1} \times d_{1} \in H \cap K$ .  
 $d_{1} \times K = d_{2} \times K$ .  
 $d_{2}^{-1} \times d_{1} \in H \cap K$ .  
 $d_{1} \times K = d_{2} \times K$ .  
 $d_{2}^{-1} \times d_{1} \in H \cap K$ .  
 $d_{1} \times K = d_{2} \times K$ .  
 $d_{2}^{-1} \times d_{1} \in H \cap K$ .  
 $d_{1} \times K = d_{2} \times K$ .  
 $d_{2}^{-1} \times d_{1} \in H \cap K$ .  
 $d_{1} \times K = d_{2} \times K$ .  
 $d_{2} = d_{2} = d_{2} \times K$ .  
 $d_{3} = d_{1} \oplus d_{2} \to d_{2} \oplus d_{2} \oplus d_{2}$ .  
 $d_{4} \oplus K = d_{4} \oplus d_{4} \oplus d_{2} \oplus$ 

7

Vi) Let D be an infinite cyclic group, Prove that D, has exactly two generators. Since D is infinite and cyclic, than by class than, D & Z. We know Z is generated by 1, -1. By the def use know Z is generated by 1, -1. By the def a generator 1, -1 can generate Z, and Since D & Z, then D has exactly two generators.

(8)

Vii) Let Uan = {a ∈ Z<sub>n</sub> | gcd(a,n) = 13. Prove that U(n) is a group.  
under multiplication med n with 
$$\phi(n)$$
 elements.  
• first lets show |U(n)| =  $\phi(n)$ .  
|U(n)| = # df chemats  $a ∈ Z_n$  sit gcd  $(a,n) = 1$ .  
We Know  $Z_n = [a_1 | z_1 - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... - ... -$ 

(10)

5

a

then the 
$$p^{m} = p \cdot p \cdot p^{m}$$
 for  $m \in \mathbb{Z}^{+}$   
the factors for  $p^{m} = 1 \cdot p^{i}$  is is  $m^{i}$   
 $\Rightarrow$  there,  $p - 1! p^{m}$   
 $\Rightarrow g = d (p - 1, p^{m}) = 1 \Rightarrow g = d(p - 1, p^{k-1}) = 1$ .  
then by thus?  
 $\mathbb{Z}_{p-1} \oplus \mathbb{Z}_{pk-1}$  is cyclic  
and thus?  
 $U(n)$  is cyclic since isomorphic to  $\mathbb{Z}_{p-1} \oplus \mathbb{Z}_{pk-1}$   
 $p^{m}$  is even.  
 $p^{m}$  is all  $p^{m}$  it will be  $> 2$  so,  $p_{1} < p_{2} = p^{m}$ .  
Since  $p$  is all prime it will be  $> 2$  so,  $p_{1} < p_{2} = p^{m}$ .  
 $p^{m}$  is even.  
 $p^{m}$  is  $p^{m}$  is even.  
 $p^{m}$  is  $p^{m}$  if  $p^{m}$  is even.  
 $p^{m}$  is  $p^{m}$  is  $p^{m}$  if  $p^{m}$  is even.  
 $p^{m}$  is  $p^{m}$  is  $p^{m}$  if  $p^{m}$  is even.  
 $p^{m}$  is  $p^{m}$  is  $p^{m}$  if  $p^{m}$  is even.  
 $p^{m}$  is  $p^{m}$  if  $p^{m}$  is  $p^{m}$ .  
 $p^{m}$  is  $p^{m}$  is  $p^{m}$  if  $p^{m}$  is  $p^{m}$ .  
 $p^{m}$  is  $p^{m}$  is  $p^{m}$  is  $p^{m}$ .  
 $p^{m}$  is  $p^{m}$ .  
 $p^{m}$  is  $p^{m}$  is  $p^{m}$ .  
 $p^{m}$  is  $p^{m}$  is  $p^{m}$ .  
 $p^{m}$  is  $p^{m}$ .  
 $p^{m}$  is  $p^{m}$  is  $p^{m}$ .  
 $p^{m}$ 

(i) if U(n) is cyclic prove that 
$$n = 4$$
 or  $n = p^{k}$   
or  $n = 2p^{k}$  for  $k \ge 1$ .  
Now if we study the cases of n.  
 $n = \bigcirc odd \bigcirc pinne \rightarrow n = p$  for some publiprime  
 $n = p^{k}$ ,  $p_{1} = p_{1}$ ,  $p_{2} = p_{2}$ ,  $p_{2} = p_{2}$ ,  $p_{2} = p_{1}$ ,  $p_{2} = p_{2}$ ,  $p_{2} = p_{1}$ ,  $p_{2} = p_{2}$ ,  $p_{2} = p_{1}$ ,  $p_{2} = p_{2}$ ,  $p_{2} = p_{2}$ ,  $p_{2} = p_{2}$ ,  $p_{2} = p_{2}$ ,  $p_{2} = p_{1}$ ,  $p_{2} = p_{2}$ ,  $p_{2} = p$ 

14

Now, Lets assume that X,>1 and n=2"pk so, n ceven) , Hence by (Viii) clearly gcd (2, 21-2) = 1, 50 U(n) is Not cyclic Since by Hiw result  $Z_2 \oplus Z_{2^{n-2}}$  is Not cyclic, Also if  $\alpha_1 = 2 \implies gcd(2, p-1) \neq 1$  since p-1is even. But, according to the Hint in (VII) Z2 D Z2di-2 Point will be removed if a, =1 → U(n) ~ Zp-1 ⊕ ZpKH where as proved earlier in this question g cd (p-1, pk-1) = 1 ( Epr D Epr + ( is cyclic. is cyclic > Thus, if U(n) is cyclic, n=2pk (b) for podd prime odd number and k=1. • Now, we treat the last possible case, where. as in (##)  $n = 2^{\alpha_1}$ ,  $\alpha_1 \ge 1$ .  $\rightarrow gcd(2/2^{M-2})=2\pm 1$  $U(n) \approx \mathbb{Z}_2 \oplus \mathbb{Z}_{2^{\kappa_1-2}}$ Hence contradiction U(n) Not cyclic  $\alpha_1 = 1$  or  $\alpha_1 = 2$ +rivial 1  $n = 2^2 = 4$ 50 1 (0) UCH) is cyclic  $U(4) \approx Z_2 \Rightarrow$ as Zz iscyclic

Hence, by (a), (b), (c) => IF (Kn) is cyclic then it n=4 or n=pk or n=2pk K≥1 and p odd prime. and by the two results in green

For some ODD prime p and k>1.
(x) prove that U(64) has an element of order 16.  
but it has no elements of order 32.  

$$n=64=2,32=2,2.16=[25]$$
  
 $|U(64)] = \emptyset(64)$   
 $= (2-1) 2^{6-1}$   
 $= 2^{5} = 32 < \infty \text{ So, by class notes}$ .  
 $f_{ar} \forall ac U(c4) \Rightarrow |a|| 32$   
Then,  $|a|=1,32,12,16,14,8,1 = 0$ .  
but since  $n=2^{5}$  where  $n \neq 4$  and  $n \neq 2^{6}$ , and  $n\neq 2^{6}$ .  
but since  $n=2^{5}$  where  $n \neq 4$  and  $n \neq p^{6}$ , and  $n\neq 2^{6}$ .  
Hence,  $U(64)$  is Not cyclic by  $UX$   
then by class notes since  $|U(64)| < \infty$ ,  $\neq a \in U(64)$   
 $S+1 |a|=32$ . (No element with order 32).  
Now by (Viii)  
 $U(64) \approx Z_{2} \oplus Z_{2}$   
 $\approx Z_{2} \oplus Z_{15}$ .  
take the generatus  $H_{12} = 1(a_{1}b_{2}) = LCM(|a|,1b|)$  Y (a) $b) \in Z_{2} \oplus Z_{15}$ .  
take the generatus  $\neq Z_{2} \text{ and } Z_{15}$ .  
 $Hencer \forall cac U(64) \Rightarrow |a| \leq 16.$   
Hencer  $\forall cac U(64) \Rightarrow |a| \leq 16.$  is 00(64) has  
 $an element of order 16 but Not 32.$ 

3

Scanned with CamScanner

(16)

(Xi) prove that 
$$O = (Z_{SI} + ) \oplus U(18)$$
 is cyclic  
and Hence.  $D \propto (Z_{m}, t)$  find m,  
$$Z_{S} = [0, 1, 2, 3, 4] 5, \quad Z_{18} = [0, 1, 2, ..., 17] 5$$
$$U(18) = [a \in Z_{18} | g \leq (a, 18) = 1] 5$$
$$= [1, 5, 7, 11, 13, 17] 5$$
$$to checki:$$
$$O(18) = (2 - 1), 2^{1}, (3 - 1) 3^{1}$$
$$= 2.3 = [6]$$
  
**Proof:**
$$\Rightarrow n = 18 = 2.3^{2} \text{ , we notice it is of the form 2pt}$$
$$Where p = 3 \text{ odd prime ; Hence by (1x) U(18) is cyclic}$$
  
Also ,  
$$IDI = [Z_{2} - 1] U(18)]$$
$$= 5.6 = 30 < \infty$$
.  
Now, by class Them D is a finite, cyclic group with 30  
evenents So,  $\Rightarrow D \approx (Z_{30} + 1) \Rightarrow [m = 30]$   
(Xiv) prove that  $(Q_{1,0}^{*})$  is not cyclic.  
Assume by contradiction that  $Q^{2}$  is cyclic, and  
 $\exists me + t is infinite group + then by class then.$   
for  $\forall q \in Q^{2} / 18 < 3 \Rightarrow 1q = \infty$ .  
but  $\exists -1 \in Q^{2} \text{ and } -1 \neq e = 1$   
where  $1 - 1| = 2 < \infty$  contradiction!

Scanned with CamScanner

### 2.2.8 Solution for HW-Five

| Farah Zeyad HW 5<br>900086476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I let D be an abelian group with 2352 elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| i) Suppose that D has exactly one Subgroup with 4 elements.<br>Find all non-isomorphic group with these properties.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Solution: 3 2<br>All non-isomorphic group without the condition 1+2 1+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $ \begin{array}{c} & \textbf{We have} \\ \hline & \textbf{I}_{8} \bigoplus \textbf{I}_{25} &, \textcircled{2} & \textbf{I}_{8} \bigoplus \textbf{I}_{5} \oplus \textbf{I}_{5} &, \textcircled{3} & \textbf{I}_{2} \bigoplus \textbf{I}_{4} \oplus \textbf{I}_{25} \\ \hline & \textbf{I}_{2} \bigoplus \textbf{I}_{2} \bigoplus \textbf{I}_{5} \oplus \textbf{I}_{5} & \textcircled{5} & \textbf{I}_{2} \bigoplus \textbf{I}_{2} \oplus \textbf{I}_{25} & \textcircled{6} & \textbf{I}_{2} \bigoplus \textbf{I}_{2} \oplus \textbf{I}_{2} \oplus \textbf{I}_{5} \\ \hline & \textbf{I}_{2} \bigoplus \textbf{I}_{4} \bigoplus \textbf{I}_{5} \oplus \textbf{I}_{5} & \textcircled{5} & \textbf{I}_{2} \bigoplus \textbf{I}_{2} \oplus \textbf{I}_{2} \oplus \textbf{I}_{25} & \textcircled{6} & \textbf{I}_{2} \bigoplus \textbf{I}_{2} \oplus \textbf{I}_{2} \oplus \textbf{I}_{5} \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Now suppose D has exactly one subgroup with 4 element:<br>Then we have to check which one of them has exactly consumption<br>One subgrop with 4 elements by using "observation"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1) $D = Z_8 \oplus Z_{25}$ : let H be a subgroup of $Z_2$ with order 4)<br>$\Rightarrow H \oplus 203$ is the only subgrup with order 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (2) D=Z <sub>8</sub> ⊕ Z <sub>5</sub> ⊕ Z <sub>5</sub> ⊕ Z <sub>1</sub> ; same of Z <sub>8</sub> ⊕ Z <sub>25</sub> ; H+ {o}; + {o |
| 3 D= Z2 # Z4 # Z25 : let K be a subgroup of Z4 with 2 elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| => 7Z2 (HK) 303 and 303+7Z4 (D 203 are two subgroup<br>with 4 elements but D has exactly one subgroup of orde 4<br>contradiction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (4) $D = \overline{Z_2} \oplus \overline{Z_4} \oplus \overline{Z_5} \oplus \overline{Z_5}$ same of 3 because $\overline{Z_2} \oplus \overline{K} \oplus \overline{503} + \overline{503}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

and  $\frac{3}{2}03 \oplus 724 \oplus \frac{3}{2}03 + \frac{3}{2}03$  are two subgroup with order 4. Contradiction

Ę

(5) D = Z<sub>2</sub> ⊕ Z<sub>2</sub> ⊕ Z<sub>2</sub> ⊕ Z<sub>2</sub> → Z<sub>2</sub> i it has three subgroup of order 4
F = Z<sub>2</sub> ⊕ 203 ⊕ Z<sub>2</sub> ⊕ 203 and W = Z<sub>2</sub> ⊕ Z<sub>2</sub> ⊕ 203 ⊕ 203
and L = 203 ⊕ Z<sub>2</sub> ⊕ Z<sub>2</sub> ⊕ 203 ike 1(1,0,1,0)1 = 1(1,1,0,0)1 = 1(0,1,1,0))
= 4 contradiction
(6) D = Z<sub>2</sub> ⊕ Z<sub>2</sub> ⊕ Z<sub>2</sub> ⊕ Z<sub>2</sub> ⊕ Z<sub>3</sub> ⊕ Z<sub>3</sub>

ThereFore The all non-isomorphic group with this properties are:  $Z_8 \oplus Z_{25}$  and  $Z_8 \oplus Z_5 \oplus Z_5$ 

ii) Suppose that D has exactly one Subgroup with 4 elements and it has exactly one Subgroup with 5 elements. Find all non - isomorphic group with these properties.
 From (i) we have only two group that has one subgroup of order 4 ::
 D = 7Z<sub>8</sub> ⊕ 7Z<sub>25</sub> and D = 7Z<sub>8</sub> ⊕ 7Z<sub>5</sub> ⊕ 7Z<sub>5</sub>

Now check if they have also one subgroup of order 5 ① D = 7Zg ⊕ 7Z<sub>25</sub>: let H be a subgroup of 7Z<sub>25</sub> with 5 elements Then Zo3 + H is the only subgroup of order 5. ⇒ D has one subgroup of order 5

- D = Z<sub>8</sub> ⊕ Z<sub>5</sub> ⊕ Z<sub>5</sub>; this group has two subgroup of order 5
   Z<sub>0</sub>3⊕ Z<sub>5</sub> ⊕ Z<sub>0</sub>3 and Z<sub>0</sub>3⊕ Z<sub>5</sub>
   ⇒ D has two subgroup of order 5 contradiction
- =)  $7_8 \oplus 7_{25}$  are the only group that has one subgroup of order 4 and one subgroup of order 5.

1. 1. 1. 1. 1.

21 Let D be a cyclic group with 100 elements. Convince me that  
(Aut(D), o) is abelian group and find 
$$m_{1,...,m_{k}}$$
 such that  
Aut(D)  $\approx Z_{m} \oplus ... \oplus Z_{m_{k}}$   
Solution:  
Since D is finite cyclic group with loo element  
 $\Rightarrow D \approx Z_{100}$   
 $\Rightarrow (Aut(D), o) \approx (Aut(Z_{100}), o)$   
From Lecture notes we know  $\forall n \ge 2$  (Aut( $Z_{n}$ ),  $o$ )  $\approx (U(n), .)$   
 $\Rightarrow (Aut(Z_{100}), o) \approx (U(100), ..)$   
From Hw 4:  $U(100)$  is a group under multiplication mod loo  
 $\Rightarrow U(100) \approx Z_{2} \oplus Z_{4} \oplus Z_{5}$  since  $gcd(U, 5) = 1$   
 $U(100) \approx Z_{2} \oplus Z_{10} \Rightarrow since Z_{2} \oplus Z_{20}$  is abelian  
 $\Rightarrow U(100)$  is abelian group.  
 $\Rightarrow (Aut(T_{100}), o)$  is abelian group.  
 $\Rightarrow (Aut(T_{100}), o)$  is abelian group.  
 $\Rightarrow (Aut(T_{100}), o)$  is abelian group.  
 $\Rightarrow (Aut(D), o)$  is abelian  $group$ .  
 $\Rightarrow Aut(D) \approx Aut(Z_{100}) \approx U(100) \approx Z_{2} \oplus Z_{9}$   
 $\Rightarrow Aut(D) \approx Z_{2} \oplus Z_{4} \oplus Z_{5}$   
 $case1 \Rightarrow m_{1} = 2, m_{2} = 4, m_{3} = 5$   
but also since  $Z_{2} \oplus Z_{4} \oplus Z_{5} \propto Z_{20}$  since  $gcd(U, 5) = 1$ .  
 $\Rightarrow Aut(D) \approx Z_{2} \oplus Z_{4} \oplus Z_{5}$   
 $case2 \Rightarrow m_{1} = 1, m_{2} = 20$ 

-

3) prove that every group with 
$$n = 17x3^2$$
 is abelian. Find all  
hon - isomorphic group with  $n$  elements  
Solution:-  $1DI = 153 = 17x3^2$  prove D is abelian  
 $n_3 = \# \text{ of all Sylow} - 3 - \text{Subgroup}$   
 $\Rightarrow n_3 \left| \frac{1D1}{|\text{Syl(3)}|} = n_3 \right| 17 \Rightarrow n_3 = 1 \text{ or } 17$   
 $\Rightarrow 3 \left| n_3 - 1 \Rightarrow 3 \right| (1 - 1) \Rightarrow 3 \left| 0 + but 3 \right| 17 - 1 \Rightarrow 3 \right| 16$   
 $\Rightarrow n_3 = 1 \Rightarrow D$  has exactly one sylow -3 - subgroup say H  
Since  $n_3 = 1 \Rightarrow H dD \Rightarrow |H| = 3^2 = 9$ 

$$n_{17} = \# \text{ of all Sylow-17-Subgroup}$$
  

$$\Rightarrow n_{17} \left| \frac{1D1}{1Syl(17)} \right| \Rightarrow n_{17} \left| 3^2 \right| \Rightarrow n_{17} = 1 \text{ or } 3 \text{ or } 9$$
  

$$\Rightarrow 17 \left| n_{37} - 1 \right| \Rightarrow \text{ if } n_{17} = 1 \Rightarrow 17 \left| (1-1) \right| \Rightarrow 17 \left| 0 \right| 17$$
  

$$\Rightarrow 17 \left| n_{37} - 1 \right| \Rightarrow \text{ if } n_{17} = 3 \Rightarrow 17 \left| (3-1) \right| \Rightarrow 17 \left| 2 \right| 2 \times 17 \left| (3-1) \right| \Rightarrow 17 \left| 2 \right| 2 \times 17 \left| (3-1) \right| \Rightarrow 17 \left| 2 \right| 2 \times 17 \left| (3-1) \right| \Rightarrow 17 \left| 2 \right| 2 \times 17 \left| (3-1) \right| \Rightarrow 17 \left| 2 \right| 2 \times 17 \left| (3-1) \right| \Rightarrow 17 \left| 2 \right| 2 \times 17 \left| (3-1) \right| \Rightarrow 17 \left| 2 \right| 2 \times 17 \left| (3-1) \right| \Rightarrow 17 \left| 2 \right| 2 \times 17 \left| (3-1) \right| \Rightarrow 17 \left| 2 \right| 2 \times 17 \left| (3-1) \right| \Rightarrow 17 \left| 2 \right| 2 \times 17 \left| (3-1) \right| \Rightarrow 17 \left| 2 \right| 2 \times 17 \left| (3-1) \right| \Rightarrow 17 \left| 2 \right| 2 \times 17 \left| (3-1) \right| \Rightarrow 17 \left| 2 \right| 2 \times 17 \left| (3-1) \right| \Rightarrow 17 \left| 2 \right| 2 \times 17 \left| (3-1) \right| \Rightarrow 17 \left| 2 \right| 2 \times 17 \left| (3-1) \right| \Rightarrow 17 \left| 2 \right| 2 \times 17 \left| (3-1) \right| \Rightarrow 17 \left| 2 \right| 2 \times 17 \left| (3-1) \right| \Rightarrow 17 \left| 2 \right| 2 \times 17 \left| (3-1) \right| \Rightarrow 17 \left| 2 \right| 2 \times 17 \left| 2 \right| 2$$

⇒ n<sub>17</sub>=1 ⇒ D has exactly one sylow- 17-subgroup say k since n<sub>17</sub>=1 ⇒ KdD. ⇒ 1KI = 17

Since H, K  $\triangleleft$  D and HOK =  $\{e^3\} \Rightarrow |HK| = |H| |K| = \frac{9 \times 17}{1} = 133$   $\Rightarrow$  HK = D  $\Rightarrow$  D $\approx$  H $\oplus$ K Since  $|K| = 17 \Rightarrow$   $K \approx 7Z_{15}$  and  $|H| = 3^2 = 9$  since H is abelian subgroup of D  $H \approx 7Z_9$  or  $H \approx 7Z_3 \oplus 7Z_3$   $\Rightarrow$  D $\approx$   $7Z \oplus 7Z_{17}$  since  $gcd(9,17) = 1 \Rightarrow$  D is cyclic  $\Rightarrow$  D is abelian  $\Rightarrow$  and D $\approx$   $7Z_3 \oplus 7Z_3 \oplus 7Z_{17} \Rightarrow$  Not Cyclic but since  $\Rightarrow$  D is abelian  $\Rightarrow$  D is abelian

 $7Z_3 \oplus 7Z_3$  and  $7Z_{17}$  is abelian => Disabelian => Disabelian and  $7Z_q \oplus 7Z_{17}$  and  $7Z_3 \oplus 7Z_{17}$ are the all Non-isomorphic group with n=1s3 elements 4 Let D be a group with 5.11.29. prove that D has exactly one subgroup with 29 elements, Say H and H C (D). Solution :-Prove that D has one Subgroup of order 29 So by Sylow theorem : N29 = # of all sylow - 29 - subgroup  $h_{2q} = \frac{|D|}{|Sy|(2q)|} = \frac{n_{2q}}{|Sy|(2q)|} = \frac{n_{2q}}{|Sy|$  $\Rightarrow 29 | n_{29} - 1 \Rightarrow if n_{29} = 1 \Rightarrow 29 | (1 - 1) \Rightarrow 29 | 0 V$  $if n_{2q} = 5 \implies 29 \times (5-1) \implies 29 \times 4 \times 4$ if n2q= 11 => 29+ (11-1) => 29+10 X if n2q=55 => 29+(55-1)=> 29+54 × => D has exactly one sylow-29-subgroup say H => n2g=1 let H be sylow -29- subgroup => H dD since HAD we conclude 2(H) ~ subgroup of Aut(H) Since 1H1=29, H iscyclic => Hir 7229 subgroup of Aut (729) 2 U(29)

$$= \sum_{\ell(H)}^{N} \sum_{\ell(H)}^{N} \sum_{l=1}^{N} \sum_{\ell(H)}^{N} \sum_{l=1}^{N} \frac{1}{2} \sum_{\ell(H)}^{N} \frac{1}{l} Dl \text{ and } \frac{1}{2} \frac{1}{2} Dl (2a) = 28$$

$$= \sum_{\ell(H)}^{N} \frac{1}{2} \frac{1}{2} \sum_{\ell(H)}^{N} \frac{1}{l} Dl (2a) = 28$$

$$= \sum_{\ell(H)}^{N} \frac{1}{2} \frac{1}{2} \sum_{\ell(H)}^{N} \frac{1}{l} Dl (2a) = 28$$

$$= \sum_{\ell(H)}^{N} \frac{1}{2} \frac{1}{2} \sum_{\ell(H)}^{N} \frac{1}{l} Dl (2a) = 28$$

$$= \sum_{\ell(H)}^{N} \frac{1}{2} \frac{1}{2} \sum_{\ell(H)}^{N} \frac{1}{l} Dl (2a) = 28$$

$$= \sum_{\ell(H)}^{N} \frac{1}{2} \frac{1}{2} \sum_{\ell(H)}^{N} \frac{1}{l} Dl (2a) = 28$$

$$= \sum_{\ell(H)}^{N} \frac{1}{2} \frac{1}{2} \sum_{\ell(H)}^{N} \frac{1}{l} Dl (2a) = 28$$

$$= \sum_{\ell(H)}^{N} \frac{1}{2} \frac{1}{2} \sum_{\ell(H)}^{N} \frac{1}{l} Dl (2a) = 28$$

$$= \sum_{\ell(H)}^{N} \frac{1}{2} \frac{1}{2} \sum_{\ell(H)}^{N} \frac{1}{l} Dl (2a) = 28$$

$$= \sum_{\ell(H)}^{N} \frac{1}{2} \frac{1}{2} \sum_{\ell(H)}^{N} \frac{1}{l} Dl (2a) = 28$$

$$= \sum_{\ell(H)}^{N} \frac{1}{2} \frac{1}{2} \sum_{\ell(H)}^{N} \frac{1}{l} Dl (2a) = 28$$

$$= \sum_{\ell(H)}^{N} \frac{1}{2} \frac{1}{2} \sum_{\ell(H)}^{N} \frac{1}{l} Dl (2a) = 28$$

$$= \sum_{\ell(H)}^{N} \frac{1}{2} \sum_{\ell(H)}^{N} \frac{1}{l} Dl (2a) = 28$$

$$= \sum_{\ell(H)}^{N} \frac{1}{2} \sum_{\ell(H)}^{N} \frac{1}{l} Dl (2a) = 28$$

$$= \sum_{\ell(H)}^{N} \frac{1}{2} \sum_{\ell(H)}^{N} \frac{1}{l} Dl (2a) = 28$$

$$= \sum_{\ell(H)}^{N} \frac{1}{2} \sum_{\ell(H)}^{N} \frac{1}{l} Dl (2a) = 28$$

$$= \sum_{\ell(H)}^{N} \frac{1}{l} Dl (2a) = 28$$

5] let D be a group with 216 elements. prove that D is Not Simple Solution : Let D be a group where  $|D| = 216 = 2^3 \cdot 3^3$ n3= # of all sylow-3-subgroup  $n_3 \left| \frac{1D1}{15y1(3)} \right| = 2^3 \implies n_3 \left| 2^3 \implies n_3 = 1, 2, 4, 8$  $\mathcal{B}(n_3-1) \Longrightarrow \text{ if } n=1 \Longrightarrow 3|(1-1) \Longrightarrow 3|0 \lor$  $if_{3} = 2 \implies 3/(2-1) \implies 3+1 \times 1$ ifn= 4 => 3 (4-1) => 3 |3 V ifn=8 => 3 (8-1) => 3 +7 × =) n3=1 or 4 n2 = # of all sylow-2-subgroup  $n_2 \left| \frac{1D1}{1541(2)1} \right| \Rightarrow n_2 \left| 3^3 \right| \Rightarrow n_2 = 1, 3, 9, 27$  $\Rightarrow 2|(n_2-1) \Rightarrow if n_2=1 \Rightarrow 2|(1-1) \Rightarrow 2|0 \lor if n_2=3 \Rightarrow 2|(3-1) \Rightarrow 2|2 \lor$ 

$$if n_3 = q \implies 2/(q - 1) \implies 2/80$$
  
$$if n_2 = 27 \implies 2/27 - 1 \implies 2/26 U$$

 $\Rightarrow$  n<sub>2</sub> = 1, 3, 9, 27

Since  $n_3 = 1$  or  $n_3 = 4 \implies$  Assume  $n_3 \neq 1$ ,  $n_2 \neq 1$ Let  $n_3 = 4$   $\exists a \text{ group homorphisim}$   $K: D \longrightarrow S4$  s.t D  $Ker(K) \approx Subgroup of S4$  and  $Ker(K) \neq D$  [Ker(K) 4D]  $Ker(K) \approx Want to Show Ker(K) \neq E_3^2 \implies Deny$  Assume  $Ker(K) = \frac{5}{2}e_3^2$   $we want to Show Ker(K) \neq E_3^2 \implies Deny$  Assume  $Ker(K) = \frac{5}{2}e_3^2$   $we want to Show Ker(K) \neq E_3^2 \implies Deny$  Assume  $Ker(K) = \frac{5}{2}e_3^2$   $we want to Show Ker(K) = \frac{5}{2}e_3^2 \implies Deny$  Assume  $Lengthered Assume Ker(K) = \frac{5}{2}e_3^2$   $We want to Subgroup of S4 but Since <math>|D| = \frac{2}{6}$  and |S4| = 41 = 24 impossible Contradiction  $Wer(K) \neq \frac{5}{2}e_3^2 \implies D$  is Not Simple.

I Let D be a group with 5.7.17 elements. prove that D is not simple. . Assume that ni7 = 1. How many element in D have order 17.? Solution let D be agroup with 5x7x17 = 595 elements Prove D is not Simple. n5 = # of all sylow - 5 - Subgroup => ns= 1,7,17,119  $\implies n_{s} \frac{1DI}{|S_{y}|(5)|} \implies n_{s} \frac{7}{7} \times 17$ =)5 $|(n_{5}-1) =$  if  $n_{5}=1 =$  5|(1-1) = 5|0| $if n_{5}=7 \implies 5 \times (7-1) \implies 5 \times 6 \times 10^{-1}$   $if n_{5}=17 \implies 5 \times (17-1) \implies 5 \times 16 \times 10^{-1}$ if  $n_5 = 119 \implies 51(119 - 1) \implies 5118 \times$ => ns=1 => D has exactly one sylow-5-subgroup => let H is the sylow-5-subgroup => HaD => There Fore D. is Not Simple. NI7 = # of all sylow - 17 - subgroup  $h_{17} \frac{|D|}{|Sy|(H)|} \implies h_{17} |Sx7 \implies h_{17} = 1, 5, 7, 35$  $\Rightarrow |7|(n_{17}-1) \Rightarrow if n_{17}=1 \Rightarrow |7|(1-1) \Rightarrow |7|0 \lor if n_{17}=5 \Rightarrow |7|(5-1) \Rightarrow |7|4 \times 17|4$ if ni7 =7 => 17+(7-1) => 17+6× if nH=35=> 17 (35-1)=> 17 34- $\implies n_{17} = 1 \text{ or } n_{17} = 35$ Assume n17 #1 => There are 35 Sylow - 17 - Subgroup but |e|=1 => so we have only 16 element of order 17 So the 35 sylow - 17-subgroup have 35×16 = 560 element of order 17.

## 2.2.9 Solution for HW-Six

| Farah Zenad HWG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 901086476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Question 1 i): Let B= [21,2] 22,4], Does B' exists? if yes then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Find it . It no then explain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| L check if IRI GUIN => IRI- 5 so by finding determinent of R we                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| have.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $=>  B  = \frac{1}{2}  2  + \frac{1}{$                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| = 31/2331/43 + 32/4331/43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $= \frac{1}{2} $ |
| $\frac{1}{2} + \frac{1}{2} + \frac{1}$                                                                                                                                                                                                       |
| =>  B1 = 21,4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| No, B Does not exist because Bis invertible if and only if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $ B  \in U(A)$ where $U(A) = 3FZ$ , since $ B  = 31.42 \pm F = 3/B  \notin U(A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| There Fore B is not invertible has no inverse => B Does notexist.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ii) let $B = \begin{bmatrix} \frac{5}{2}, 3 \\ \frac{3}{4}, \frac{3}{4} \end{bmatrix}$ Does $B^{-1}$ exist? if yes then find it. If no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| then evolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1) check if IBIEU(A) => IBI=E so h Falica the labor in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| have.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1B1= 32,3332,43+ - 31,3,43 \$1,3,43 Note - 31,3,42= 51,2,42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| = 32,33 ( 32,43 + 31,3,43 ( 31,3,43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 523 + 3 113,47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| = 323-313,43 1 51,3,43-322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| = {23 (1 {1,3,4}}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| = {1,2,3,4}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\Rightarrow$ $ B  = \{1, 2, 3, 4\} = F$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $=$  B  $\in U(A) = \{F\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| yes, B' exist since IBI = F. Now Find B'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| $= B' = F \left[ \frac{5}{2}, \frac{4}{4}, \frac{5}{4}, \frac{1}{3}, \frac{4}{4} \right] = F \left[ \frac{5}{2}, \frac{4}{4}, \frac{5}{4}, \frac{1}{3}, \frac{4}{5} \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F [\$1,3,4] \$2,33 [21,3,45 22,35]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5- [52.42 51.3.4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| = 3 B = 2213 2133<br>= 31,3,43 = 32,33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $beck'if BB' = [F \phi] = B'B$<br>Note $\frac{33}{535} = \phi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ØF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $= BB' = \begin{bmatrix} \frac{1}{2}, \frac{3}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \end{bmatrix} \begin{bmatrix} \frac{1}{2}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{2}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{2}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{2}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ミ1,3,43 Z2,43 ミ1,3,43 Z2,33 Z43+ Z43 Z1,3,43+ Z25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $[-1] [\{2,4\}] \{1,3,4\}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| = + 0 Therefore B has inverse B = 21,3,43 22,33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| iii) let B= [F \$2,43 \$13]. If possible Find B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 21,33 F 233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| . {2} {2} {2} F Note - {2,43 = }2,43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| - First check if IBI€U(A)=F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\frac{ B  = F [F \frac{33}{2}, -\frac{32}{4}, 4] [\frac{5}{4}, 3] \frac{53}{2} + \frac{53}{4} \frac{51}{4} \frac{51}{3} \frac{51}{3} \frac{51}{3} \frac{5}{4} \frac{5}$ |
| $= \frac{5}{5} \left( \frac{5}{5} + \frac$                                                                                                                                                                                         |
| $= F(F + \phi) + \frac{32}{43}(\frac{1}{51}, \frac{3}{5} + \phi) + \frac{3}{515}(\phi + \frac{5}{525})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $= F + \phi + \phi = F$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| => IBI=F => B' exist. Now Find B using row operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $ \begin{bmatrix} F & \phi & F & \bar{z}_{2}, 4_{3} & \bar{z}_{1}_{3} \\ \phi & F & \phi & \bar{z}_{1}, 3_{3} & F & \bar{z}_{1}, 3_{3} \\ \phi & \phi & F & \bar{z}_{2}, 2_{3} & \phi & F \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| So $B' = \begin{bmatrix} F & \{2, 4\} & \{1, 3\} \\ \{1, 3\} & F & \{1, 3\} \\ \{2, 2\} & \phi & F \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Now check that $BB' = \begin{bmatrix} F \phi \phi \\ \phi F \phi \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\Rightarrow BB' = \begin{bmatrix} F & \frac{5}{2}, \frac{4}{3} & \frac{5}{3} \end{bmatrix} \begin{bmatrix} F & \frac{5}{2}, \frac{4}{3} & \frac{5}{3} \end{bmatrix} \begin{bmatrix} F & \frac{5}{2}, \frac{4}{3} & \frac{5}{3} \end{bmatrix} \begin{bmatrix} F & \frac{6}{7} & \frac{6}{7} \\ \frac{5}{3}, \frac{5}{3} & \frac{5}{7} & \frac{5}{3} \end{bmatrix} \begin{bmatrix} F & \frac{5}{3}, \frac{5}{3} \end{bmatrix} \begin{bmatrix} F & \frac{6}{7} & \frac{6}{7} \\ \frac{5}{2}, \frac{5}{3} & \frac{5}{2} \end{bmatrix} \begin{bmatrix} F & \frac{5}{2}, \frac{1}{3} \end{bmatrix} \begin{bmatrix} F & \frac{6}{7} & \frac{6}{7} \\ \frac{5}{2}, \frac{5}{2} \end{bmatrix} \begin{bmatrix} F & \frac{5}{2}, \frac{1}{3} \end{bmatrix} \begin{bmatrix} F & \frac{6}{7} & \frac{6}{7} \\ \frac{5}{2}, \frac{5}{2} \end{bmatrix} \begin{bmatrix} F & \frac{5}{2}, \frac{1}{3} \end{bmatrix} \begin{bmatrix} F & \frac{6}{7} & \frac{6}{7} \\ \frac{5}{2}, \frac{5}{2} \end{bmatrix} \begin{bmatrix} F & \frac{5}{2}, \frac{1}{3} \end{bmatrix} \begin{bmatrix} F & \frac{6}{7} & \frac{6}{7} \\ \frac{5}{2}, \frac{5}{2} \end{bmatrix} \begin{bmatrix} F & \frac{5}{2}, \frac{1}{3} \end{bmatrix} \begin{bmatrix} F & \frac{6}{7} & \frac{6}{7} \\ \frac{5}{2}, \frac{5}{2} \end{bmatrix} \begin{bmatrix} F & \frac{5}{2}, \frac{1}{3} \end{bmatrix} \begin{bmatrix} F & \frac{6}{7} & \frac{6}{7} \\ \frac{5}{2}, \frac{5}{2} \end{bmatrix} \begin{bmatrix} F & \frac{6}{7} & \frac{6}{7} \\ \frac{5}{7} \end{bmatrix} \begin{bmatrix} F & \frac{6}{7} & \frac{6}{7} \\ \frac{5}{7} \end{bmatrix} \begin{bmatrix} F & \frac{6}{7} & \frac{6}{7} \\ \frac{5}{7} \end{bmatrix} \begin{bmatrix} F & \frac{6}{7} & \frac{6}{7} \\ \frac{5}{7} \end{bmatrix} \begin{bmatrix} F & \frac{6}{7} & \frac{6}{7} \\ \frac{5}{7} \end{bmatrix} \begin{bmatrix} F & \frac{6}{7} & \frac{6}{7} \\ \frac{5}{7} \end{bmatrix} \begin{bmatrix} F & \frac{6}{7} & \frac{6}{7} \\ \frac{5}{7} \end{bmatrix} \begin{bmatrix} F & \frac{6}{7} & \frac{6}{7} \\ \frac{5}{7} \end{bmatrix} \begin{bmatrix} F & \frac{6}{7} & \frac{6}{7} \\ \frac{5}{7} \end{bmatrix} \begin{bmatrix} F & \frac{6}{7} & \frac{6}{7} \\ \frac{5}{7} \end{bmatrix} \begin{bmatrix} F & \frac{6}{7} & \frac{6}{7} \\ \frac{5}{7} \end{bmatrix} \begin{bmatrix} F & \frac{6}{7} & \frac{6}{7} \\ \frac{5}{7} \end{bmatrix} \begin{bmatrix} F & \frac{6}{7} & \frac{6}{7} \\ \frac{5}{7} \end{bmatrix} \begin{bmatrix} F & \frac{6}{7} & \frac{6}{7} \\ \frac{5}{7} \end{bmatrix} \begin{bmatrix} F & \frac{6}{7} & \frac{6}{7} \\ \frac{5}{7} \end{bmatrix} \begin{bmatrix} F & \frac{6}{7} & \frac{6}{7} \\ \frac{5}{7} \end{bmatrix} \begin{bmatrix} F & \frac{6}{7} & \frac{6}{7} \\ \frac{5}{7} \end{bmatrix} \begin{bmatrix} F & \frac{6}{7} & \frac{6}{7} \\ \frac{5}{7} \end{bmatrix} \begin{bmatrix} F & \frac{6}{7} & \frac{6}{7} \\ \frac{5}{7} \end{bmatrix} \begin{bmatrix} F & \frac{6}{7} & \frac{6}{7} \\ \frac{5}{7} \end{bmatrix} \begin{bmatrix} F & \frac{6}{7} & \frac{6}{7} \\ \frac{5}{7} \end{bmatrix} \begin{bmatrix} F & \frac{6}{7} & \frac{6}{7} \\ \frac{6}{7} \end{bmatrix} \begin{bmatrix} F & \frac{6}{7} \\ \frac{6}{7} \end{bmatrix} \end{bmatrix} \begin{bmatrix} F & \frac{6}{7} \\ \frac{6}{7} \end{bmatrix} \begin{bmatrix} F & \frac{6}{7} \\ \frac{6}{7} \end{bmatrix} \end{bmatrix} \begin{bmatrix} F & \frac{6}{7} \\ \frac{6}{7} \end{bmatrix} \begin{bmatrix} F & \frac{6}{7} \\ \frac{6}{7} \end{bmatrix} \end{bmatrix} \begin{bmatrix} F & \frac{6}{7} \\ \frac{6}{7} \\ \frac{6}{7} $ |
| There Fore it's possible for B to have an inverse<br>where $B' = \begin{bmatrix} F & \overline{32}, 43 & \overline{513} \\ \overline{51,33} & F & \overline{51,33} \\ \overline{523} & \phi & F \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| Question 2: Convince me that $B = \begin{bmatrix} 2 & 5 & 4 \\ 1 & 1 & 2 \end{bmatrix}$ is in<br>Solution:-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | vertible over 28    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| * B is invertible iff. IBIEU(128)=U(8):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | so Now Find         |
| the determinant of B. "IBI"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |
| B  = 2[127 - 5[12] + 4[1]]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -5 mod 8 = 3        |
| 3 5 3 5 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $-1 \mod 8 = 7$     |
| 2(5-6) + 2(5-6) + 4(3-3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -2mod 8 = 6         |
| = 2(-1) + 3(-1) + 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| $= 9(7) + 3(7) = 35 \mod 8 = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
| There have $ B =3$ since $3 \in U(\mathbb{Z}_2) = U(\mathbb{Z})^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | There Fore Bis      |
| Invertible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
| Man Find the inverse using row operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                   |
| $\begin{bmatrix} 2 & 5 & 4 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 07                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 1                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
| $-2R_1+R_2$ [ 1 2 0 1 0 ] $-3R_1+R_3$ [ 1 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_1+R_3$ [ 2 0 2 0 1 0 ] $-3R_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 -3 1              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
| $-3mod_{8=5} \begin{bmatrix} 1 & 2 & 0 & 1 & 0 \end{bmatrix} \xrightarrow{1}{3} R_2 \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 0 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
| $-1 \mod 8$ 0 3 0 1 6 0 $\frac{1}{7}$ R3 0 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3 6 1               |
| $\frac{1}{100} \frac{1}{100} \frac{1}$ | 1(8) => 3-1×1=36720 |
| 3 have menuning in Ilg Since 7 EULIZE = U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (8) => 7 x1=7EZO    |
| 7 some For => 7 EU(28) => 7 × 5= 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BEIZ8               |
| $\rightarrow$ [ 1 2 10 1 0] R <sub>1</sub> -R <sub>2</sub> [ 0 2 -3 -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                   |
| 001037 00103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
| $\begin{bmatrix} 1 & 0 & 2 & 5 & 7 & 0 \\ 0 & 0 & 2 & 5 & 7 & 0 \\ 0 & 0 & -2R_3 + R_1 & \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 1 -14             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 037                 |
| -14 mod 8=2 51'0 0'C 1 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
| LOO 1 10 3 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |

NOW Chick BB = I => 68'= I ļ mod 8 t = => B invertible since B' exist I \* we note that  $\frac{1}{2}$  and  $\frac{1}{4}$  have no meaning since  $2 \notin U(128)$ and  $4 \notin U(128) \implies 1$  and  $\frac{1}{4}$  are undefined in the Ring 128\* Also we note that 1, 1 have meaning in 17 since  $3 \in U(78)$ and  $5 \in U(78)$  so  $3 \times 1 = 3 \in 78$  and 5 XS=5 ER8

Question 3: If our ring is R, we know that -4=-1 times 4. Let A be a ring with identity. Prove that -a=-1.a for every a EA Solution: let a E A prove -a = -1. a where -a is the addative inverse we know that a.o= o.a=o let (1+(-1)) = 0So  $0 \cdot a = (1 + (-1))a = (1 + (-1)) = 0$ 1  $=> ((1+(-1))a = 1 \cdot a + (-1)a = 0$  $\Rightarrow$  1.a + (-1) a = a + (-a) = 0 and  $(-1) \cdot a = -a$ 1-a = a There Fore  $-a = (-1) \cdot a$ 

# 90 TABLE OF 2.2.10 Solution for HW-Seven

| Earah Zeurad HWF                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------|
| 9000 864 <del>7</del> 6                                                                                                   |
|                                                                                                                           |
| 1) let A be the ring Z12. Find Z(A), Nil(A), U(A) and Id(A)                                                               |
| Solution                                                                                                                  |
| $Z_{12} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$                                                                          |
| * Z(A) 5 2×6=0, 3×4=0, 4×9=0, 6×6=0, 6×10=0?                                                                              |
| $28 \times 9 = 0, 8 \times 6 = 0$                                                                                         |
| => Z(A) = 20, 2, 3, 4, 6, 8, 9, 10?                                                                                       |
| $= Nil(A) : let a \in Z_{12} where a^{n} = 0 so we have 6^{2} = 0$<br>=> Nil(A) = $\frac{3}{0,6}$                         |
| $U(A)=U(Z_{12})=U(12)=\{1,5,7,11\}$                                                                                       |
| $Id(A)$ : let $a \in Z_{12}$ where $a^2 = a$ so we have $4^2 = 4$ , $9^2 = 9_{11}^2 = 1$ ,<br>=> $Id(A) = \{0, 1, 4, 9\}$ |
| 2] let A be the ring Zn @ Zm How many units (invertible element)<br>does A have?                                          |
| Solution: Find (U(A))                                                                                                     |
| . We know (a,b) is invertible in A iff disinvertible in 7.                                                                |
| $(a \in U(Zn) = U(n))$ and b is invertible in $Zm$ $(b \in U(Zm) = U(m))$                                                 |
| • Since $U(2n) = U(n)$ has $\phi(n)$ elements this mean $\alpha$ has $\phi(n)$ possiblity or choices                      |
| • Since $U(Zm) = U(m)$ has $\phi(m)$ elements this mean b has                                                             |
| p(m) possiblity or choices                                                                                                |
| There Fore (a,b) has $\phi(n)\phi(m)$ possiblity this mean                                                                |
| $U(A)$ has $\phi(n) \phi(m)$ units. => $ U(A)  = \phi(n) \phi(m)$                                                         |
| => There Fore A have $\phi(n)\phi(m)$ units                                                                               |
|                                                                                                                           |
|                                                                                                                           |

31 let A be the ring ZG@ZI4 - Find Char (A). Find U(A). Solution:-Find Char (A) where  $A = 76 \oplus 714$  $\cdot$  char (726) = char((1)) = 6 5  $char(Z_{14}) = char((1)) = 14$  $\Rightarrow char((1,1)) = Lcm(char(1), char(1))$ A  $= Lcm(6/14) = 6 \times 14$ = 84 = 429cd(6,14) = 42\_\_\_\_\_ 3 => Char(A) = 42N · Find U(A) = U (Z6 ⊕ Z14) = U(Z6) ⊕ U(Z14)  $U(Z_6) = U(6) = \frac{2}{2} \frac{1}{53} \qquad |U(Z_6)| \oplus |U(Z_{14})|$ •  $U(14) = U(14) = \frac{5}{1}, \frac{5}{5}, \frac{9}{11}, \frac{13}{13} = \frac{2 \times 6}{19} = 19$ =) ThereFore  $U(A) = \{(1,1), (1,3), (1,5), (1,9), (1,11), (1,13)\}$ 5 2 (5,1), (5,3), (5,5), (5,9), (5,1), (5,13) } 4) let A be a ring such that A=R. @R2 where R1 and R2 are rings Such that IRIZ2 and IR2122 prove that A is never an integral Domain \_\_\_\_\_ let a E Ri and bE R2 prove that A is not an integral domain Since a E Ri then (a,o) E RI @R2 and since bE R2 then (o,b) E RI DR2. =)  $(a,0) \odot (o,b) = (0,0)$ =) This mean (a,o) and (o,b) are Zero divisors => Since (a10) and (0,b) are Zero divisors => There Fore A is not an integral domain to the second second

| 6) let A be a Commutative ring with 1 and eEId(A), prove                  |
|---------------------------------------------------------------------------|
| that I-e E Id(A) and I-2e E U(A)                                          |
| Solution                                                                  |
| prove that $1-e \in Id(A)$ , prove $(1-e)^{2} = (1-e)$                    |
| $= (1-e)^{2} = (1-e)(1-e) = 1 + (-e) + (-e) + e^{2}$                      |
| $= 1 + (-2c) + c^2$                                                       |
| Since $e \in Id(A) = 1 + (-2e) + e$                                       |
| $\Rightarrow e^2 = e^{2} = e^{-e^2}$                                      |
| $\Rightarrow$ ThereFore $1-e \in Id(A)$                                   |
|                                                                           |
| · prove that 1-2eEU(A); prove that (1-2e)2=1                              |
|                                                                           |
| $\implies (1-2e)^{2} = (1-2e)(1-2e) = 1+(-2e) + (-2e) + 4e^{2}$           |
| Since $e \in Id(A)$                                                       |
| $e^2 = e = = 1 + (-4e) + 4e$                                              |
| = 1                                                                       |
| => ThereFore $(1-2e) \in U(A)$ .                                          |
|                                                                           |
| 71 let B= 20,3,6,9,123 show that (B,t,) is a subring of the               |
| King (Zisit,). ISB an ideal of Zis? Note that B is a                      |
| ring tool. What is the "1" of the ring B? IS the "1" of B same            |
| "1" of Zis ? What is the Char (B)? IS Char (B) defferent from char (25)." |
| 2 is B is a feild?                                                        |
| Solution: By Constructing Caley's table For (B,+) and (B,.)               |
|                                                                           |
| + 0 3 6 9 12 . 3 6 9 12                                                   |
| 0 0 3 6 9 12 3 9 3 12 6                                                   |
| 3 3 6 9 12 0 6 3 6 9 12                                                   |
| 6691203 912963                                                            |
| 9 9 12 0 3 6 12 6 12 3 9                                                  |
| 12 12 0 3 6 9                                                             |
|                                                                           |

1 show that (B, +, ) is a subring of the ring (Zisit,) OEB Addative inverse - B is a subset of Zis. BE Zis 3+(-6) = 3+(9) = 12 EB, 3,6 EB . Addative inverse . 3×6=18mod15=3EB, 3,6EB -3=12, -6=9 => Therefore (B,+,) is a subring of A. 2) Is Banideal of Zis? yes, since b is asubring and also if we take For example 7EZ15 and 3EB this gives us 3X7=21 mod 15=6 where GEB => Truce Fore B is an ideal. 3) what is "1" of the ring B? 6 is the "1" multiplicative identity of B because 6x3 = 3, 6x12 = 12, 6x9 = 9 Therefore 1=64) Is the "1" of the B the same "1" of ZIS? No, because 6 is the multiplicative identity of 3 and 1 is the multiplicative identity of Zis. 5) What is Char (B)? The char (B) is 5 because when we multiply The identity with Gives zero where 5(6) = 6+6+6+6+6=0 There Fore Char (B)=5. 5 6] Is the char (B) different from Char (Zis) ? Yes because the Char (B) is 5 but char (Zs) = 15 because 1×15=0 . X

5 IS B is a Feild? Yes • B is a commutative ring with identity "1"=6 C Since B is a Subring this mean it's a ring and each element is commutative like :-3xq=qx3=12, 3x12=12x3=65 So this mean B is an Abelian group under multiplication E each Non-Zero element invertible under multiplication;  $3x12=6 \implies 3'=12$ ,  $9x9=6 \implies 9'=9$ => Since B is a Commutative ring with identity and each non-zero element in U(B) =) Therefore B is a feild. Also Note B has No Zero divisor Z(B) = 302 This mean Bis a finite integral domain "From class Notes" Every finite integral domain is a Feild B is a Feild.  $\Rightarrow$ K 5

**3 Section 3: Assessment Tools (unanswered)** 

## 98 3.1 Homework

### 3.1.1 HW-One

#### HW I (WARM UP), MTH 532, Spring 2020

#### Ayman Badawi

- **QUESTION 1.** (i) Let D be a group and  $a \in D$ . Given  $|a| = m < \infty$ . Show that  $D = \{a, a^2, a^3, ..., a^m\}$  is a subgroup of D with m elements [hint: Since D is finite, just show that D is closed ]
- (ii) Let D be a group and  $a \in D$ . Given  $|a| = m < \infty$ . Assume that  $a^n = e$  (recall e is the identity of D). Prove that  $m \mid n$ .
- (iii) Let D be a group and  $a \in D$ . Given  $|a| = m < \infty$ . Let  $b \in D$  such that  $b = a^k$  where gcd(k, m) = 1. Prove that |b| = m.
- (iv) Let  $D = (Z_{20}, +)$ . Given  $H = \{0, 4, 8, 12, 16\}$  is a subgroup of D. Find all left cosets of H.
- (v) Let D = (Q, +). Then H = (Z, +) is a subgroup of (Q, +). Prove that H has infinitely many left cosets. Give me 5 distinct left cosets of H.
- (vi) Let  $F = \{6, 12, 18, 24\}$ . Convince me that F is a group under multiplication module 30 by constructing the Caley's Table. What is e? What is  $12^{-1}$ ? What is  $24^{-1}$ ?

#### Submit your solution on Saturday Feb 15, 2020 at 12.

–, ID –

#### **Faculty information**

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

### 3.1.2 HW-Two

#### HW II, MTH 532, Spring 2020

#### Ayman Badawi

- **QUESTION 1.** (i) Let D be a group,  $a \in D$  such that  $|a| = n < \infty$ . Let m be a positive integer and r = gcd(m, n). Prove that  $|a^m| = n/r$ . I do not want to see a proof of this, the proof exists in the solution-book that I posted, but you need to know this fact and use it
- (ii) Let  $D = (Z_{24}, +)$ . Find |9|, |14|, |18|, |11| (hint: note that  $Z_{24} = <1 >$  and for example  $8 = 1^8$ , then use (i)).
- (iii) Let  $a, b \in D$ . Assume that  $|b| = m < \infty$ . Prove that  $|a^{-1}ba| = m$ .

-, ID –

- (iv) Let  $D = Z_n \oplus Z_m$ ,  $n, m \ge 2$  (of course the binary operations are addition mod n and addition mod m). Let  $(a, b) \in D$ . Prove that |(a, b)| = LCM[|a|, |b|] [hint: note that if k, w are integers, then LCM[k, w] = kw/gcd(k, w), for example LCM[8, 12] = 8.12/4 = 24]
- (v) Let  $D = Z_n \oplus Z_m$ . Prove that D is cyclic if and only if gcd(n,m) = 1. [hint: use part IV]
- (vi) Let  $D = Z_6 \oplus Z_{14}$ .
  - a. Convince me that D is not cyclic. Find the value of the integer m such that the order of each element in D is  $\leq m$ .
  - b. Find |(3,5)| and |(4,10)| [Hint: note  $3 = 1^3$  and  $5 = 1^5$ , now use (i) and (iv)].
  - c. Give me two subgroups of D, say  $H_1, H_2$  such that  $|H_1| = |H_2| = 2$ .
  - d. Does D have a cyclic subgroup of size (order) 21? If yes find a generator to such subgroup.

#### Submit your solution any time on SUNDAY before midnight, Feb 23, 2020 .

#### **Faculty information**

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

### 3.1.3 HW-Three

#### HW III, MTH 532, Spring 2020

#### Ayman Badawi

- **QUESTION 1.** (i) Fact (you may use it whenever it is needed, for a proof just see it in any Algebra TextBook, but you must KNOW this FACT). Let *H* be a subset of a group *D* (note that *H* can be finite or infinite). Then *H* is a subgroup of D if and only if  $a^{-1} * b \in H$  for every  $a, b \in H$  (a, b need not be distinct).
- (ii) Let F, L be subgroups of a group D. Prove that  $M = F \cap L$  is a subgroup of D (hint: Use (i) above)
- (iii) by (ii),  $N = 12Z \cap 15Z$  is a subgroup of (Z, +). Since Z is cyclic, we know N = aZ. Find a.
- (iv) Let D be an abelian group with 9 elements. Given that D has two distinct subgroups,  $H_1, H_2$  such that  $|H_1| = |H_2| = 3$ . Convince me that it is impossible that  $D = (Z_9, +)$ . What will be an example of such group D?
- (v) Let  $f \in S_n$  such that f is m-cycle. Convince me that if m is odd integer, then  $f \in A_n$  and if m is an even integer, then  $f \notin A_n$ .
- (vi) Let  $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 3 & 6 & 8 & 7 & 2 & 1 & 5 \end{pmatrix} \in S_8.$ 
  - a. Find |f|. Is  $F \in A_8$ ? explain
  - b. Does  $A_8$  has an abelian subgroup with 15 elements? [Hint: If you show that  $A_5$  has a cyclic subgroup with 15 elements, then you are done, since cyclic implies abelian]
- (vii) Let  $f = (1 4 3)(1 4) \in S_4$ . Find |f|. Let  $k = (1 4 3)(1 5) \in S_5$ . Find |k|.

-, ID –

- (viii) Given  $H = \{(1), (1 \ 4 \ 3), (1 \ 3 \ 4)\}$  is a subgroup of  $S_5$  (this is given, you do not need to check unless you do not believe me). Find the left coset (1 5) o H and find the right coset H o(1 5). What do you observe? Can we say that H is a normal subgroup of  $S_5$ ?
  - (ix) Let a, b be element of a group such that a \* b = b \* a. Assume |a| = n and |b| = m. Let k = |a \* b|. Prove k | nm.
  - (x) Give me an example of two elements a, b in a group where |a| = n, |b| = m and |a \* b| = k, but  $k \nmid nm$  [hint: Stare at the element k in vii and some how find a and b !]
  - (xi) Let a, b be element of a group such that a \* b = b \* a. Assume |a| = n, |b| = m and gcd(n, m) = 1. Let k = |a \* b|. Prove k = nm.[Hint: you may want to use the fact from number theory that if gcd(w, d) = 1, d | c and w | c, then wd | c, of course w, d, c are some positive integers]
- (xii) Let  $F : (D_1, *_1) \to (D_2, *_2)$  be a group-homomorphism and  $H < D_1$ . Prove that F(H) is a subgroup of  $D_2$  (note it is possible that  $H = D_1$ )[Hint: Use part (i) above]
- (xiii) Let  $F: (Z_{24}, +) \to (Z_{15}, +)$  be a group homomorphism such that  $F(1) \neq 0$ . Find  $F(Z_{24})$ . [Hint: Note that  $Z_n$  is cyclic,  $F(Z_{24})$  is a subgroup of  $Z_{15}$  by xii and |F(a)| must be a factor of |a| for every  $a \in Z_{24}$  by class-Theorem ]. Find F(1), F(8), F(12).

### Submit your solution (by EMAIL) any time / all HWs must be submitted by Wed. before midnight, March 4, 2020.

#### **Faculty information**

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

### 3.1.4 HW-Four

MTH 532 Abstract Algebra II, 2020, 1-1

-, ID -

### HW IV , MTH 532, Spring 2020

#### Ayman Badawi

- **QUESTION 1.** (i) Let D be a group with 27 elements. You just observed that C(D) has at least 4 elements. Prove that D is abelian.
- (ii) You need this fact, so you must know it and make use of it. Assume that H, K are subgroups of a group (D, \*). Note that  $H * K = \{h * k \mid h \in H, k \in K\}$ . Then  $|H * K| = \frac{|H||K|}{|H \cap K|}$ . (no proof is needed)
- (iii) Let D be a finite group, K, H are normal subgroups of D such that H \* K = D and  $H \cap K = \{e\}$ .
  - a. Prove that  $K \approx D/H$  [ Hint note that |D/H| = |K|, define  $f : K \to D/H$  such that f(k) = k \* H for every  $k \in K$ . Show that f is group homomorphism and then you only need to show that f is 1-1.]
  - b. Prove that  $H \approx D/K$ .
  - c. Prove that  $D \approx \frac{D}{H} \oplus \frac{D}{K} \approx K \oplus H$ . [hint: Define  $f : D \to \frac{D}{H} \oplus \frac{D}{K}$  such that f(d) = (d \* H, d \* K) for every  $d \in D$ . Show that f is a group homomorphism. Then show that f is 1-1 (note both groups have same cardinality. Then use (a) and (b) and finish the proof.)]
- (iv) Let H, K be subgroups of a group D. In general, H \* K need not be a subgroup of D. However, if K is a normal subgroup of D, then prove that K \* H is a subgroup of D. [hint: Just show  $a^{-1} * b \in K * H$  for every  $a, b \in K * H$ ]
- (v) Let D be a group with 38 elements, K, H are subgroups of D such that |K| = 19 and |H| = 2 such that H is a normal subgroup of D. Prove that  $D \approx Z_{38}$  [hint: note that |D/K| = 2 and hence K is a normal subgroup of D by class notes and use (iii (c)), Show that D is cyclic and hence by class notes  $D \approx Z_{38}$  ]]
- (vi) Let D be an infinite cyclic group. Prove that D has exactly two generators. [Hint: We know  $D \approx Z$ . Hence how many generators does Z have?]
- (vii) Let  $U(n) = \{a \in Z_n | gcd(a, n) = 1\}$ . Prove that U(n) is a group under multiplication mod n with  $\phi(n)$  elements. [Hint: Closure is clear, if  $x, y \in U(n)$ , then gcd(x, n) = gcd(y, n) = 1 and hence gcd(xy, n) = 1. Thus  $xy \in U(n)$ . To prove the inverse, you need to use Fermat-Euler result: let  $a \in U(n)$ , since gcd(a, n) we know that  $n|(a^{\phi(n)} - 1)$ and this means that  $a^{\phi(n)} = 1 \mod(n)$ . Thus  $a^{-1} = a^{(\phi(n)-1)} \mod(n)$ ]. Example:  $U(12) = \{1, 5, 7, 11\}$  is a group (abelian) with  $\phi(12) = 4$  elements under multiplication mod(12).
- (viii) (must KNOW, no need for a proof, nice result on U(n)). Assume  $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$  (prime factorization of n where  $p_1 < p_2 < \cdots < p_k$ ). Then we know  $\phi(n) = (p_1 1)p_1^{(\alpha_1 1)} \cdots (p_k 1)p_k^{(\alpha_k 1)}$ . Then (BEAUTIFUL RESULT) If n is even then  $(p_1 = 2)$  and

 $U(n) \approx Z_2 \oplus Z_{2^{(\alpha_1-2)}} \oplus Z_{(p_2-1)} \oplus Z_{p_2^{(\alpha_2-1)}} \oplus \cdots \oplus Z_{(p_k-1)} \oplus Z_{p_k^{(\alpha_k-1)}}$  (note if  $\alpha_1 = 1$  then remove  $Z_2 \oplus Z_{2^{(\alpha_1-2)}}$ , note  $U(2) = \{1\}$ ). If n is odd, then

 $U(n) \approx Z_{(p_1-1)} \oplus Z_{p_1^{(\alpha_1-1)}} \oplus Z_{(p_2-1)} \oplus Z_{p_2^{(\alpha_2-1)}} \oplus \dots \oplus Z_{(p_k-1)} \oplus Z_{p_k^{(\alpha_k-1)}}.$  Example Assume  $n = 2^3 5^7 11^3$ . Hence  $\phi(n) = 2^2 (4) 5^6 (10) 11^2$ . (n is even). Hence  $U(n) \approx Z_2 \oplus Z_2 \oplus Z_4 \oplus Z_{5^6} \oplus Z_{10} \oplus Z_{11^2}.$  Example  $n = (2) 7^8 13^2$ . (n is even).  $\phi(n) = (6) 7^7 (12) 13^1$ . Hence  $U(n) \approx Z_6 \oplus Z_{7^7} \oplus Z_{12} \oplus Z_{13}$ 

- (ix) Prove that U(n),  $n \ge 3$ , is cyclic if and only if n = 4 or  $n = p^k$  or  $n = 2p^k$  for some ODD prime p and  $k \ge 1$ . [hint: note that if p is prime odd then gcd(p-1,p) = 1, also note that if p is odd, then p-1 is even. Use (viii) and old HW!).
- (x) Prove that U(64) has an element of order 16, but it has no elements of order 32. (Hint: of course you are not going to calculate the order of each element!, use (viii) and old HW).
- (xi) Prove that  $D = (Z_5, +) \oplus U(18)$  is cyclic, and hence  $D \approx (Z_m, +)$ . Find m.
- (xii) prove that  $(Q^*, .)$  is not cyclic. [Hint: We know  $Q^*$  is a group under normal multiplication. Note that in an infinite cyclic group D we have  $|a| = \infty$  for each  $a \in D \{e\}$  (class notes).

### Submit your solution (by EMAIL) any time / all HWs must be submitted by Wed. before midnight, March 18, 2020.

#### **Faculty information**

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

### 3.1.5 HW-Five

### HW V, MTH 532, Spring 2020

#### Ayman Badawi

#### Observations

- (i) Let p, q be two primes numbers (p, q need not be distinct) If H, K are two distinct groups with p elements and q elements, respectively, then  $H \cap K = \{e\}$ . Note that if p = q, but H, K are distinct, we still have  $H \cap K = \{e\}$ .
- (ii) If  $|H| = p^m and |K| = q^n$ , where q, p are distinct prime integers, then  $H \cap K = \{e\}$ .

-, ID –

(iii) If  $D = Z_5 \oplus Z_{25} \oplus Z_3$ , then D has many subgroups with 25 elements. For, let H be a subgroup of  $Z_{25}$  with 5 elements. We know that such H is unique (since  $Z_{25}$  is cyclic). Hence  $W = Z_5 \oplus H \oplus \{0\}$  and  $K = \{0\} \oplus Z_{25} \oplus \{0\}$  are subgroups with 25 elements. Also since |(a, 1, 0)| = 25 for every  $a \in Z_5$ , we conclude that for each  $a \in Z_5$ , the group  $F_a$  generated by (a, 1, 0) is a cyclic subgroup of D with 25 elements. Also note that  $W, K, F_a$  ( $a \neq 0$ ) are distinct subgroups and each is with 25 elements, note if a = 0, then  $F_a = K$ .

**QUESTION 1.** Let *D* be an abelian group with  $2^35^2$  elements

- (i) Suppose that *D* has exactly one subgroup with 4 elements. Find all non-isomorphic groups with these properties. [hint: Observations above might be useful]
- (ii) Suppose that *D* has exactly one subgroup with 4 elements and it has exactly one subgroup with 5 elements. Find all non-isomorphic groups with these properties.

**QUESTION 2.** Let *D* be a cyclic group with 100 elements. Convince me that (AUT(D), o) is an abelian group and find  $m_1, ..., m_k$  such that  $AUT(D) \approx Z_{m_1} \oplus \cdots \oplus Z_{m_k}$ . [hint: Use my lecture! and HW 4].

**QUESTION 3.** Prove that every group with  $n = 17.3^2$  is abelian. Find all non-isomprphic groups with n elements. [Hint: See my first lecture on Sylow !]

**QUESTION 4.** Let *D* be a group with 5.11.29. Prove that *D* has exactly one subgroup with 29 elements, say *H*, and  $H \subseteq C(D)$ . [hint: see my part 2 lecture on sylows].

**QUESTION 5.** Let *D* be a group with 216 elements. Prove that *D* is not simple. [hint: note that  $216 = 2^3.3^3$  and it is possible that  $n_3 = 4$ . Use the technique as in my part 2 lecture on Sylow's Theorem to construct a group homomorphism with non-trivial kernel.]

**QUESTION 6.** Let *D* be a group with 5.7.17 elements. Prove that *D* is not simple. Assume that  $n_{17} \neq 1$ . How many elements in D have order 17? [hint: Find  $n_5$ ...so you may discover that *D* is not simple. see OBSERVATION (i) above..., then it should be clear how many elements in D have order 17]

#### Submit your solution (by EMAIL) any time by Wed. before midnight, March 25, 2020 .

#### **Faculty information**

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com
### 3.1.6 HW-Six

MTH 532 Abstract Algebra II, 2020, 1-2

•. ID •

#### HW six, MTH 532, Spring 2020

#### Ayman Badawi

(1) you need to know this fact: Fix  $n \ge 2$  and A be a commutative ring with 1. Then  $B \in U(A^{n \times n})$  if and only if  $|A| \in U(A)$ , i.e. using street language, an  $n \times n$  matrix B is invertible over A if and only if determinant of B is a unit of A (an element in a ring A is called unit, if it has inverse under multiplication)

For example A matrix  $B \in U(Z_m^{n \times n})$  if and only if  $|B| \in U(Z_m) = U(m)$ . A matrix  $B \in U(Z^{n \times n})$  if and only if  $|B| \in U(Z) = \{1, -1\}$ 

(2) You need to know the meaning of FRACTIONS in a ring: Let A be a commutative ring with 1 and  $a, b \in A$ . Then  $\frac{a}{b}$  has a meaning in A if and only if  $b \in U(A)$ . If  $b \in U(A)$ , then  $\frac{a}{b}$  means  $b^{-1}a$ .

For example  $\frac{4}{5}$  has a meaning in the ring  $Z_6$  since  $5 \in U(Z_6) = U(6)$  and  $\frac{4}{5}$  means the element  $5^{-1}4 = 2 \in Z_6$ . Since  $4 \notin U(Z_{14}) = U(14)$ ,  $\frac{5}{4}$  is undefined in the ring  $Z_{14}$ .

**QUESTION 1.** Let  $F = \{1, 2, 3, 4\}$  and A = P(F) (P(F) is the power set of F, note |P(F)| = 16). We know (A, +, .) is a commutative ring with identity 1 = F (see class notes,  $a + b = (a - b) \cup (b - a)$  and  $ab = a \cap b$  for every  $a, b \in A$ ). Also, we know that  $U(A) = \{F\}$  and hence a matrix  $B \in U(A^{n \times n})$  if and only if |B| = F. Also, from class notes, we know -a = a and  $a^2 = a$  for every  $a \in A$ 

For example  $B = \begin{bmatrix} \{1,3\} & \{2,4\} \\ \{1,2,4\} & \{1,2,3\} \end{bmatrix} \in U(F^{2\times 2})$ . You only need to know what + means and what . means in the ring A. Then all techniques you learned from basic linear algebra can be applied on A. In a basic linear algebra course

your ring is R, but here your ring is A.

For example we know that if  $B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$  is invertible over R then  $B^{-1} = \frac{1}{|B|} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ . We can use this fact for any  $2 \times 2$  matrix over a commutative ring with identity.

So 
$$|B| = \{1,3\}\{1,2,3\} + -\{2,4\}\{1,2,4\} = \{1,3\} \cap \{1,2,3\} + \{2,4\} \cap \{1,2,4\} = \{1,3\} + \{2,4\} = (\{1,3\} - \{2,4\}) \cup (\{2,4\} - \{1,3\}) = \{1,2,3,4\} = F \in U(A)$$
. Hence *B* is invertible. Thus  $B^{-1} = \frac{F}{F} \begin{bmatrix} \{1,2,3\} & \{2,4\} \\ \{1,2,4\} & \{1,3\} \end{bmatrix} = \begin{bmatrix} \{1,2,3\} & \{2,4\} \\ \{1,2,4\} & \{1,3\} \end{bmatrix}$ 

$$F \begin{bmatrix} \{1,2,3\} & \{2,4\} \\ \{1,2,4\} & \{1,3\} \end{bmatrix} = \begin{bmatrix} \{1,2,3\} & \{2,4\} \\ \{1,2,4\} & \{1,3\} \end{bmatrix}$$
  
Note that  $BB^{-1} = B^{-1}B = \begin{bmatrix} F & \phi \\ \phi & F \end{bmatrix} = I_2$  since in our A,  $1 = F$  and  $0 = \phi$ .

(i) Let 
$$B = \begin{bmatrix} \{1,2\} & \{2,4\} \\ \{3,4\} & \{1,3\} \end{bmatrix}$$
. Does  $B^{-1}$  exist? if yes, then find it. If no, then explain

(ii) Let 
$$B = \begin{bmatrix} \{2,3\} & \{1,3,4\} \\ \{1,3,4\} & \{2,4\} \end{bmatrix}$$
. Does  $B^{-1}$  exist? if yes, then find it. If no, then explain

(iii) Let  $B = \begin{bmatrix} F & \{2,4\} & \{1\} \\ \{1,3\} & F & \{3\} \\ \{2\} & \{2\} & F \end{bmatrix}$ . If possible find  $B^{-1}$  [Hint: Use the techniques you learned from linear Algebra.

Use row operations and try to change the matrix  $[B] \begin{bmatrix} F & \phi & \phi \\ \phi & F & \phi \\ \phi & \phi & F \end{bmatrix}$  into  $\begin{bmatrix} F & \phi & \phi \\ \phi & F & \phi \\ \phi & \phi & F \end{bmatrix} |C|$ . If you succeed then

 $C = B^{-1}$ , if you did not succeed, then B is not invertible over A

**QUESTION 2.** Convince me that  $B = \begin{bmatrix} 2 & 5 & 4 \\ 1 & 1 & 2 \\ 3 & 3 & 5 \end{bmatrix}$  is invertible over  $Z_8$ . Again use the techniques you learned in linear algebra but here addition means addition in the second distribution of  $Z_8$ .

linear algebra but here addition means addition mod 8 and multiplication means multiplication mod 8 and in view of the comments in (2) observe that 1/2, 1/4 have no meaning in  $Z_8$  but 1/3, 1/5 have meaning!.

**QUESTION 3.** If our ring is R, we know that -4 = -1 times 4. Let A be a ring with identity. Prove that -a = -1.a for every  $a \in A$  (i.e., prove that the additive inverse of a equals the additive inverse of the identity "1" times a). (Hint: use that fact that a.0 = 0 = 0.a = 0 for every  $a \in A$ )

#### Submit your solution (by EMAIL) any time by Friday midnight, April 17, 2020.

### **Faculty information**

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

# 112 3.1.7 HW-Seven

MTH 532 Abstract Algebra II, 2020, 1–1

#### HW SEVEN, MTH 532, Spring 2020

#### Ayman Badawi

**QUESTION 1.** Let A be the ring  $Z_{12}$ . Find Z(A), Nil(A), U(A) and Id(A).

-, ID –

**QUESTION 2.** Let A be the ring  $Z_n \oplus Z_m$ . How many units (invertible elements) does A have? i.e., Find |U(A)| [Hint: it is trivial to see that (a, b) is invertible in A iff a is invertible in  $Z_n$  and b is invertible in  $Z_m$ , some how the question is related to  $\phi(k)$ ]

**QUESTION 3.** Let A be the ring  $Z_6 \oplus Z_{14}$ . Find Char(A). Find U(A).

**QUESTION 4.** Let A be a ring such that  $A = R_1 \oplus R_2$ , where  $R_1$  and  $R_2$  are rings such that  $|R_1| \ge 2$  and  $|R_2| \ge 2$ . Prove that A is never an integral domain.

**QUESTION 5.** Let A be a commutative ring with 1,  $u \in U(A)$  and  $w \in Nil(A)$ . Prove that  $u + w \in U(A)$ . (hint: Note that  $u + w = u(1 + u^{-1}w)$  and  $u^{-1}w \in Nil(A)$ . Also note that if m is an odd integer, then high school math tells us that  $x^m + 1 = (x + 1)[(x^{m-1} - x^{m-2} + \dots + -x + 1])$ 

**QUESTION 6.** Let A be a commutative ring with 1 and  $e \in Id(A)$ . Prove that  $1 - e \in Id(A)$  and  $1 - 2e \in U(A)$ .

**QUESTION 7.** Let  $B = \{0, 3, 6, 9, 12\}$ . Show that (B, +, .) is a subring of the ring  $(Z_{15}, +, .)$ . Is B an ideal of  $Z_{15}$ ? note that B is a ring too!. What is "1" of the ring B? Is the "1" of B the same "1" of  $Z_{15}$ ? What is Char(B)? Is Char(B) different from  $Char(Z_{15})$ ? Is B a field? [hint: Just do the Caley's table of (B, +) and the Caley's table of (B, .), stare really well, then start answering the questions!, remember + means addition mod 15 and . means multiplication mod 15]

#### Submit your solution (by EMAIL) any time by Monday midnight, April 27, 2020 .

#### **Faculty information**

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

# 3.2.1 Exam One

MTH 532 Abstract Algebra, 2020, 1-1

#### EXAM I, MTH 532, Spring 2020

#### Ayman Badawi

**QUESTION 1.** Given D is a group with 48 elements. Assume that D has an element  $a \in C(D)$  such that |a| = 16. Prove that D is cyclic.

**QUESTION 2.** Does U(54) have an element of order 18? If yes, how many elements of order 18 does U(54) have?

**QUESTION 3.** Let  $f: (Z_{18}, +) \rightarrow (U(50), .)$  be a group homomorphism such that  $f(1) \neq 1$ . Find f(0). Find Ker(f).

**QUESTION 4.** Let D be a group with 100 elements. Assume that D has a subgroup H with 20 elements such that  $H \subseteq C(D)$ . Prove that D is an abelian group.

- QUESTION 5. (i) EXTRA CREDIT, but you need it to solve (ii). Let D be a finite group and H be a subgroup of D such that [D:H] = m for some integer m (note that [D:H] = |D|/|H| = number of all distinct left cosets of H). Prove that there is a group homomorphism, say f, from D into  $S_m$  such  $Ker(f) \subseteq H$ .
- (ii) Let D be a finite simple group. Assume that H, K are subgroups of D such that  $[D:H] = p_1$  and  $[D:K] = p_2$  for some prime integers  $p_1, p_2$ . Prove that  $p_1 = p_2$ . (nice result!)

**QUESTION 6.** Let *D* be a group with  $p^m$  elements, where *p* is a prime integer and  $m \ge 2$ . Prove that *D* has a normal subgroup with  $p^{m-1}$  elements. [Hint : Show that *D* must have a subgroup *H* with  $p^{m-1}$  elements by class note result (which result?). Then use class - lecture (result) to show that *H* is normal in H (which result?)].

**QUESTION 7.** Let *D* be a group with  $(5^2)(7^2)$  elements. Prove that *D* is an abelian group. Find all non-isomorphic groups with  $(5^2)(7^2)$  elements?

**QUESTION 8.** Let  $a = (1 \ 2 \ 3) \ o \ (1 \ 3 \ 4 \ 2 \ 5) \in S_6$ . Is  $a \in A_6$ ? Find |a|.

-, ID –

**QUESTION 9.** Let D be a group with 105 elements (105 = (3)(5)(7)).

- (i) Prove that *D* is not simple. [Hint: Assume *D* is simple. How many elements of orders 7, 5, 3 does D have? is this possible?
- (ii) Assume that  $n_7 = 1$  (i.e., D has exactly one sylow-7-subgroup). Prove that D has a normal cyclic subgroup with 35 elements [hint: Use a result from HW, use a result from class notes! and of course sylow's theorems].

#### Submit your solution by 3 pm (as at most), March 28, 2020 .

#### **Faculty information**

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

### 3.2.2 Exam Two

#### EXAM II, MTH 532, Spring 2020

#### Ayman Badawi

#### Submit your solution any time before 00: 15, (I will deduct points after 00: 17).

-, ID –

- **QUESTION 1.** (i) Let A be a commutative ring with 1 and B be a commutative ring (B may not have "1"). Assume  $f: A \to B$  is a ring-homomorphism. Prove that  $f(1) \in Id(B)$  (i.e., show that f(1) is an idempotent element of B).
- (ii) Let A be a commutative ring with 1 and B = 2Z (B is the set of all even integers). Assume  $f : A \to B$  is a ring-homomorphism. Prove that f(a) = 0 for every  $a \in A$ .
- (iii) Let A, B be fields and  $f : A \to B$  is a ring-homomorphism such that  $f(a) \neq 0$  for some  $a \in A$ . Prove that f is injective (i.e., prove that f is one-to-one).
- (iv) Let  $f: Z_6 \to Z_9$  be a ring-homomorphism. Prove that f(a) = 0 for every  $a \in Z_6$ .

**QUESTION 2.** Let A be a commutative ring with 1 and let I be a proper ideal of A that is not a maximal ideal of A. Hence, we know that  $I \subset M$  for some maximal ideal M of A. Let  $a \in M - I$ . Prove that a + I is not an invertible element of the ring A/I (i.e., show that  $a + I \notin U(A/I)$ ).

**QUESTION 3.** Let A be a finite commutative ring with 1 and  $a \in A$ . Suppose that  $a \notin Z(A)$ . Prove that  $a \in U(A)$ .

**QUESTION 4.** Let A be a commutative ring with 1 and  $f(X) \in A[X]$  such that  $f(X) \neq 0$  and  $f(X) \in Z(A[X])$ . For every  $n \ge 1$ , prove that there exists a polynomial  $k(X) \in A[X]$  of degree n such that k(X)f(X) = 0.

**QUESTION 5.** Let A be a commutative ring with 1 and I be a prime ideal of A. Prove that  $Nil(A) \subseteq I$ .

**QUESTION 6.** (i) Let  $A = Z_4 \oplus Z_6$ . Find all prime ideals of A.

- (ii) Let  $A = Z_{12} \oplus Z_8$ . Find Nil(A).
- (iii) Let  $B = \begin{vmatrix} 2 & 4 \\ 2 & 2 \end{vmatrix}$ . Is *B* invertible over  $Z_9$ ? If yes, then find  $B^{-1}$ . If No, then explain.

(iv) Let  $A = Z_{10}[X]$  and  $f(X) = 2X^3 + 5X + 4 \in A$ . Is  $f(X) \in Z(A)$ ?

- (v) Give me an example of a commutative ring A with 1 such that Char(A) = 5 and  $Z(A) \neq \{0\}$ .
- (vi) Let  $A = Z_{18}[X]$  and  $f(X) = 6X^2 + 12X + 17 \in A$ . Is there a polynomial  $k(X) \in A$  such that k(X)f(X) = 1? If yes, then explain (you do not need to find k(X)). If no, then tell me why not.

#### **Faculty information**

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

# 3.2.3 Final Exam

#### Final Exam, MTH 532, Spring 2020

#### Ayman Badawi

**QUESTION 1.** Let F be a finite field with  $2^{12}$  elements.

-, ID -

- (i) (3 points) Let  $a \in F$ . Then a is a root of an irreducible monic polynomial of degree m over  $Z_2$  Find all possibilities of m.
- (ii) (3 points) We know that  $(F^*, .)$  is a cyclic group and hence  $(F^*, .) = \langle a \rangle$  for some  $a \in F^*$ . Prove that the degree of  $Irr(a, Z_2) = 12$ ? (i.e., prove that the degree of the unique irreducible monic plolynomial over  $Z_2$  that has a as a root is 12)
- (iii) (3 points) We know  $|F^*| = 2^{12} 1 = 4095$ . Since 819 | 4095, then we know that  $F^*$  has a unique cyclic subgroup, say  $H = \langle b \rangle$  for some  $b \in F^*$  with 819 elements. What is the degree of  $Irr(b, Z_2)$ ? justify your answer
- (iv) (4 points) Let  $P_{12}$  be the set of all irreducible monic polynomials of degree 12 over  $Z_2$ . Find  $|P_{12}|$ . Show the work.
- (v) (8 points) Find all elements of the Galois group  $Aut(F/Z_2)$ . For each subgroup H of  $Aut(F/Z_2)$  find the corresponding subfield of F, say  $L_H$ , that is fixed by H.

**QUESTION 2.** Let E be the 5th cyclotomic extension field of Q

- (i) (2 points) E = Q(a) for some  $a \in C$  (C is the ring (field) of all complex numbers). Find a.
- (ii) (6 points)Let a as in (i), find Irr(a, Q), find [E : Q], and find all roots of Irr(a, Q) inside E. Is Aut(E/Q) a cyclic group under composition? how many elements does Aut(E/Q) have?
- (iii) (2 points) Find a basis B (in terms of a) of E over Q.
- (iv) (2 points) write  $a^6 + a^5 + a^4$  as a linear combination of the elements in the basis B (B is as in iii).
- (v) (4 points) For each subgroup of Aut(E/Q) with 2 elements, say H, find the corresponding subfield of E, say  $L_H$ , that is fixed by H.

**QUESTION 3.** Let  $E = Q(\sqrt{5}, \sqrt{7})$ .

- (i) (3 points). We know that E = Q(a) for some  $a \in R$ . Find Irr(a, Q) (i.e., find the unique irreducible monic polynomial over Q that has a as a root. What is [E : Q]?
- (ii) (3 points) It is clear that  $L = Q(\sqrt{35})$  is a subfield of E. Find the subgroup, say H, of Aut(E/Q) that fixes the field L.
- (iii) (3 points) Is the field  $Q(\sqrt{5})$  isomorphic to the field  $Q(\sqrt{7})$ ? If yes, then construct such ring-isomorphism (field-isomorphism)? If no, then explain briefly why not?

**QUESTION 4. (3 points)** Let *E* be the splitting field of the polynomial  $f(x) = x^7 - 18$ . We know that *E* is a Galois Extension of *Q*. Prove that Aut(E/Q) is a non-abelian group.

- **QUESTION 5.** (i) (2 points) Give me an example of an integral domain that is not a UFD (Unique Factorization Domain).
- (ii) (2 points) Give me an example of a Unique Factorization Domain that is not a principal ideal domain
- (iii) (4 points) Let *A* be a principal ideal domain. Prove that every prime ideal of *A* is a maximal ideal of *A*.[Hint: Every proper ideal is a principal ideal, and every proper ideal is contained in a maximal ideal].
- (iv) (4 points) Let A be a commutative ring with 1. Suppose that A has exactly one maximal ideal. Prove that  $Id(A) = \{0, 1\}$ . [Hint: note if  $x \notin U(A)$ , then the ideal (x) = xA is a proper ideal of A].
- (v) (4 points) Let A be an integral domain, P be a prime ideal of A, and I be a proper ideal of A such that  $I \cap P = \{0\}$ . Prove that there exists a prime ideal F of A such that  $I \subseteq F$  and  $F \cap P = \{0\}$  [Hint: Let W = P - 0, note  $I \cap W = \emptyset$ ]

**QUESTION 6.** (4 points). Let F be a group with 12 elements. Prove that F must have a normal subgroup with 3 elements **OR** F must have a normal subgroup with 4 elements.

#### **Faculty information**

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

### Faculty information

Ayman Badawi, American University of Sharjah, UAE. E-mail: abadawi@aus.edu