MTH532－Course Portfolio－Spring 2020

Ayman Badawi

Table of contents
Table of contents 1
${ }_{1}$ Section 1：（No change ）Course Syllabus 2
${ }^{2}$ Section 2：Instructor Teaching Material 7
2．HANDOUTS 7
${ }_{2.1 .1}$ Handout on the Unit－Group of Z_{n} 8
2．12 Handout on Rings 10
$2{ }^{2} 3$ Handout on Fields 13
22 Worked out Solutions for all Assessment Tools221 Solution for Exam One21
222 Solution for Exam Two 24
2.23 Solution for The Final Exam 27
224 Solution for HW－ONE 31
225 Solution for HW－Two 35
226 Solution for H W－Three 45
227 Solution for $⿴ 囗 ⿱ 一 一$ 57
2.2. Solution for HW－Eive 75
2．29 Solution for HW－Six 83
2．2．10 Solution for HW－Seven 90
3 Section 3：Assessment Tools（unanswered） 97
3．1 Homework 98
3．11 HW－One 99
3.12 HW－TWO 101
3.3 日V－Three 103
3.1 .4 BW－Eour 105
3.5 HW－Five 107
3.1 .6 HW－S1X 109
3.1 OW－Seven 112
3．2 Exams 114
3．2．Exam One 115
3.2 Exam Two 117
3.2 .3 Final Exam 119

1 Section 1: (No change)Course Syllabus

- Demonstrate an understanding of separable fields, splitting fields, Galois field, finite fields, and cyclotomic field extension. (Exam II and Final)

Textbook and
other Instructional Material and Resources

K Teaching and
Learning Methodologies

L Grading Scale,
Grading
Distribution, and Due Dates

Primary: Instructor class notes. I-Learn, my personal webpage
http://ayman-badawi.com/MTH\ 530.html and
http://ayman-badawi.com/MTH\ 531.html

Reference:
David S. Dummit and Richard M. Foote, Abstract Algebra- Third Edition Any graduate textbook will do.

The teaching and learning tools used in this course to deliver the subject matter include white board and markers, formal lectures, class discussions, assignments, two exams and a final

Grading Scale

A:85-100, A-: 81--84.99, B+: 77--- 80.99, B: 74--76.99, B-: $70-73.99, C+: 67--$ 69.99, C: 63-66.99, F <63

Excellent			
A	Equals points	4.00	grade
Meet Expectation			
A-	Equals points	3.80	grade
B+	Equals points	3.30	grade
B	Equals points	3.00	grade
Below Expectation			
B-	Equals points	2.70	grade
C+	Equals point	2.30	grade
C	Equals point	2.00	grade
Fail			
F	Equals points	0.00	grade
Academic Violation Fail	Integrity		

XF	Equals points	0.00	grade
Withdrawal Fail			
WF	Equals points	0.00	grade

Grading Distribution

Assessment	Weight	Date
Homework	15%	
Mid-Term one	25%	
Mid-Term two	25%	
Final Exam	35%	Comprehensive
Total	100%	

M $\begin{array}{r}\text { Explanation of } \\ \text { Assessments }\end{array}$

N Student
Academic Integrity Code Statement

Student must adhere to the Academic Integrity code stated in the graduate catalog.

SCHEDULE

Note: Tests and other graded assignments due dates are set. No addendum, make-up exams, or extra assignments to improve grades will be given.

\#	WEEKS	CHAPTER/SECTIONS	NOTES
	Groups, subgroups, cyclic groups, symmetric groups, quotient groups, product of groups, normal subgroups, Sylow's groups, classification of finite abelian groups, group homomorphism and isomorphism	Definitions, Examples, proofs	
	EXAM I		
$7-6$	Rings, ideals, prime ideals, primary ideals, 2-absorbing ideals, maximal ideals, quotient rings, quotient fields, prime elements, irreducible elements, product of rings, localized rings, fields	Definition	
		Pramples	

separable fields, splitting fields,
cyclotomic fields, finite fields, and Galois field
${ }_{2}$ Section 2: Instructor Teaching Material

2.1 HANDOUTS

$\mathbf{U}(\mathrm{n})$ is cyclic? , MTH 532, Spring 2020

Ayman Badawi

$n \geq 3$. Then $U(n)$ is cyclic iff $n=4, n=p^{m}$, or $n=2 p^{m}$ for some odd prime p and integer $m \geq 1$.
Suppose that $n=4$ or $n=p^{m}$, or $n=2 p^{m}$ for some odd prime p and integer $m \geq 1$. We show that $U(n)$ is cyclic.
If $n=4, U(4) \approx Z_{2}$ is cyclic. If $n=p^{m}$ for some odd prime p and integer $m \geq 1$, then $\phi(n)=(p-1) p^{m-1}$. Hence $U(n) \approx z_{p-1} \oplus z_{p^{m-1}}$. Since $\operatorname{gcd}\left(p-1, p^{m-1}\right)=1, U(n)$ is cyclic. If $n=2 p^{m}$ for some odd prime p and integer $m \geq 1$, , then $\phi(n)=(p-1) p^{m-1}$. Hence $U(n) \approx z_{p-1} \oplus z_{p^{m-1}}$. Since $\operatorname{gcd}\left(p-1, p^{m-1}\right)=1, U(n)$ is cyclic.

Now assume that $n \neq 4$ and $n \neq p^{m}$, and $n=2 p^{m}$ for some odd prime p and integer $m \geq 1$. We show that $U(n)$ is not cyclic.

Case 1. Asuume $n=2^{m}, m \geq 3$. Then $U(n) \approx z_{2} \oplus z_{2^{m-2}}$. Since $\operatorname{gcd}\left(2,2^{m-2}\right) \neq 1, U(n)$ is not cyclic.
Case 2. Assume $n=2^{k} p^{m}, \mathrm{p}$ is odd prime, $k \geq 2$, and $m \geq 1$. Then $\phi(n)=2^{m-1}(p-1) p^{m-1}$. Thus $U(n) \approx D=$ $z_{2} \oplus z_{2^{m-2}} \oplus z_{p-1} \oplus z_{p^{m-1}}$. Now $H=z_{2} \oplus\{0\} \oplus z_{p-1} \oplus\{0\}$ is a subgroup of D. Since $\operatorname{gcd}(2, p-1) \neq 1$, H is not a cyclic subgroup of D . Thus D is not not cyclic (we know every subgroup of a cyclic group is cyclic). Hence $U(n)$ is not cyclic.

Case 3. Assume $n=2 p_{1}^{k_{1}} p_{2}^{k 2} \cdots p_{m}^{k_{m}}$, where $m \geq 2, p_{1}, \ldots, p_{m}$ distinct prime odd integers. Then $\phi(n)=\left(p_{1}-\right.$ 1) $p^{k_{1}-1}\left(p_{2}-1\right) p_{2}^{k_{2}-1} \ldots .\left(p_{m}-1\right) p_{m}^{k_{m}-1}$. Thus $U(n) \approx D=z_{\left(p_{1}-1\right)} \oplus z_{p^{k_{1}-1}} \oplus z_{\left(p_{2}-1\right)} \oplus z_{p_{2}^{k_{2}-1}} \oplus \ldots \oplus z_{\left(p_{m}-1\right)} \oplus z_{p_{m}^{k_{m}-1}}$ (note $m \geq 2$). Now $H=z_{p_{1}-1} \oplus\{0\} \oplus z_{p_{2}-1} \oplus\{0\} \oplus \ldots \oplus\{0\}$ is a subgroup of D . Since $g c d\left(p_{1}-1, p_{2}-1\right) \neq 1$, H is not a cyclic subgroup of D . Thus D is not not cyclic. Hence $U(n)$ is not cyclic.

Case 4. Assume $n=2^{k} p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{m}^{k_{m}}$, where $m \geq 2$ and $k \geq 2, p_{1}, \ldots, p_{m}$ distinct prime odd integers. Then $\phi(n)=2^{m-1}\left(p_{1}-1\right) p^{k_{1}-1}\left(p_{2}-1\right) p_{2}^{k_{2}-1} \ldots\left(p_{m}-1\right) p_{m}^{k_{m}-1}$. Thus $U(n) \approx D=z_{2} \oplus z_{2^{m-2}} \oplus z_{\left(p_{1}-1\right)} \oplus z_{p^{k_{1}-1}} \oplus z_{\left(p_{2}-1\right)} \oplus$ $z_{p_{2}^{k_{2}-1}} \oplus \ldots \oplus z_{\left(p_{m}-1\right)} \oplus z_{p_{m}^{k_{m}-1}}\left(\right.$ note $m, k \geq 2$). Now $H=\{0\} \oplus\{0\} \oplus z_{p_{1}-1} \oplus\{0\} \oplus z_{p_{2}-1} \oplus\{0\} \oplus \ldots \oplus\{0\}$ is a subgroup of D . Since $\operatorname{gcd}\left(p_{1}-1, p_{2}-1\right) \neq 1, H$ is not a cyclic subgroup of D . Thus D is not not cyclic. Hence $U(n)$ is not cyclic.

Case 5. Assume n is odd. Then $n=p_{1}^{k_{1}} p_{2}^{k 2} \cdots p_{m}^{k_{m}}$, where $m \geq 2, p_{1}, \ldots, p_{m}$ distinct prime odd integers. Then $\phi(n)=$ $\left(p_{1}-1\right) p^{k_{1}-1}\left(p_{2}-1\right) p_{2}^{k_{2}-1} \ldots\left(p_{m}-1\right) p_{m}^{k_{m}-1}$. Thus $U(n) \approx D=z_{\left(p_{1}-1\right)} \oplus z_{p^{k_{1}-1}} \oplus z_{\left(p_{2}-1\right)} \oplus z_{p_{2}^{k_{2}-1}} \oplus \ldots \oplus z_{\left(p_{m}-1\right)} \oplus z_{p_{m}^{k_{m}-1}}$ (note $m \geq 2$). Now $H=z_{p_{1}-1} \oplus\{0\} \oplus z_{p_{2}-1} \oplus\{0\} \oplus \ldots \oplus\{0\}$ is a subgroup of D . Since $g c d\left(p_{1}-1, p_{2}-1\right) \neq 1, H$ is not a cyclic subgroup of \mathbf{D}. Thus D is not not cyclic. Hence $U(n)$ is not cyclic.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com
2.1.2 Handout on Rings

Useful Information for Second Exam, Final, Common Knowledge , MTH 532, Spring 2020

Ayman Badawi

Fact 1. Let A be a commutative ring with 1 and $f(X) \in A[X]$. Then $f(X) \in N i l(A[X])$ if and only if the coefficients of $f(X)$ are nilpotent elements of A.

Example: $f(X)=3 X^{3}+6 X^{2}+12 X+24$ is a nilpotent element of the polynomial ring $Z_{27}[X]$ (i.e., $f(X) \in$ $\operatorname{Nil}\left(Z_{27}[X]\right)$, i.e., there exists a positive integer n such that $f(X)^{n}=0$ in $Z_{27}[X]$ since the coefficients of $f(x)$ are nilpotent elements of Z_{27}. (note that $3,6,12,24 \in \operatorname{Nil}\left(Z_{27}\right)$)

Example : $f(X)=5 X^{3}+2 x+4$ is not a nilpotent element of $Z_{8}[X]$ since $5 \notin N i l\left(Z_{8}\right)$.
Fact 2. Let A be a commutative ring with 1 and $f(X)=a_{n} X^{n}+\cdots+a_{1} X+a_{0} \in A[X]$. Then $f(X) \in U(A[X])$ if and only if $a_{n}, \ldots, a_{1} \in \operatorname{Nil}(A)$ and $a_{0} \in U(A)$.

Example: $f(X)=3 X^{3}+6 X^{2}+12 X+7$ is a unit (invertible) element of the polynomial ring $Z_{27}[X]$ (i.e., $f(X) \in$ $U\left(Z_{27}[X]\right)$, i.e., there exists a polynomial $k(X) \in Z_{27}[X]$ such that $f(X) k(X)=1$ in $Z_{27}[X]$ since 3, 6, 12 are nilpotent elements of Z_{27} and the constant term $a_{0}=7 \in U\left(Z_{27}\right)$.

Example : $f(X)=2 X^{3}+5 X+4$ is not a unit (invertible) element of $Z_{8}[X]$ since $5 \notin N i l\left(Z_{8}\right)$ and the constant term $a_{0}=4 \notin U\left(Z_{8}\right)$.

Example : $f(X)=2 X^{3}+5 X+3$ is not a unit (invertible) element of $Z_{8}[X]$ since $5 \notin \operatorname{Nil}\left(Z_{8}\right)$.
Fact 3. (Surprising result!) Let A be a commutative ring with 1 and $f(X)=a_{n} X^{n}+\cdots+a_{1} X+a_{0} \in A[X]$. Then $f(X) \in Z(A[X])$ if and only if $a_{n}, \ldots, a_{1} \in Z(A)$ and $b f(X)=0$ for some nonzero $b \in Z(A)$.

Example: $f(X)=3 X^{3}+2 X^{2}+3 X+2$ is not a zero-divisor element of the polynomial ring $Z_{6}[X]$ (i.e., $f(X) \notin$ $Z\left(Z_{6}[X]\right)$, i.e., there is no nonzero-polynomial $k(X) \in Z\left(Z_{6}[X]\right.$ such that $f(X) k(X)=0$ in $Z_{6}[X]$. Why? because $Z\left(Z_{6}\right)=\{0,2,3\}$, but $b f(X) \neq 0$ for every nonzero $b \in Z\left(Z_{6}\right)$.

Example : $f(X)=10 X^{3}+20 X+10$ is a zero-divisor element of the polynomial ring $Z_{30}[X]$ (i.e., $f(X) \in$ $Z\left(Z_{30}[X]\right)$, i.e., there is a nonzero-polynomial $k(X) \in Z\left(Z_{30}[X]\right.$ such that $f(X) k(X)=0$ in $Z_{30}[X]$. Why? because $3 \in Z\left(Z_{30}\right)$ and $3 f(X)=0$.

Fact 4. Let A be a commutative ring with 1. Then $\operatorname{Nil}(A)$ is a proper ideal of A.
Trivial: Let $a, b \in \operatorname{Nil}(A)$. Then $a^{n}=b^{m}=0$ for some positive integers n, m. Hence by EXPANSION, we have $(a-b)^{n+m}=0$ Thus $a-b \in \operatorname{Nil}(A)$. Also, $(a b)^{m}=a^{m} b^{m}=a^{m} .0=0$. Hence $a b \in \operatorname{Nil}(A)$. Thus $N i l(A)$ is a subring of A. Now let $f \in A$. Then $(f a)^{n}=f^{n} a^{n}=f^{n} .0=0$. Hence $f a \in \operatorname{Nil}(A)$. Thus $\operatorname{Nil}(A)$ is a proper ideal of A (note $\operatorname{Nil}(R) \cap U(A)=\emptyset$).

Fact 5. (Nice result on how to find nilpotent elements in Z_{n}). Write $n=p_{1}^{n_{1}} p_{2}^{n_{2}} \cdots p_{k}^{n_{k}}$ (of course p_{1}, \ldots, p_{k} are distinct prime integers) and let $m=p_{1} p_{2} \cdots p_{k}$. Then $\operatorname{Nil}\left(Z_{n}\right)=(m)=m Z_{n}=\operatorname{span}\{m\}$ is the ideal of Z_{n} generated by $m \in Z_{n}$.

Example: Let $A=Z_{75}$. Then $n=75=3.5^{2}$ and $m=3.5=15$. Hence $\operatorname{Nil}(A)=(15)=15 A=\operatorname{span}\{15\}=$ $\{0,15,30,45,60\}$.

Example : Let $A=Z_{30}$. Then $n=30=2.3 .5$ and $m=2.3 .5=0 \in Z_{30}$. Hence $\operatorname{Nil}(A)=(0)=0 A=\operatorname{span}\{0\}=$ $\{0\}$.

Fact 6. (Recall (from lecture) this is nice result on how to find prime ideals and maximal ideal in Z_{n}). Write $n=p_{1}^{n_{1}} p_{2}^{n_{2}} \cdots p_{k}^{n_{k}}$ (of course p_{1}, \ldots, p_{k} are distinct prime integers). Let $A=Z_{n}$. Then a proper ideal I of A is a prime ideal of A if and only I is a maximal ideal of A if and only if $I=\left(p_{i}\right)=p_{i} A$ for some $1 \leq i \leq k$.

Example: Let $A=Z_{75}$. Then $n=75=3.5^{2}$. Hence $3 A=\{0,3,6,9,12, \ldots, 72\}$ and $5 A=\{0,5,10, \ldots, 70\}$ are the only prime (maximal) ideals of A.

Example : Let $A=Z_{30}$. Then $n=30=2.3 .5$. Hence $2 A=\{0,2,4,6,12, \ldots, 28\}, 3 A=\{0,3,6, \ldots, 27\}$, and $5 A=\{0,5,10, \ldots, 25\}$ are the only prime (maximal) ideals of A.

Fact 7. (Recall (from lecture) this is a nice result, it is called the Chinese remainder Theorem): Let A be a commutative ring with 1 and $I_{1}, I_{2}, \ldots, I_{k}$ are proper ideals of A that are relatively prime ideals of A (i.e., $I_{i}+I_{j}=A$ for every $i \neq j, 1 \leq i, j \leq k$, some authors call such ideals co-prime ideals). Let $F=I_{1} \cap I_{2} \cap \cdots \cap I_{k}$. Then A / F is ringisomorphic to $A / I_{1} \oplus A / I_{2} \oplus \cdots \oplus A / I_{k}$. In particular, if $F=\{0\}$, then A is ring-isomorphic to $A / I_{1} \oplus A / I_{2} \oplus \cdots \oplus A / I_{k}$.

Fact 8. (Nice result, make sure that you know it): Let B, C be commutative rings with 1 and $A=B \oplus C$. Let F be a proper ideal of A. Then $F=I_{1} \oplus I_{2}$ for some ideal I_{1} of B and some ideal I_{2} of C. Furthermore (nice), A / F is ring-isomorphic to $B / I_{1} \oplus C / I_{2}$. Furthermore (from Lecture):
(a) F is a prime ideal of A if and only if either $F=I \oplus C$ for some prime ideal I of B or $F=B \oplus J$ for some prime ideal J of C.
(b) F is a maximal ideal of A if and only if either $F=I \oplus C$ for some maximal ideal I of B or $F=B \oplus J$ for some maximal ideal J of C.

Fact 9. Let A be a commutative ring with 1 and I be a proper ideals of A. Then I is a prime ideal of A if and only if $A-I$ is a multiplicative subset of A (recall from lecture that what I call multiplicative subset of A, some authors call it multiplicatively closed subset of A). The proof is so trivial (just use definitions)

REMARKS Let A be a commutative ring with 1 .
(a) Note that every subring of A is a multiplicative subset of A.
(b) Note that every subgroup of $U(A)$ is a multiplicative subset of A
(c) Chose an element $a \in A$. Then $D=\left\{a, a^{2}, a^{3}, \ldots, a^{n}, \ldots\right\}=\left\{a^{m} \mid m\right.$ is a positive integer $\}$ is a multiplicative subset of A.
d) an ideal I of A is proper if and only if $1 \notin$ [Easy: Suppose I is an ideal and $1 \notin I$. We claim that I is proper. Deny. Hence $I \cap U(A) \neq \emptyset$. Suppose there is a unit (invertible) element $u \in I$. Since I is an ideal of A and $u^{-1} \in A$, we have $1=u^{-1} u \in I$, a contradiction.
e) A proper ideal of I of Z is prime if and only if I is a maximal ideal of Z if and only if $I=p Z=(p)$ for some prime integer p of Z. Thus the prime ideals of Z are maximal ideals of Z and they are of the form $p Z$ for some prime integer p. (Proof is trivial : We know that the proper ideals of Z has the form $n Z$ for some positive integer n. Now assume that $n Z$ is a prime ideal of Z. Hence $Z / n Z$ is an integral domain. But $Z / n Z$ is Z_{n}. Thus Z_{n} is a finite integral domain and hence a field. Thus n must be a prime number and $n Z$ must be a maximal ideal.
f) A commutative ring A with 1 is called Noetherian if every proper ideal of R is finitely generated., i.e. if I is a proper ideal of A, then $I=\operatorname{span}\left\{a_{1}, \ldots, a_{n}\right\}$ over A for some elements $a_{1}, \ldots, a_{n} \in I$, i.e., if $x \in I$, then there are $b_{1}, \ldots, b_{n} \in A$ such that $x=b_{1} a_{1}+\ldots+b_{n} a_{n}$. Interesting result about Noetherian rings : If A is Noetherian, then $A\left[x_{1}, \ldots, x_{n}\right]$ is Noetherian (i.e., the polynomial ring with n variables is Noetherian)
g) Let A be a commutative ring with 1 . Then the radical of A (denoted by $\operatorname{Rad}(A))=$ Intersection of ALL prime ideals of A . It is Known, that the RADICAL of $\mathrm{A}=\operatorname{Nil}(\mathrm{A})$. (the proof relies on the fact that I proved in the class if I is a proper ideal of A and S is a multiplicative system such that $I \cap S=\emptyset$ then there is a prime ideal P of A such that $I \subseteq P$ and $P \cap S=\emptyset$
h). Let A be a commutative ring with 1 . Jacobson radical of A (denoted by $J(A)$) is the intersection of all MAXIMAL ideals of A. Nice result about the Jacobson Radical of A : For every $x \in J(A), x+u \in U(A)$ for every $u \in U(A)$. Also $\operatorname{Rad}(A) \subseteq J(A)$ Faculty information

2.1.3 Handout on Fields

Useful Information about FIELDS and Galois Extension, Common Knowledge, MTH 532, Spring 2020

Ayman Badawi

1 Q, fields of characteristic 0

QUESTION 1. Assume that $[Q(\alpha): Q]=n$ and $f(x) \in Q[x]$ is a monic polynomial of degree n such that $f(\alpha)=0$. Prove that $f(x)$ is an irreducible polynomial over Q. In fact, prove that $f(x)=\operatorname{Irr}(\alpha, Q)$.

Solution: Let $k(x)=\operatorname{Ir}(\alpha, Q)$. Since $[Q(\alpha): Q]=n$, we know that $\operatorname{deg}(k(x))=n$ (note that $k(x)$ is the unique monic irreducible polynomial over \mathbf{Q} such that $k(\alpha)=0$). Since $f(\alpha)=0$, we know (class notes) that $k(x) \mid f(x)$. Since $f(x)$ and $k(x)$ are monic and $\operatorname{deg}(f(x))=\operatorname{deg}(k(x))=n$, we conclude that $k(x)=f(x)$.
QUESTION 2. Let $\alpha=e^{\frac{2 \pi i}{10}}$ and $\left.E=Q(\alpha)\right)$.
(i) Find $[E: Q]$

Solution: By last lecture, note that E is the 10 th cyclotomic extension field of Q (i.e, \mathbf{E} is the splitting field of the polynomial $x^{10}-1$, i.e. INSIDE E, we have $x^{10}-1=(x-\alpha)\left(x-\alpha^{2}\right) \ldots\left(x-\alpha^{n}\right)$. By class notes, we know $[E: Q]=\phi(10)=4$.
(ii) What are the roots of $\operatorname{Irr}(\alpha, Q)$? Then find $\operatorname{Irr}(\alpha, Q)$ written in the general form.

Solution: Let $k(x)=\operatorname{Irr}(\alpha, Q)$. Then $\operatorname{deg}(k(x))=\phi(10)=4$ and by class notes (last lecture), the roots of $k(x)$ are the α^{k} 's, where $\operatorname{gcd}(k, n)=1,1 \leq k<10$. Hence the roots are $a_{1}=\alpha, a_{2}=\alpha^{3}, a_{3}=\alpha^{7}$ and $a_{4}=\alpha^{9}$. Hence $k(x)=\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right)\left(x-a_{4}\right)$. Now how to find $k(x)$ written in the general form (note $\operatorname{deg}(k)=4$).
Note that $x^{10}-1=\left(x^{5}-1\right)\left(x^{5}+1\right)$. Let $h(x)=x^{5}+1$. Then it is clear that $h(\alpha)=\alpha^{5}+1=\left[e^{\frac{2 \pi i}{10}}\right]^{5}+1=$ $e^{\pi i}+1=-1+1=0$. Thus we know $k(x) \mid h(x)$. Now observe, we know $x^{5}+1=(x+1)\left(x^{4}-x^{3}+x^{2}-x+1\right)$. Let $d(x)=x^{4}-x^{3}+x^{2}-x+1$. Then $h(x)=x^{5}+1=(x+1) d(x)$. Since $h(\alpha)=0$, we conclude that $d(\alpha)=0$.
Since $\operatorname{deg}(d(x))=\operatorname{deg}(k(x))=4$ and $d(\alpha)=k(\alpha)=0$, by Question 1 we conclude that $k(x)=d(x)=$ $x^{4}-x^{3}+x^{2}-x+1$.
(iii) Find a basis, B, for E over Q. Then Write $w=\alpha^{7}+4 \alpha^{6}+7 \alpha^{5}$ in terms of the elements in the basis B.

Solution: Since $[E: Q]=4$, by class notes we know $B=\left\{1, \alpha, \alpha^{2}, \alpha^{3}\right\}$ is a basis of E over Q, i.e., if $b \in E$, then $b=a_{0}+a_{1} \alpha+a_{2} \alpha^{2}+a_{3} \alpha^{3}$ for some $a_{0}, \ldots, a_{3} \in Q$.
Now remember from the lecture, how we got the basis B : Let $k(x)=\operatorname{Irr}(\alpha, Q)$ as in (ii). Then $k(x)=$ $x^{4}-x^{3}+x^{2}-x+1$ and $M=(k(x))$ is a maximal ideal of $Q[X]$ and $L=Q[x] / M$ is a field. Then by mapping $x+M \rightarrow \alpha$, we concluded that L is field-isomorphic to E. Since $\left\{1+M, x+M, x^{2}+M, x^{3}+M\right\}$ is a basis for L over \mathbf{Q} and $x+M \rightarrow \alpha$, we conclude that $B=\left\{1, \alpha, \alpha^{2}, \alpha^{3}\right\}$ is a basis of E over Q. Hence if $a \in L$, then we know that $a=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+M$ and thus $a=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+M$ in \mathbf{L} $\leftrightarrow b=a_{0}+a_{1} \alpha+a_{2} \alpha^{2}+a_{3} \alpha^{3}$ in E. Hence $w=\alpha^{7}+4 \alpha^{6}+7 \alpha^{5}$ in $\mathbf{E} \leftrightarrow x^{7}+4 x^{6}+7 x^{5}+M$ in L. But we know how to find $x^{7}+4 x^{6}+7 x^{5}+M$ in L. Recall we divide $x^{7}+4 x^{6}+7 x^{5}$ by $k(x)=x^{4}-x^{3}+x^{2}-x+1$ (high school math (division a polynomial by another polynomial)) and you find the remainder $r(x)$. I did the calculation, I got $r(x)=-4 x-7$ (if I made a mistake, then just correct it, I do not need to know about it!). Hence $x^{7}+4 x^{6}+7 x^{5}+M=-4 x-7+M$ in L. Hence $w=\alpha^{7}+4 \alpha^{6}+7 \alpha^{5}=-4 \alpha-7$ in E (if this is not beautiful, then nothing is beautiful!). (see the below Question...to see more beauty)
(iv) Let $a \in E$. Find all possibilities of $\operatorname{deg}(\operatorname{Irr}(a, Q))$.

Solution: From class notes $\operatorname{deg}(\operatorname{Irr}(a, Q))$ is a factor of $[E: Q]$. Why? Let $a \in E$. Then $Q(a)$ is a field between Q and E. Hence $[E: Q]=[E: Q(a)][Q(a): Q]$ and we know that $[Q(a): Q]=\operatorname{deg}(\operatorname{Irr}(a, Q))$. Thus $\operatorname{deg}(\operatorname{Irr}(a, Q))$ is a factor of $4($ since $[E: Q]=4)$. $\operatorname{Thus} \operatorname{deg}(\operatorname{Irr}(\mathbf{a}, \mathbf{Q}))=\mathbf{1}$ or $\operatorname{deg}(\operatorname{Irr}(\mathbf{a}, \mathbf{Q}))=2$ or $\operatorname{deg}(\operatorname{Irr}(\mathbf{a}$, $\mathbf{Q}))=$ 4. Note that if $\operatorname{deg}((\operatorname{Irr}(\mathbf{a}, \mathbf{Q}))=\mathbf{1}$, then $a \in Q$ and $\operatorname{Irr}(a, Q)=x-a$.
(v) Is E a Galois extension field of Q ?

Solution: Yes. Why? because $[E: Q]$ is a finite number. Since E is the splitting field of $x^{10}-1$ (in particular, E is the splitting field of $k(x)=\operatorname{Irr}(\alpha, Q)=x^{4}-x^{3}+x^{2}-x+1$), then E is a normal EXTENSION of Q (remember that \mathbf{E} is a normal extension of \mathbf{Q} means that for each $a \in E, \operatorname{Irr}(a, Q)$ has all its roots inside E, i.e., $\operatorname{Irr}(a, Q)=\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{k}\right)$ for some k that is a factor of 4 (note that we just proved that if $a \nexists n Q)$, then $\operatorname{Irr}(a, Q)$ has degree 2 or 4 and thus it has 2 distinct roots or 4 distinct roots).
(vi) Find all elements of the Galois group $\operatorname{Aut}(E / Q)$. How many subgroups does $\operatorname{Aut}(E / Q)$ have? Find them all.

Solution: Since E is a Galois extension of Q, we know that $|A u t(E / Q)|=[E: Q]=4$. Since E is the 10th cyclotomic extension of Q, by class notes we know that $A u t(E / Q)$ is group-isomorphic to $U(10)$. Thus
$|A u t(E / Q)|=[E: Q]=|U(10)|=\phi(10)=4$. Now let $f \in A u t(E / Q)$. Then $f: E \rightarrow E$ is a field isomorphism such that $f(c)=c$ for every $c \in Q$ (i.e., \mathbf{f} is one to one, \mathbf{f} is onto, $\mathbf{f}(\mathbf{a}+\mathbf{b})=\mathbf{f}(\mathbf{a})+\mathbf{f}(\mathbf{b})$ and $\mathbf{f}(\mathbf{a b})=\mathbf{f}(\mathbf{a}) \mathbf{f}(\mathbf{b}))$.
To construct these function, observe that if $a \in E$ is a root of $\operatorname{Irr}(a, Q)$, then $f(a)$ must be a root of $\operatorname{Irr}(\mathbf{a}, \mathbf{Q})$ (Why? because \mathbf{f} is an isomorphism from E to E). Since each each element in E is a linear combination of 1 , α, α^{2}, α^{3}, we conclude that f can be determined completely if we know what $f(\alpha)$ maps to. For example if $f(\alpha)=b$, then $f\left(a_{0}+a_{1} \alpha+a_{2} \alpha^{2}+a_{3} \alpha^{3}\right)=a_{0}+a_{1} b+a_{2} b^{2}+a_{3} b^{3}$. Now what are the choices of $f(\alpha)$? Since f is an isomorphism from \mathbf{E} to $\mathbf{E}, f(\alpha)$ must be a root of $\operatorname{Ir} r(\alpha, Q)=k(x)=x^{4}-x^{3}+x^{2}-x+1$. Now we know what to do: From part II, the roots of of $k(x)$ are $\alpha, \alpha^{3}, \alpha^{7}, \alpha^{9}$.
Thus here are all elements of $\operatorname{Aut}(E / Q): f_{1}: E \rightarrow E$ such that $f(\alpha)=\alpha$ (identity map), $f_{2}: E \rightarrow E$ such that $f_{2}(\alpha)=\alpha^{3}, f_{3}: E \rightarrow E$ such that $f_{3}(\alpha)=\alpha^{5}$, and $f_{4}: E \rightarrow E$ such that $f_{4}(\alpha)=\alpha^{9}$. If you want, you can write $\alpha^{5}, \alpha^{7}, \alpha^{9}$ as linear combination of $1, \alpha, \alpha^{2}$, and α^{3} (as I did in part III, for example $\alpha^{5}=-1$), but here we do not need to. Now since $|A u t(E / Q)|=|U(8)|=4$ and $\mathbf{U}(10)$ is cyclic (Why? see class notes, 10 $=(2)(5)$), we know that the group $A u t(E / Q)$ is isomorphic to Z_{4}. Let us calculate the order of each element in $\operatorname{Aut}(\mathbf{E} / \mathbf{Q}) .\left|f_{1}\right|=1$ (note f_{1} is the identity map). $\left|f_{2}\right|=4$. Why? note that $A u t(E / Q)$ is a group under composition. Hence we need to find the smallest integer m such that $f_{2}^{m}=f_{2}$ o $f_{2} o \ldots$ o $f_{2}($ mtimes $)=f_{1}$. But here f_{2} is determined by $f_{2}(\alpha)=\alpha^{3}$. Thus we need to find m such that $\left[f_{2}(\alpha)\right]^{m}=\alpha$. Now $\left[f_{2}(\alpha)\right]^{2}=$ $f_{2}\left(f_{2}(\alpha)\right)=f_{2}\left(\alpha^{3}\right)=\left[f_{2}(\alpha)\right]^{3}=\left(\alpha^{3}\right)^{3}=\alpha^{9} \neq \alpha$. Since $\left|f_{2}\right| \neq 2$ and $\left|f_{2}\right|$ must be a factor of 4 (lagrange Theorem), we conclude that $\left|f_{2}\right|=4$. Important observation, in general, if $f(a)=c^{k}$ and the operation is composition, then $[f(a)]^{m}=(f$ oo...of $)(\alpha)($ mtimes $)=c^{k^{m}}$. So, to see that $\left[f_{2}(\alpha)\right]^{4}=\alpha$ (the identity map), $\left[f_{2}(\alpha)\right]^{4}=\alpha^{3^{4}}=\alpha^{81}$. From class notes, observe that the set of all roots of the polynomial $x^{10}-1$ under normal multiplication is a cyclic group and α generates such groups, i.e., $|\alpha|=10$. Hence $\alpha^{81}=\alpha^{80} \alpha$ and since $\alpha^{10}=1$, we conclude $\alpha^{80}=1$. Thus $\alpha^{81}=\alpha$.
Hence we have Exactly one subgroup of order $1, G_{1}=\left\{f_{1}\right\}$, we have EXACTLY one subgroup of order 2, $G_{2}=\left\{f_{1}, f_{4}\right\}$ (note that $\left[f_{4}(\alpha)\right]^{2}=\alpha^{9^{2}}=\alpha^{81}=\alpha$), and exactly one subgroup of order $\mathbf{4}, G_{3}=A u t(E / Q)=$ $\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}=<f_{2}>$.
(vii) Find all distinct fields between Q and E (including Q , and E). For each subfield L between Q and E find $[L: Q]$.

Solution: By last lecture, Galois Theorem tell us that number of all fields between Q and E (including Q and \mathbf{E}) is exactly the number of all subgroups of $A u t(E / Q)$ (including the identity map, and $A u t(E / Q)$). From Part VI, Aut(E/Q) has exactly 3 subgroups. Hence there are exactly 3 fields between Q and E (including Q and $E)$. Hence there is exactly one field L between Q and E such that $L \neq Q$ and $L \neq E$. So how to find L. Recall from last lecture, Galois Theorem tell us that each subgroup of Aut(E/Q) fix one and only one field between Q and E. What do we mean with 'fix one and only one field between Q and E ? here is the meaning (read it CAREFULLY): If G is a subgroup of $\operatorname{Aut}(E / Q)$, then there is a largest field, say L, between \mathbf{Q} and \mathbf{E} such that for every (read carefully for every) $f \in G$, we have $f(i)=i$ for every $i \in L$ and $|G|=|\operatorname{Aut}(E / L)|=[E: L]$.
So from part 1. \mathbf{Q} is the fixed field that corresponds to the group $G_{3}=\operatorname{Aut}(E / Q)=\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$. E is the fixed field that corresponds to the group $G_{1}=\left\{f_{1}\right\}=\operatorname{Aut}(E / E)$. Now we need to find a field \mathbf{L} that is fixed by $G_{2}=\left\{f_{1}, f_{4}\right\}$, i.e, we need to find the largest field L between Q and E such that for every $i \in L$, we have $f_{1}(i)=i$ and $f_{4}(i)=i$. Note that in our case, $L=Q(v)$ for some $v \in E-Q$. So how to find v. Here is a technique that work, here $f_{1}(\alpha)=\alpha$ and $f_{4}(\alpha)=\alpha^{9}$. Take $v=\alpha+\alpha^{9}$. Check that $v \notin Q$. HOW can I CHECK? write α^{9} in terms of $1, \alpha, \alpha^{2}$, and α^{3} as I did in part iii. My calculation, showed that $\alpha+\alpha^{9} \notin Q$. OBSERVE that $a_{3} \alpha^{3}+a_{2} \alpha^{2}+a_{1} \alpha+a_{0} \in Q$ for some $a_{3}, \ldots, a_{0} \in Q$ if and only if $a_{0} \in Q, a_{3}=a_{2}=a_{1}=0$. For if $a_{3} \alpha^{3}+a_{2} \alpha^{2}+a_{1} \alpha+a_{0}=a_{4} \in Q$, then consider the polynomial $f(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}-a_{4}$. Then $f(\alpha)=0$. Hence we know that $k(x)=x^{4}-x^{3}+x^{2}-x+1=\operatorname{Irr}(\alpha, Q)$ must divide $f(x)$, impossible since $\operatorname{deg}(k)=4$ and $\operatorname{deg}(f) \leq 3$. So let $v=\alpha+\alpha^{9}$. Then $f_{1}(v)=v$ and $f_{4}(v)=f_{4}\left(\alpha+\alpha^{9}\right)=f_{4}(\alpha)+f_{4}\left(\alpha^{9}\right)=\alpha^{9}+f_{4}(\alpha)^{9}=\alpha^{9}+\left(\alpha^{9}\right)^{9}=\alpha^{9}+\alpha^{81}=\alpha^{9}+\alpha=v$ (since $\alpha^{80}=1$). Thus G_{2} fixed the field $Q(v)$. We know by Galois Theorem that $\left|G_{2}\right|=[E: Q(v)]$. Since $\left|G_{2}\right|=2$, we have $[E: Q(v)]=2$. To find $[Q(v): Q]$. We know $[E: Q]=[E: Q(v)][Q(v): Q]$. Since $[E: Q]=4$ and $[E: Q(v)]=2$, we conclude that $[Q(v): Q]=2$. Thus note that $\operatorname{Irr}(v, Q)$ is a monic irreducible polynomial of degree 2 over \mathbf{Q}.

Fact 1. Assume that E is a Galois extension of Q and L is a field between Q and E. If L is not a normal extension of Q, then the group $\operatorname{Aut}(E / Q)$ is not abelian group! (waw waw!)

QUESTION 3. Let E be a splitting field of $f(x)=x^{7}-12$, by class notes $E=Q\left(a_{1}, \ldots, a_{7}\right)$ where a_{1}, \ldots, a_{7} are the roots of $f(x)$. Show that $\operatorname{Aut}(E / Q)$ is a non-abelian group.

Solution: We know every splitting field of a polynomial over Q is a Galois extension of Q. By Einstein result, let $p=3$, then $p \mid-12$ and $3^{2}=9 \nmid-12$. Thus $f(x)$ is IRREDUCIBLE. Clearly $a=\sqrt[7]{12}$ is a root of $f(x)$. Thus $L=Q(a)$ is a field between Q and E and $[L: Q]=7$. Clearly, $B=\left\{1, a, a^{2}, \ldots, a^{6}\right\}$ is a basis of L over Q. Hence all elements in L are real numbers and $i \notin L$. Since $f(x)$ has roots that are not real, $f(x)$ does not SPLIT completely inside L. Hence L is not a normal extension of Q. Thus by the FACT, Aut (E / Q) is not abelian.

QUESTION 4. Let $E=Q(\sqrt{2}, \sqrt[3]{2})$. Find $[E: Q]$. Prove that E is not a Galois extension of Q. Let $a \in E-Q$. Find all possibilities of degree $(\operatorname{Irr}(a, Q))$.

Solution: This is how you view E. Let $L=Q(\sqrt{2})$, and $H=Q(\sqrt[3]{2})$. Then $E=L(\sqrt[3]{2})=H(\sqrt{2})$.
Now, it is clear that $\operatorname{Irr}(\sqrt[3]{2}, Q)=x^{3}-2$ and $\operatorname{Irr}(\sqrt{2}, Q)=x^{2}-2$. Now $x^{3}-2$ has no roots in L. Thus $x^{3}-2$ stays irreducible over L, i.e., $\operatorname{Irr}(\sqrt[3]{2}, L)=x^{3}-2$ (note that $\operatorname{Irr}(\sqrt[3]{2}, L)=f(x)$ is the unique irreducible polynomial with coefficient from L such that $f(\sqrt[3]{2})=0)$. Thus $[E=L(\sqrt[3]{2}): L=Q(\sqrt{2})]=3$. It is clear that $[L=Q(\sqrt{2}): Q]=2$. Hence $[E: Q]=[E=L(\sqrt[3]{2}): L][L=Q(\sqrt{2}): Q]=(3)(2)=6$.

Also note that $[E: Q]=[E: H][H: Q]=(2)(3)=6$. We show that E over Q is not a normal Extension, and hence E is not a Galois Extension of Q. Choose $a=\sqrt[3]{2}$. Then $a \in E$. $\operatorname{Irr}(a, Q)=x^{3}-2$. Since all elements of E are real numbers and $x^{3}-2$ has 2 non-real roots, $x^{3}-2$ doest not SPLIT over E (i.e., $x^{3}-2$ cannot completely factored as product of linear factors over E, i.e, $x^{3}-2$ does not have all its roots inside E). Hence E over Q is not a normal Extension, and thus E is not a Galois extension of Q.

Now let $a \in E-Q$. Then we know $\operatorname{deg}(\operatorname{Irr}(a, Q))$ must be a factor of $[E: Q]=6$. Thus all possibilities of degree $(\operatorname{Irr}(a, Q))$ are $\mathbf{2 , 3 , 6}$.

Fact 2 (NICE!). Def: $F \subseteq E$ (of course F and E are fields) and $E=F(b)$ for some $b \in E$. Then we say E is a simple extension of F. Let $E=Q\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ such that $[E: Q]<\infty$. Then there exist $b \in E$ such that $E=Q(b)$. So, in general if E is a field extension of Q and $[E: Q]$ is finite number, then $E=Q(b)$ for some $b \in E$, i.e., E is a simple extension of Q.

QUESTION 5. Let E be the field in Question 4, i.e., $E=Q(\sqrt{2}, \sqrt[3]{2})$. By the fact above find $b \in E$ such that $E=Q(b)$. Then find $\operatorname{Ir}(b, Q)$.

Solution: You will like this technique!. Here is the idea, recall from basic linear algebra. If K is a subspace of \mathbf{V} and $\operatorname{dim}(\mathbf{V})=\operatorname{dim}(K)$, then $K=V$. Claim: $b=\sqrt{2}+\sqrt[3]{2}$. We show $E=Q(b)$. Since $b \in E, Q(b)$ is a subspace of E. If we show that $[Q(b): Q]=6=[E: Q]$, then $E=Q(b)$. Here is the Technique! we find $f(x)=\operatorname{Irr}(b, Q)$ by "back ward" method.

Set (*)

$$
x=\sqrt{2}+\sqrt[3]{2}
$$

Use minimum calculations on $(*)$ in order to eliminate all radical. Then we get a polynomial with coefficients in Q. This polynomial will be $\operatorname{Irr}(b, Q)$. ONE WAY :

$$
\begin{gathered}
x-\sqrt{2}=\sqrt[3]{2} \\
(x-\sqrt{2})^{3}=2 \\
x^{3}-3 \sqrt{2} x^{2}+6 x-\sqrt{8}=2
\end{gathered}
$$

Now move all radicals to the right side

$$
\begin{gathered}
x^{3}+6 x-2=3 \sqrt{2} x^{2}+\sqrt{8} \\
\left(x^{3}+6 x-2\right)^{2}=\left(3 \sqrt{2} x^{2}+\sqrt{8}\right)^{2}=18 x^{4}+24 x^{2}+8
\end{gathered}
$$

Thus all radicals are eliminated. Now we move the right side to the left, then we get our $f(x)=\operatorname{Irr}(b, Q)$ of degree 6 such that $f(b)=0$.

$$
\operatorname{Irr}(b, Q)=f(x)=\left(x^{3}+6 x-2\right)^{2}-18 x^{4}-24 x^{2}-8 \in Q[x]
$$

If you want you can simplify $f(x)$ but here there is no need. It is clear that $\operatorname{deg}(f)=6$ and $f(b)=0$. Thus $[Q(b): Q]=6$.

Since $[E: Q]=[Q(b): Q]=6$ and $Q(b)$ 'lives'" inside E, we conclude that $E=Q(b)$.
QUESTION 6. Let $a=\sqrt{3}$ and $b=\sqrt{7}$ and $E=Q(a, b)$. Show that $Q(a, b)$ is a Galois extension of Q. Find all subgroups of $\operatorname{Aut}(E / Q)$. For each subgroup H of $\operatorname{Aut}(E / Q)$, find the field that is fixed by H.

Solution: Recall from last lecture if $E=Q\left(a_{1}, a_{2}, . ., a_{k}\right)$ such that for every $i, 1 \leq i \leq k, \operatorname{Irr}\left(a_{i}, Q\right)$ has all its roots in \mathbf{E} (i.e., $\operatorname{Irr}\left(a_{i}, Q\right)$ splits in E), then E is a Galois extension of Q. Clearly, $f_{a}(x)=\operatorname{Irr}(a, Q)=x^{2}-3$ and $f_{b}(x)=\operatorname{Irr}(b, Q)=x^{2}-7$. Both polynomials split in E. Thus E is a Galois extension of Q. By similar argument as in Question 4, $[E: Q]=4$. Hence $A u t(E / Q)$ is a group with 4 elements. We know that every group with p^{2} elements for some prime p is abelian. As I stated in Question 2 (vi, and vii). If d is a root of a polynomial $k(x)$ and $f \in A u t(E / Q)$, then $f(d)$ must be a root of $k(x)$. Now $a=\sqrt{3},-a=-\sqrt{3}$ are the roots of $f_{a}(x)=x^{2}-3, b=\sqrt{7}$, -b $=-\sqrt{7}$ are the roots of $f_{b}(x)=x^{2}-7$. Hence we can now state all elements of $\operatorname{Aut}(E / Q)$ (note again that if $h \in A u t(E / Q)$ then h is a field-isomorphism from E ONTO E such that $h(c)=c$ for every $c \in Q$.)

So let $f_{1}, f_{2}, f_{3}, f_{4}: E \rightarrow E$ be field isomorphisms (note all of them determined by mapping a root of $f_{a}(x)$ to a root of $f_{a}(x)$ and a root of $f_{b}(x)$ to a root of $f_{b}(x)$. Hence
$f_{1}(d)=d$ for every $d \in E$ (the identity map), $f_{2}(a)=-a$ and $f_{2}(b)=b$ (note that $a=\sqrt{3}$ and $b=\sqrt{7}$), $f_{3}(a)=a$ and $f_{3}(b)=-b, f_{4}(a)=-a$ and $f_{4}(b)=-b$. Now since $|A u t(E / Q)|=4$. Hence $\left.\mid f_{i}\right) \mid=2 o r 4, i \neq 1$.

Note $\left|f_{1}\right|=1\left(f_{1}\right.$ is the identity map). It is clear that $\left[f_{i}(a)\right]^{2}=f_{i}\left(f_{i}(a)\right)=a$ and $\left[f_{i}(b)\right]^{2}=f_{i}\left(f_{i}(b)\right)=b$ for every $2 \leq i \leq 4$. Thus $\left|f_{i}\right|=2$ for every $2 \leq i \leq 4$. Hence $\operatorname{Aut}(E / Q)$ is isomorphic to $Z_{2} \times Z_{2}$. Thus we have exactly 5 subgroups of $\operatorname{Aut}(E / Q)$ (including $\left\{f_{1}\right\}$ and $\operatorname{Aut}(E / Q)$. The subgroups are

1) $G_{1}=\left\{f_{1}\right\}$ and the corresponding fixed field is E since $f_{1}(d)=d$ for every $d \in E$ and $|A u t(E / E)|=\left|G_{1}\right|=1$.
2) $G_{2}=\left\{f_{1}, f_{2}\right\}$ and the corresponding fixed field is $Q(b)$ since $b \notin Q$ and $f_{2}(b)=b$ and $|A u t(E / Q(b))|=$ $\left|G_{2}\right|=2=[E: Q(b)]$.
3) $G_{3}=\left\{f_{1}, f_{3}\right\}$ and the corresponding fixed field is $Q(a)$ since $a \notin Q$ and $f_{3}(a)=a$ and $|A u t(E / Q(a))|=$ $\left|G_{3}\right|=2=[E: Q(a)]$.
4) $G_{4}=\left\{f_{1}, f_{4}\right\}$ and the corresponding fixed field is $Q(a b)=Q(\sqrt{6})$ WHY? since $f_{4}(a)=-a$ and $f_{4}(b)=-b$, we have $f_{4}(a b)=f_{4}(a) f_{4}(b)=(-a)(-b)=a b$ and $|A u t(E / Q(a b))|=\left|G_{4}\right|=2=[E: Q(a b)]$.
5) $G_{5}=\operatorname{Aut}(E / Q)=\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$ and the corresponding fixed field is Q and $|A u t(E / Q)|=\left|G_{5}\right|=4=[E$: $Q]$.

THUS ALL fields between Q and E are $Q, Q(b), Q(a), Q(a b), E=Q(a, b)$.
QUESTION 7. Let $E=Q(\sqrt{5}, \sqrt{6})$. Find $b \in E$ such that $Q(b)=E$. Find $\operatorname{Irr}(b, Q)$.
Solution : By the methods as in Question 4, and 5. We conclude that $[E: Q]=4$. (Note that $\operatorname{Irr}(\sqrt{5}, Q)=x^{2}-5$ and $\left.\operatorname{Irr}(\sqrt{6}, Q)=x^{2}-6\right)$.

We claim : $b=\sqrt{5}+\sqrt{6}$
So let

$$
\begin{gathered}
x=\sqrt{5}+\sqrt{7} \\
x^{2}=12+2 \sqrt{5} \sqrt{7} \\
\left(x^{2}-12\right)^{2}=(2 \sqrt{5} \sqrt{7})^{2}=140
\end{gathered}
$$

$f(x)=\operatorname{Irr}(b, Q)=\left(x^{2}-12\right)^{2}-140$ is an Irreducible monic polynomial of degree 4 such that $f(b)=0$. Hence $[E: Q]=[Q(b): Q]=4$ and $Q(b)=E$.

I end this section with the following amazing result.
QUESTION 8. (nice Question). Prove that if $f(x)$ is a polynomial of degree $n \geq 1$ in $R[x]$ (the polynomial ring with REAL coefficient, then $f(x)=u a_{1}(x) a_{2}(x) \ldots a_{k}(x)$ where u is a nonzero number in R and each $a_{i}(x)$ is a monic irreducible polynomial of degree 1 or 2 (not necessarily that the $a_{i}(x)$'s are distinct)

Solution: Since R is a field, we know $R[x]$ is a UFD (Unique factorization domain). Hence we know that $f(x)=u a_{1}(x) a_{2}(x) \ldots a_{k}(x)$ where u is a nonzero number in R and each $a_{i}(x)$ is a monic irreducible polynomial (not necessarily the $a_{i}(x)$'s are distinct). The only thing we need to prove that each $a_{i}(x)$ is of degree 1 or 2 . Now $f(x)=x^{2}+1$ is an irreducible polynomial over R and hence $M=(f(x))$ is a maximal ideal of $R[x]$. Thus $R[x] / M$ is a field. Note that $E=R[X] / M=\{a+b x+M \mid a, b \in R\}$ and $[E: R]=2$ and $E=\operatorname{span}\{1+M, x+M\}$ over R. Since i is a root of the irreducible polynomial $f(x)$, we know that E is field-isomorphic to $R(i)$ by mapping $x+M$ to i. Hence $R(i)$ is a field and $[R(i): R]=2$. Thus $R(i)=\operatorname{span}\{1, i\}$ over R. Hence $R(i)=\{a+b i \mid a, b \in R\}=C$ (the set of all complex numbers). Since $R(i)=C$ and $[R(i): R]=2$, we have $[C: R]=2$. Let $a \in C$. Then the degree of $\operatorname{Irr}(a, R)$ must be a factor of $[C: R]=2$. Hence for every $a \in C$, the degree of $\operatorname{Irr}(a, R)$ is either 1 or 2 , i.e, $R[x]$ has no IRREDUCIBLE polynomials of degree ≥ 3. Thus each $a_{i}(x)$ is a monic irreducible polynomial of degree 1 or 2. Done

2 FINITE FIELDS, fields of characteristic \boldsymbol{p}

Fact 3. (i) Every finite field, say F, has exactly p^{n} elements for some prime integer p and a positive integer n and $Z_{p} \subseteq F$. Furthermore, if F_{1}, F_{2} are fields with same number of elements, then F_{1}, F_{2} are isomorphic as FIELD. (Class notes)
(ii) Let F be a finite field with p^{n} elements. Then $\left(F^{*},.\right)$ is a cyclic group with $p^{n}-1$ elements. Hence $x^{p^{n}}=x$ for every $x \in F$ (i.e., $x^{p^{n}}-x=0$ for every $x \in F$) (class notes)
(iii) Let F be a finite field with p^{n} elements and $m \mid n$. Then F has a UNIQUE subfield with p^{m} elements. Furthermore if H is a subfield of F with p^{m} elements, then $m \mid n$ (note that $\left[F: Z_{p}\right]=[F: H]\left[H: Z_{p}\right]$) (class notes)
(iv) Let F be a finite field with p^{n} elements. Let $f(x)$ be an IRREDUCIBLE monic polynomial of degree n in $Z_{p}[x]$, then F is field-isomorphic to $Z_{p}[x] /(f(x))$ (class notes).
(v) Let F be a field with p^{n} elements, $a \in F$. Then a is a root of an IRREDUCIBLE monic polynomial $f(y)$ in $Z_{p}[y]$ of degree m such that $m \mid n$. Furthermore, let H be the unique subfield of F with p^{m} elements, then $f(y)$ splits completely inside H (i.e., $f(y)$ has all its roots (exactly m distinct roots)) and the roots of $f(y)$ are $a, a^{p}, a^{p^{2}}, \ldots, a^{p^{m-1}}$. Also note that $H=Z_{p}(a)=\operatorname{span}\left\{1, a, a^{2}, \ldots, a^{m-1}\right\}$ over Z_{p}.
(vi) Let $f(y)$ be an irreducible monic polynomial over Z_{p} of degree m. Then $f(y)$ splits completely inside a field with p^{m} elements.
(vii) (in view of the above). Let $f(y)$ be an irreducible monic polynomial over Z_{p} of degree m . Then the splitting field of Then $f(y)$ splits completely inside a field with p^{m} elements.
(viii) Let F be a finite field with p^{n} elements. Then F is a Galois extension of Z_{p}. Furthermore, $A u t\left(F / Z_{p}\right)$ is a cyclic group with n elements. Hence $\left|A u t\left(F / Z_{p}\right)\right|=n, \operatorname{Aut}\left(F / Z_{p}\right)$ is group-isomorphic to Z_{n}, and $\left|\operatorname{Aut}\left(F / Z_{p}\right)\right|=n=$ $\left[F: Z_{p}\right]$. [$\operatorname{Aut}\left(F / Z_{p}\right)$ is cyclic, it is trivial, since F has unique subfields of particular order and each subgroup of Aut $\left(F / Z_{p}\right)$ FIXED a unique subfield of $F!!$)
(ix) THIS RESULT is clear and true for any field F (finite or not). Assume that S_{1} be the set of all roots of an IRREDUCIBLE monic polynomial $f(x)$, and S_{2} be the set of all roots of an IRREDUCIBLE monic polynomial $h(x)$. If $h(x) \neq f(x)$, then $S_{1} \cap S_{2}=\emptyset$
(x) (Freshman Dream, class notes). Let F be a finite field with p^{n} elements. Then for every integer $k \geq 1$ and for every $a, b \in F,(a+b)^{p^{k}}=a^{p^{k}}+b^{p^{k}}$

QUESTION 9. Let P_{3} be the set of all distinct irreducible monic polynomial of degree 5 over Z_{3}. Find $\left|P_{3}\right|$ (i.e., HOW MANY MONIC IRREDUCIBLE POLYNOMIALS of degree 5 in $Z_{p}[y]$ are there?)

Solution: Let $f(y) \in P_{3}$. By Fact(vi), $f(y)$ has all its roots (exactly 5 distinct roots) inside a field F with 3^{5} elements. Let $a \in F$. Then by fact $(\mathbf{v}) a$ is a root of a unique monic irreducible polynomial in $Z_{3}[y]$ of degree m such that $m \mid 5$. Hence Each element in F is a root of an Irreducible polynomial of degree 1 or 5 in $Z_{3}[y]$. But $Z_{3}[y]$ has exactly 3 irreducible monic polynomials of degree 1 (namely, $\mathbf{y}, \mathbf{y}+1, \mathbf{y}+2$). Thus each element in $F-Z_{3}$ is a root of an irreducible monic polynomial of degree 5 in $Z_{3}[y]$. Now $\left|F-Z_{3}\right|=3^{5}-3$. By Fact (ix) two distinct polynomials in P_{3} have no COMMON root (also note that each polynomial in P_{3} has exactly 5 distinct roots in $F-Z_{3}$). Hence $\left|P_{3}\right|=\frac{3^{5}-3}{5}$. (nice!)

QUESTION 10. Let P_{6} be the set of all distinct irreducible monic polynomial of degree 6 over Z_{2}. Find $\left|P_{6}\right|$
Solution: Again, let $f(y) \in P_{6}$. By Fact(vi), $f(y)$ has all its roots (exactly 6 distinct roots) inside a field F with 2^{6} elements. Let $a \in F$. Then by fact (\mathbf{v}) a is a root of a unique monic irreducible polynomial in $Z_{2}[y]$ of degree m such that $m \mid 6$. Hence Each element in F is a root of an Irreducible polynomial of degree 1 or 2 or 3 or 6 in $Z_{2}[y]$. Thus let P_{1} be the set of all distinct irreducible monic polynomial of degree 1 over Z_{2}, let P_{2} be the set of all distinct irreducible monic polynomial of degree 2 over Z_{2}, let P_{3} be the set of all distinct irreducible monic polynomial of degree 3 over Z_{2}, H_{2} be the unique subfield of F with 2^{2} elements, and H_{3} is the unique subfield of F with 2^{3} elements. Now by fact (v) each polynomial in P_{2} has all its roots (exactly 2 distinct roots) in the subfield H_{2} of F and each polynomial in P_{3} has all its roots in the subfield H_{3} of F. Thus each element in $D=F-\left(H_{3} \cup H_{2}\right)$ is a root of an irreducible monic polynomial of degree 6 in $Z_{2}[y]$ (note that Z_{2} is inside every finite finite with 2^{n} elements, thus if $a \in D$, then $d \notin Z_{2}$, in fact $\left.H_{3} \cap H_{2}=Z_{2}\right)$. Now we calculate $\mid F-\left(H_{3} \cup H_{2} \mid\right.$. First $\left|H_{2} \cup H_{3}\right|=\left|H_{2}\right|+\left|H_{3}\right|-\left|H_{2} \cap H_{3}\right|=2^{3}+2^{2}-2=10$. Thus $\left|F-\left(H_{3} \cup H_{2}\right)\right|=2^{6}-10=54$. By Fact (ix) two distinct polynomials in P_{6} have no COMMON root (also note that each polynomial in P_{6} has exactly 6 distinct roots in $F-\left(H_{2} \cup H_{3}\right)$). Hence $\left|P_{6}\right|=54 / 6=9$ (nice!)

QUESTION 11. Let $f(y)=y^{3}+y+1 \in Z_{2}[y]$. Show that $f(y)$ is irreducible over Z_{2}. Find a splitting field of $f(y)$ and write it as a product of linear factors.

Solution: Since $\operatorname{deg}(f)=3$, to show that $f(y)$ is irreducible, it suffices to show that $f(y)$ has no roots in Z_{2}. Thus since $f(0) \neq 0$ and $f(1) \neq 0, f(y)$ is irreducible over Z_{2}. We know that the splitting field of $f(y)$ is a field with 2^{3} elements. Now $M=(f(x))=\left(x^{3}+x+1\right)$ is a maximal ideal of $Z_{2}[x]$ and $F=Z_{2}[x] / M$ is a field with 2^{3} elements and $F=\operatorname{span}\left\{1+M, x+M, x^{2}+M\right\}$ over Z_{2}. Now we "view" $f(y)$ inside $F[y]$ as $f_{2}(y)=(1+M) y^{3}+(1+M) y+(1+M)$ (class notes). We know (class notes) that $x+M$ is a root of $f_{2}(y)$. Hence by Fact (v), $a_{1}=x+M, a_{2}=x^{2}+M$, and $a_{3}=x^{4}+M$ are all the roots of $f_{2}(y)$ inside F. Note that if you want then you reduce $x^{4}+M$ to $a_{0}+a_{1} x+a_{2} x^{2}+M$ (by dividing x^{4} by $x^{3}+x+1$ and taking the remainder). Thus $f_{2}(y)=\left((1+M) y-a_{1}\right)\left((1+M) y-a_{2}\right)\left((1+M) y-a_{3}\right)$.

QUESTION 12. Let F be a field with 5^{6} elements. Find all elements of $A u t\left(F / Z_{5}\right)$. Find all subgroups of $A u t\left(F / Z_{5}\right)$. For each subgroup H of $\operatorname{Aut}\left(F / Z_{5}\right)$ find the corresponding field inside F that is FIXED by H

Solution: First $\left|A u t\left(F / Z_{5}\right)\right|=\left[F: Z_{5}\right]=6$ and $\operatorname{Aut}\left(F / Z_{5}\right)$ is cyclic with 6 elements (isomorphic to Z_{6}) (see Fact (viii)). We know that $(F, *)$ is a cyclic group with $5^{6}-1$. Thus $\left(F^{*},.\right)=<a_{1}>$ for some $a_{1} \in F$ such that $\left|a_{1}\right|_{x}=5^{6}-1$. Let $f(y)$ be a monic irreducible polynomial over Z_{5} such that $f\left(a_{1}\right)=0$. Then it is clear that $\operatorname{deg}(f)=6$. Then $f(y)$ has all its roots inside F. Say $a_{1} \in F$ is a root of $f(y)$. Then we know that all roots of $f(y)$ are $a_{1}, a_{1}^{5^{2}}, a_{1}^{5^{3}}, a_{1} 5^{4}, a_{1} 5^{5}$ by Fact (v). Let $f \in A u t\left(F / Z_{5}\right)$ (i.e., f is a field-isomorphism from F ONTO \mathbf{F} and it fixes Z_{p}, i.e., $\mathbf{f}(\mathbf{a})=\mathbf{a}$ for every $a \in Z_{p}$). Also note that $F=\operatorname{span}\left\{1, a_{1}, a^{2}, a^{3}, a^{4}, a^{5}\right\}$ over Z_{5}. Then as I discussed in Question 2(vi) f can be determined by mapping a root of $f(y)$ to a root of $f(y)$. Hence let $f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}: F \rightarrow F$ be field-isomorphism that fixed Z_{p}. Then the elements of $\operatorname{Aut}\left(F / Z_{5}\right)$ are:
$f_{1}(b)=b$ for every $b \in F$ (the identity map), $f_{2}\left(a_{1}\right)=a_{1}^{5}, f_{3}\left(a_{1}\right)=a_{1}^{5^{2}}, f_{4}\left(a_{1}\right)=a_{1}^{5^{3}}, f_{5}\left(a_{1}\right)=a_{1}^{5^{4}}$ and $f_{6}\left(a_{1}\right)=a_{1}^{5^{5}}$. We know $\operatorname{Aut}\left(F / Z_{5}\right)$ is cyclic. Hence we will find a generator, i.e., at least one of the f_{i} has order 6 (under composition). Now f_{2} (i.e., $f_{2}\left(a_{1}\right)=a_{1}^{p}$) is always such generator. Note that $\left|a_{1}\right|=5^{6}-1$. and $a_{1}^{5^{6}}=a_{1}$ and 6 is the least positive integer such that $a_{1} 5^{6}=a_{1}$. Hence clearly that f_{2} is a generator of $\operatorname{Aut}\left(F / Z_{5}\right)$. For $\left[f_{2}\left(a_{1}\right)\right]^{6}$ (composition $f_{2} 6$ times) $=a_{1}^{5^{6}}=a_{1}$. Thus $\operatorname{Aut}\left(F / Z_{5}\right)=<f_{2}>$. Since $\operatorname{Aut}\left(F / Z_{5}\right)$ is cyclic with 6 elements, $\operatorname{Aut}\left(F / Z_{5}\right)$ has exactly one cyclic subgroup of order $\mathbf{1 , 2 , 3}, \mathbf{6}$. Since $\left|f_{2}\right|=6$. Then we know $\left|\left[f_{2}\right]^{2}\right|=\left|f_{3}\right|=$
$6 / \operatorname{gcd}(2,6)=3,\left|\left[f_{2}\right]^{3}\right|=\left|f_{4}\right|=6 / \operatorname{gcd}(3,6)=2,\left|\left[f_{2}\right]^{4}\right|=\left|f_{5}\right|=6 / \operatorname{gcd}(4,6)=3,\left|\left[f_{2}\right]^{5}\right|=6 / \operatorname{gcd}(5,6)=6$. Let H_{2}, H_{3} be the unique cyclic subgroups of $\operatorname{Aut}\left(F / Z_{5}\right)$ of order 2 and 3 respectively. Then $H_{2}=\left\{f_{1}, f_{4}\right\}$ and $H_{3}=\left\{f_{1}, f_{3}, f_{5}\right\}$. Thus here are the subgroups:

1) $H_{1}=\left\{f_{1}\right\}$ and the corresponding fixed field is E since $f_{1}(d)=d$ for every $d \in E$ and $|A u t(E / E)|=\left|G_{1}\right|=1$.
2) $H_{2}=\left\{f_{1}, f_{4}\right\}$. Let K_{1} be the field inside F that is fixed by each function in H_{2}. We know by Galois Theorem, $\left[F: K_{1}\right]=\left|H_{2}\right|=2$. Since $\left[F: Z_{5}\right]=\left[F: K_{1}\right]\left[K_{1}: Z_{5}\right]$, we have $6=2\left[K_{1}: Z_{5}\right]$ Thus $\left[K_{1}: Z_{5}\right]=3$. Hence K_{1} is the unique subfield of F with 5^{3} elements.
3) $H_{3}=\left\{f_{1}, f_{3}, f_{5}\right\}$. Let K_{2} be the field inside F that is fixed by each function in H_{3}. We know by Galois Theorem, $\left[F: K_{2}\right]=\left|H_{3}\right|=3$. Since $\left[F: Z_{5}\right]=\left[F: K_{2}\right]\left[K_{2}: Z_{5}\right]$, we have $6=3\left[K_{2}: Z_{5}\right]$ Thus $\left[K_{1}: Z_{5}\right]=2$. Hence K_{2} is the unique subfield of F with 5^{2} elements.
4) $H_{4}=\operatorname{Aut}\left(F / Z_{5}\right)=<f_{2}>=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}\right\}$ and Z_{5} is the fixed field by each element in H_{4}.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com
${ }_{2.2}$ Worked out Solutions for all Assessment Tools

2.2.1 Solution for Exam One

EXAM I , MTH 532, Spring 2020

Ayman Badawi

QUESTION 1. Given D is a group with 48 elements. Assume that D has an element $a \in C(D)$ such that $|a|=16$. Prove that D is cyclic.

Solution

By Sylow's Theorems, we must have a subgroup H with 3 elements. Let $h \in H-e$. Then $|h|=3$. Since $a \in C(D), \mathbf{a}^{*} \mathbf{h}=\mathbf{h}^{*} \mathbf{a}$. Since $a * h=h * a$ and $\operatorname{gcd}(|a|,|h|)=\operatorname{gcd}(16,3)=1$, by a HW problem we conclude that $|b=a * h|=(16)(3)=48$. Then $D==<a * h>$. So $D \approx Z_{48}$.

QUESTION 2. Does $U(54)$ have an element of order 18? If yes, how many elements of order 18 does $\mathbf{U}(54)$ have?

Solution

$54=(2)\left(3^{3}\right)$. Hence $\phi(54)=(2)(9)$. By a HW problem $U(54) \approx Z_{2} \oplus Z_{9} \approx Z_{18}($ since $g c d(2,9)=1)$.
By class notes Z_{18} has exactly $\phi(18)=6$ distinct generators. Since $U(54) \approx Z_{18}$, we conclude that $U(54)$ has exactly 6 elements of order 18.

QUESTION 3. Let $f:\left(Z_{18},+\right) \rightarrow(U(50),$.$) be a group homomorphism such that f(1) \neq 1$. Find $f(0)$. Find $\operatorname{Ker}(f)$. Solution
Note that $\mathbf{0}$ is the identity of Z_{18} and $\mathbf{1}$ is the identity of $\mathbf{U (5 0)}\left(U(50)=\left\{a \in Z_{50} \mid \operatorname{gcd}(a, 50)=1\right\}\right.$ is group under multiplication). Since f is a group homomorphism, we know $f(0)=1$.

We know $Z_{18} / \operatorname{Ker}(f) \approx \operatorname{Range}(f)<U(50)$. Now we know by HW problem that $U(50) \approx Z_{20}$.
Thus $Z_{18} / \operatorname{Ker}(f) \approx$ to a subgroup of Z_{20}. Thus $m=\left|z_{18} / \operatorname{ker} f\right|=\left|Z_{18}\right| /|\operatorname{Ker}(f)|$ must be a factor of $\mathbf{1 8}$ and m must be a factor of 20 . Hence $m=1$ or $m=2$.

If $m=1$, then $\operatorname{Ker}(f)=Z_{18}$ and hence $f(a)=1$ for every $a \in Z_{18}$, a contradiction since $f(1) \neq 1$. Thus $m=$ 2.
$\mathbf{m}=\mathbf{2}$ implies $2=\left|Z_{18}\right| /|\operatorname{Ker}(f)|=18 /|\operatorname{Ker}(f)|$. Thus $|\operatorname{Ker}(f)|=9$. Since Z_{18} is cyclic, Z_{18} has unique subgroup with 9 elements. Thus $\operatorname{Ker}(f)=\{0,2,4,6,8,10,12,14,16\}=<2>$.

QUESTION 4. Let D be a group with 100 elements. Assume that D has a subgroup H with 20 elements such that $H \subseteq C(D)$. Prove that D is an abelian group.

Solution

We know $C(D)$ is a normal subgroup of D. Let $m=|C(D)|$. We know that $m \mid 100$. Since $\mathbf{C}(\mathbf{D})$ is a group (subgroup of \mathbf{D}) and H is a subgroup of D that lives inside $C(D)$, we conclude that H is a subgroup of $C(D)$. Thus 20 lm . Since $20 \mid m$ and $m \mid 100$, we conclude that $m=20$ or $m=100$. Assume $m=20$. Then D/C(D) is a cyclic group (since $|D / C(D)|=5$). Hence D must be abelian by class notes, and thus $C(D)=D$ and $m=100$ a contradiction. Hence $m \neq 20$. Thus $m=100$, and therefore $C(D)=D$. Hence \mathbf{D} is abelian.

QUESTION 5. (i) EXTRA CREDIT, but you need it to solve (ii). Let D be a finite group and H be a subgroup of D such that $[D: H]=m$ for some integer m (note that $[D: H]=|D| /|H|=$ number of all distinct left cosets of H). Prove that there is a group homomorphism, say f, from D into S_{m} such $\operatorname{Ker}(f) \subseteq H$.

Solution

Let $L=\left\{H, a_{2} * H, \ldots, a_{m} * H\right\}$ be the set of all distinct left cosets of H.
Now define $f: D \rightarrow S_{m}$ such that $f(a)=\left(\begin{array}{cccc}H & a_{2} * H & \ldots & a_{m} * H \\ a * H & a * a_{2} * H & \ldots & a * a_{m} * H\end{array}\right)$ for every $a \in D$.
It is clear that $f(a)$ is a bijective function for every $a \in D$ and thus $f(a) \in S_{m}$ for every $a \in D$.
It is trivial to check that $f(a * b)=f(a) o f(b)$ for every $a, b \in D$. Thus f is a group homomorphism.
Let $w \in \operatorname{Ker}(f)$. Then $f(w)=\left(\begin{array}{cccc}H & a_{2} * H & \ldots & a_{m} * H \\ w * H & w * a_{2} * H & \ldots & w * a_{m} * H\end{array}\right)=\left(\begin{array}{ccc}H & a_{2} * H & \ldots \\ H & a_{m} * H & a_{m} * \\ H & a_{2} * H & a_{m} * H\end{array}\right)$. Thus $w * H=H$ and hence $w \in H$. Thus $\operatorname{Ker}(f) \subseteq H$. Note that $\operatorname{ker}(f)=H$ only if H is a normal subgroup of D. Thus by the first isomorphism theorem, we conclude that $D / \operatorname{Ker}(f) \approx$ to a subgroup of S_{m}.
(ii) Let D be a finite simple group. Assume that H, K are subgroups of D such that $[D: H]=p_{1}$ and $[D: K]=p_{2}$ for some prime integers p_{1}, p_{2}. Prove that $p_{1}=p_{2}$. (nice result!)

Solution

Let $n=|D|$. First note that p_{1}, p_{2} are prime factors of $|D|$ (i.e., $p_{1} \mid n$ and $p_{2} \mid n$).
Case 1. Assume $p_{2}>p_{1}$. By part (i), there is a group homomorphism, say f, from D into $S_{p_{1}}$ such $\operatorname{Ker}(f) \subseteq$ H. Thus $D / \operatorname{ker}(f) \approx$ to a subgroup of $S_{p_{1}}$. Since $H \neq D$ and $\operatorname{ker}(f) \subseteq H$, we conclude that $\operatorname{Ker}(f) \neq D$. Since D is simple and $\operatorname{Ker}(f) \neq D$, we conclude that $\operatorname{ker}(f)=\{e\}$ and hence $D \approx$ to a subgroup of $S_{p_{1}}$.

Note that $\left|S_{p_{1}}\right|=p_{1}$!. Thus $n \mid p_{1}!$. Since $p_{2} \mid n$ and $n \mid p_{1}$!, we conclude that $p_{2} \mid p_{1}$!, which is impossible since p_{2} is PRIME and $p_{2}>p_{1}$ (i.e., p_{2} is not a PRIME factor of $p_{1}!$). Thus $p_{2} \nsupseteq p_{1}$ •
Case 2. Assume $p_{1}>p_{2}$. By similar argument as in case 1. By part (i), there is a group homomorphism, say f, from D into $S_{p_{2}}$ such $K e r(f) \subseteq K$. Thus $D / \operatorname{ker}(f) \approx$ to a subgroup of $S_{p_{2}}$. Since $K \neq D$ and $k e r(f) \subseteq K$, we conclude that $\operatorname{Ker}(f) \neq D$. Since D is simple and $\operatorname{Ker}(f) \neq D$, we conclude that $\operatorname{ker}(f)=\{e\}$ and hence $D \approx$ to a subgroup of $S_{p_{2}}$. Note that $\left|S_{p_{2}}\right|=p_{2}!$. Thus $n \mid p_{2}!$. Since $p_{1} \mid n$ and $n \mid p_{2}!$, we conclude that $p_{1} \mid p_{2}!$, which is impossible since p_{1} is PRIME and $p_{1}>p_{2}$ (i.e., p_{1} is not a PRIME factor of p_{2} !). Thus $p_{1} \nsupseteq p_{2}$.
Since $p_{2} \nsupseteq p_{1}$ and $p_{1} \nsupseteq p_{2}$, we conclude that $p_{1}=p_{2}$.
QUESTION 6. Let D be a group with p^{m} elements, where p is a prime integer and $m \geq 2$. Prove that D has a normal subgroup with p^{m-1} elements. [Hint : Show that D must have a subgroup H with p^{m-1} elements by class note result (which result?). Then use class - lecture (result) to show that H is normal in H (which result?)].

Solution

By Sylow's Theorems (lecture) D has a subgroup with p^{i} elements for every $1 \leq i \leq m$. Hence D has a subgroup H with p^{m-1} elements. Since $[D: H]=p$ is the smallest prime factor of $|D|$, by class notes we conclude that H is a normal subgroup of D.

QUESTION 7. Let D be a group with $\left(5^{2}\right)\left(7^{2}\right)$ elements. Prove that D is an abelian group. Find all non-isomorphic groups with $\left(5^{2}\right)\left(7^{2}\right)$ elements?

Solution

By Sylow's Theorems, since $n_{7}=1$, we conclude that D has a normal subgroup H with 7^{2} elements. Also, since $n_{5}=1$, we conclude that D has a normal subgroup K with 5^{2} elements. Since $H \cap K=\{e\}$ and $D=H * K$, by a HW problem we conclude that $D \approx H \oplus K$. Since $|H|=7^{2}$, we know (class notes) that H is abelian and thus $H \approx Z_{49}$ or $H \approx Z_{7} \oplus Z_{7}$. Since $|K|=5^{2}$, we know (class notes) that K is abelian and thus $K \approx Z_{25}$ or $K \approx Z_{5} \oplus Z_{5}$. Thus D is isomorphic to one and only one of the following groups:
$Z_{49} \oplus Z_{25} \approx Z_{(49)(25)}$ is cyclic $\mathbf{O R}$
$Z_{49} \oplus Z_{5} \oplus Z_{5}$ OR
$Z_{7} \oplus Z_{7} \oplus Z_{25}$ OR
$Z_{7} \oplus Z_{7} \oplus Z_{5} \oplus Z_{5}$.
QUESTION 8. Let $a=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right) o\left(\begin{array}{lll}1 & 3 & 4\end{array}\right) \in S_{6}$. Is $a \in A_{6}$? Find $|a|$.

Solution

$a=(25) o(34)$ is a product of 2 2-cycles. Hence $a \in A_{6}$. We know $|a|=L C M[2,2]=2$.
QUESTION 9. Let D be a group with 105 elements $(105=(3)(5)(7))$.
(i) Prove that D is not simple. [Hint: Assume D is simple. How many elements of orders 7, 5, 3 does D have? is this possible?

Solution

Assume that $n_{7} \neq 1$ and $n_{5} \neq 1$. Hence we conclude that $n_{7}=15$ and $n_{5}=21$. Thus by a HW problem, D has exactly $(15)(6)=90$ elements of order 7 and D has exactly $(21)(4)=84$ elements of order 5. Thus D must have at least $90+\mathbf{8 4}=\mathbf{1 7 4}$ elements, which is impossible since $|D|=105$. Hence $n_{7}=1$ or $n_{5}=1$. Thus D has a normal subgroup with 7 elements or a normal subgroup with 5 elements. Thus D is not simple
(ii) Assume that $n_{7}=1$ (i.e., D has exactly one sylow-7-subgroup). Prove that D has a normal cyclic subgroup with 35 elements [hint: Use a result from HW, use a result from class notes! and of course sylow's theorems] .

Solution

Since $n_{7}=1$, we conclude that D has a normal subgroup H with 7 elements. Also, we know that D has a subgroup K with 5 elements. By a HW problem $F=H * K$ is a subgroup of D. Since $H \cap K=\{e\}$, we conclude that $|F|=|H||K|=35$. Since $[D: F]=3$ and 3 is the smallest prime factor of $|D|$, by class notes we know that $F=H * K$ is a normal subgroup of D.
Now $|F|=(5)(7)$ and F is a group (subgroup of D), so we can apply sylow's Theorems on F. It is clear that $n_{7}=1$ and $n_{5}=1$. Hence H, K are normal subgroups of F. Since $H \cap K=\{e\}$, by a HW problem we know $F \approx H \oplus K \approx Z_{7} \oplus Z_{5} \approx Z_{35}$. Hence F is cyclic. Thus F is a cyclic normal subgroup of D.

Submit your solution by 3 pm (as at most), March 28, 2020 .

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

Solution EXAM II , MTH 532, Spring 2020

Ayman Badawi

QUESTION 1. (i) (3 points) Let A be a commutative ring with 1 and B be a commutative ring (B may not have " 1 "). Assume $f: A \rightarrow B$ is a ring-homomorphism. Prove that $f(1) \in \operatorname{Id}(B)$ (i.e., show that $f(1)$ is an idempotent element of B).
Proof. Since f is a ring-homomorphism, we have $f(1)=f\left(1 \cdot{ }_{A} 1\right)=f(1) \cdot{ }_{B} f(1)=f(1)^{2}$. Thus $f(1) \in I d(B)$.
(ii) (3 points) Let A be a commutative ring with 1 and $B=2 Z$ (B is the set of all even integers). Assume $f: A \rightarrow B$ is a ring-homomorphism. Prove that $f(a)=0$ for every $a \in A$.
Proof. By part (i), $f(1)$ must be idempotent element of $B=2 Z$. Now $\operatorname{Id}(B)=\{0\}$. Thus $f(1)=0$. Hence $f(a)=f\left(a \cdot{ }_{A} 1\right)=f(a) \cdot{ }_{B} f(1)=f(a) \cdot{ }_{B} 0=0$ for every $a \in A$.
(iii) (3 points) Let A, B be fields and $f: A \rightarrow B$ is a ring-homomorphism such that $f(a) \neq 0$ for some $a \in A$. Prove that f is injective (i.e., prove that f is one-to-one).
Proof. By part (i), $f\left(1_{A}\right)$ must be idempotent element of B. Since B is a field, it is clear that $I d(B)=\left\{0_{B}, 1_{B}\right\}$. Hence $f\left(1_{A}\right)=0_{B}$ or $f\left(1_{A}\right)=1_{B}$. Assume $f\left(1_{A}\right)=0$. Then $f(a)=f\left(a \cdot{ }_{A} 1_{A}\right)=f(a) \cdot B f(1)=f(a) \cdot a 0_{B}=0$, a contradiction since $f(a) \neq 0_{B}$. Thus $f\left(1_{A}\right)=1_{B}$. We know $\operatorname{Ker}(f)$ is an ideal of A. Since A is a field and $\operatorname{Ker}(\mathbf{f})$ is an ideal of A, we conclude that $\operatorname{Ker}(f)=A$ or $\operatorname{Ker}(f)=\left\{0_{A}\right\}$. If $\operatorname{Ker}(f)=A$, then $f(b)=0_{B}$ for every $b \in A$, which is a contradiction since $f\left(1_{A}\right)=1_{B}$. Hence $\operatorname{Ker}(f)=\left\{0_{A}\right\}$. Now assume that $f(b)=f(c)$ for some $b, c \in A$. Thus $f(b)+_{B}-f(c)=0_{B}$. Since f is a ring-homomorphism, $f\left(b+_{A}-c\right)=0_{B}$. Since $\operatorname{Ker}(f)=\left\{0_{A}\right\}$, we conclude that $b+_{A}-c=0_{A}$. Thus $b=c$.
(iv) (3 points) Let $f: Z_{6} \rightarrow Z_{9}$ be a ring-homomorphism. Prove that $f(a)=0$ for every $a \in Z_{6}$.

Proof. Again by part (i), $f(1)$ must be idempotent element of Z_{9}. By investigation, $I d\left(Z_{9}\right)=\{0,1\}$. Hence $f(1)=0$ or $f(1)=1$. Assume $f(1)=0$. Then $f(a)=f(a .1)=f(a) \cdot f(1)=f(a) .0=0$ for every $a \in Z_{6}$ and we are done. Hence assume that $f(1)=1$. We know that $f(0)=0$. Hence for every $n \in Z_{6}$, $0<n \leq 5$, we have $f(n)=f(1+\ldots+1$ (n times)) $=f(1)+f(1)+\ldots+f(1)$ (n times) $=n$ (since $9>6$). Thus Range $(f)=\{0,1,2,3,4,5\}$ is a subring of Z_{9}. In particular, Range (f) is a subgroup of Z_{9} UNDER ADDITION. Thus \mid Range $(f) \mid$ must be a factor of 9 (Lagrange Theorem for groups), which is impossible since \mid Range $(f) \mid=6$ and 6 is not a factor of 9. Thus $f(1) \neq 1$, and hence $f(1)=0$. Therefore $f(a)=0$ for every $a \in Z_{6}$.
(v) EXTRA (example where $f(1) \neq 0$ and $f(1) \neq 1$) Let $f: Z_{6} \rightarrow Z_{10}$ be a ring-homomorphism such that $f(a) \neq 0$ for some $a \in Z_{6}$. Find Range f and $\operatorname{Ker}(f)$.
Again by part (i), $f(1)$ must be idempotent element of Z_{10}. By investigation, $I d\left(Z_{10}\right)=\{0,1,6,5\}$. Assume that $f(1)=0$. Hence as before, we conclude that $f(b)=0$ for every $b \in Z_{6}$, which is a contradiction since $f(a) \neq 0$ for some $a \in Z_{6}$. Also as before $f(1) \neq 1$. For if $f(1)=1$, then $\operatorname{Range}(f)=\{0,1,2,3,4,5\}$, which impossible since 6 is not a factor of 10 . Assume that $f(1)=6$. Then by calculation, Range $(f)=\{0,6,2,4\}$. Again, it is impossible since $|\operatorname{Range}(f)|=4$ and 4 is not a factor of $\mathbf{1 0}$. Now assume that $f(1)=5$. Then, by calculation, we conclude that f is a ring-homomorphism, $\operatorname{Range}(f)=\{0,5\}$ and $\operatorname{Ker}(f)=\{0,2,4\}$.

QUESTION 2. (5 points) Let A be a commutative ring with 1 and let I be a proper ideal of A that is not a maximal ideal of A. Hence, we know that $I \subset M$ for some maximal ideal M of A. Let $a \in M-I$. Prove that $a+I$ is not an invertible element of the ring A / I (i.e., show that $a+I \notin U(A / I)$).

Proof First, M is not UNIQUE. Maybe there are infinitely many maximal ideals of A. All of you assumed that M is unique (i.e., M is the only maximal ideal of A) and hence I has to be the maximal ideal M. Note that if you prove that for every nonzero element $a \in A-I$, we have $a+I$ is an invertible element of A / I, then you can conclude that I is a maximal ideal of A.

So, let $a \in M-I$ (note I am not taking $a \in A-I!$) and assume that $a+I$ is invertible in A / I. Thus $a+I . b+I=a b+I=1+I$ for some $b \in A$. Hence $1-a b \in I$. Thus $1-a b=i \in I$, and hence $1=a b+i$. Since $a \in M$ and M is an ideal of A and $a \in M$, we conclude that $a b \in M$. Since $I \subset M$, we have $i \in M$. Since $a b \in M$ and $i \in M, 1=a b+i \in M$, which is impossible since M is a proper ideal of $A(M \cap U(A)=\emptyset)$ (note by definition a maximal ideal is a proper ideal). Thus $a+I$ is not an invertible element of A / I.

QUESTION 3. (5 points) Let A be a finite commutative ring with 1 and $a \in A$. Suppose that $a \notin Z(A)$. Prove that $a \in U(A)$.

Proof. Since A is a finite commutative ring with 1 , we may assume that $A=\left\{0,1, a_{3}, \ldots, a_{n}\right\}$. Let $a \in A-Z(A)$. Since A is finite, there exist positive integers $m>k$ such $a^{m}=a^{k}$. Thus by distributive law, $a^{m}=a^{k}$ implies $a^{k}\left(a^{m-k}-1\right)=0$. Since $a \notin Z(A)$, it is clear that $a^{f} \notin Z(A)$ for every positive integer $f \geq 1$. Thus $a^{k}\left(a^{m-k}-1\right)=0$ implies $a^{m-k}-1=0$. Thus $a^{m-k}=1$. Hence $a \in U(A)$. [THIS is a nice result, so now you have this FACT (add
to your dictionary): If A be a finite commutative ring with 1 and $a \in A$, then EITHER $a \in Z(A)$ OR $a \in U(A)$, A is finite is very CRUCIAL. For let $A=Z$ (A is infinite). Let $a \in A-\{0,1,-1\}$. Then NEITHER $a \in Z(A)$ NOR $a \in U(A)$]

QUESTION 4. (5 points) Let A be a commutative ring with 1 and $f(X) \in A[X]$ such that $f(X) \neq 0$ and $f(X) \in$ $Z(A[X])$. For every $n \geq 1$, prove that there exists a polynomial $k(X) \in A[X]$ of degree n such that $k(X) f(X)=0$.

Proof. By Class notes (I-Learn), there exists a nonzero element $b \in Z(A)$ such that $b f(X)=0$. Let $n \geq 1$ and $k(X)=b X^{n}$. Then $\operatorname{deg}(k(X))=n$ and by normal multiplications of polynomials, we have $k(X) f(X)=$ $b X^{n} f(X)=0($ since $b f(X)=0)$.

QUESTION 5. (5 points) Let A be a commutative ring with 1 and I be a prime ideal of A. Prove that $N i l(A) \subseteq I$.
Proof. Since I is prime, we know that A / I is an integral domain. Hence $Z(A / I)=\{0+I\}$. Also note that for any ring $B, \operatorname{Nil}(B) \subseteq Z(B)$. Hence let $a \in N i l(A)$. Then $a^{n}=0$ for some integer $n \geq 1$. Hence $(a+I)^{n}=a^{n}+I=0+I$. Thus $a+I \in \operatorname{Nil}(A / I)$. Since $Z(A / I)=\operatorname{Nil}(A / I)=\{0+I\}$ and $a+I \in N i l(A / I)$, we conclude that $a+I=0+I$. Hence $a \in I$. Thus $\operatorname{Nil}(A) \subseteq I$.
another Proof. Let $a \in \operatorname{Nil}(A)$. Hence $a^{n}=0 \in I$ for some integer $n \geq 2$. Hence $a^{n}=a . a^{n-1}=0 \in I$. Thus $a^{n}=a . a^{n-1}=0 \in I$. Since I is prime, $a \in I$ or $a^{n-1} \in I$. If $a \in I$, then we are done. Hence assume that $a^{n-1} \in I$ and $n \geq 3$. Since I is prime and $a^{n-1}=a \cdot a^{n-2} \in I$, again we conclude that $a \in I$ or $a^{n-2} \in I$. By repeating as before, we conclude that $a^{2} \in I$. Since $a^{2}=a . a \in I$ and I is prime, we conclude that $a \in I$.

QUESTION 6. (i) ($\mathbf{3}$ points) Let $A=Z_{4} \oplus Z_{6}$. Find all prime ideals of A.
See class notes: $2 Z_{4} \oplus Z_{6}, Z_{4} \oplus 2 Z_{6}, Z_{4} \oplus 3 Z_{6}$.
(ii) (3 points). Let $A=Z_{12} \oplus Z_{8}$. Find $\operatorname{Nil(}(A)$.

Note $\operatorname{Nil}(\mathbf{A})$ subset of $Z_{12} \oplus Z_{8}$, i.e., each element in $\operatorname{Nil}(\mathbf{A})$ has the form (\mathbf{a}, \mathbf{b}), where $a \in N i l\left(Z_{12}\right)$ and $b \in \operatorname{Nil}\left(Z_{8}\right)$. By notes, $\operatorname{Nil}\left(Z_{12}\right)=6 Z_{12}=\{0,6\}$ and $\operatorname{Nil}\left(Z_{8}\right)=2 Z_{8}=\{0,2,4,6\}$. Hence $|\operatorname{Nil}(A)|=2.4=8$ and $\operatorname{Nil}(A)=\{(0,0),(0,2),(0,4),(0,6),(6,0),(6,2),(6,4),(6,6)\}$.
(iii) (3 points) Let $B=\left[\begin{array}{ll}2 & 4 \\ 2 & 2\end{array}\right]$. Is B invertible over Z_{9} ? If yes, then find B^{-1}. If No, then explain.

Yes since $|B|=-4=5 \in Z_{9}$ and $5 \in U\left(Z_{9}\right)(g c d(5,9)=1)$. Since $1 / 5$ in Z_{9} is $5^{-1} .1=2.1=2$, by class notes $B^{-1}=2\left[\begin{array}{cc}2 & -4 \\ -2 & 2\end{array}\right]=2\left[\begin{array}{ll}2 & 5 \\ 7 & 2\end{array}\right]=\left[\begin{array}{ll}4 & 1 \\ 5 & 4\end{array}\right]$.
(iv) (3 points) Let $A=Z_{10}[X]$ and $f(X)=2 X^{3}+5 X+4 \in A$. Is $f(X) \in Z(A)$?
$Z(A)=\{0,2,4,5,6,8\}$. By investigation, $b f(X) \neq 0$ for every nonzero $b \in Z(A)$. Hence, the answer is NO
(v) (3 points) Give me an example of a commutative ring A with 1 such that $\operatorname{Char}(A)=5$ and $Z(A) \neq\{0\}$. $A=Z_{5} \oplus Z_{5} . C h a r(A)=L C M(|1|,|1|)=5$. Since $(1,0)(0,1)=(0,0)$, we conclude that $Z(A) \neq\{(0,0)\}$.
(vi) (3 points) Let $A=Z_{18}[X]$ and $f(X)=6 X^{2}+12 X+17 \in A$. Is there a polynomial $k(X) \in A$ such that $k(X) f(X)=1$? If yes, then explain (you do not need to find $k(X)$). If no, then tell me why not.
Since the coefficients of X^{2}, X in $N i l\left(Z_{18}\right)$ and $17 \in U\left(Z_{18}\right)$, by class notes $f(X) \in U(A)$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

Final Exam, MTH 532, Spring 2020

Ayman Badawi

QUESTION 1. Let F be a finite field with 2^{12} elements.
(i) (3 points) Let $a \in F$. Then a is a root of an irreducible monic polynomial of degree m over Z_{2} Find all possibilities of m.

Solution: $m \mid 12$ implies $m=1,2,3,4,6,12$
(ii) (3 points) We know that $\left(F^{*},.\right)$ is a cyclic group and hence $\left(F^{*},.\right)=<a>$ for some $a \in F^{*}$. Prove that the degree of $\operatorname{Irr}\left(a, Z_{2}\right)=12$? (i.e., prove that the degree of the unique irreducible monic plolynomial over Z_{2} that has a as a root is 12)
Solution: Assume degree $\operatorname{Irr}\left(a, Z_{2}\right)=m$. Then we know $\left[Z_{2}(a): Z_{2}\right]=m$. Thus $Z_{2}(a)$ is a subfield of F with 2^{m}. Since $|a|_{x}=2^{12}-1$, we conclude that $m=12$
(iii) (3 points) We know $\left|F^{*}\right|=2^{12}-1=4095$. Since $819 \mid 4095$, then we know that F^{*} has a unique cyclic subgroup, say $H=$ for some $b \in F^{*}$ with 819 elements. What is the degree of $\operatorname{Irr}\left(b, Z_{2}\right)$? justify your answer
Solution: Assume degree $\operatorname{Ir}\left(b, Z_{2}\right)=m$. Then we know $\left[Z_{2}(a): Z_{2}\right]=m$. Thus $Z_{2}(b)$ is a subfield of F with 2^{m}. Since $|a|_{x}=809$, we conclude that $m \neq 1,2,3,4,6$ (since $809>2^{m}, m=1, m=2, m=3, m=4, m=6$). Thus $m=12$
(iv) (4 points) Let P_{12} be the set of all irreducible monic polynomials of degree 12 over Z_{2}. Find $\left|P_{12}\right|$. Show the work.

Solution: Since $1|6,2| 6,3 \mid 6$, and $6 \mid 6$. Every monic irreducible polynomial over Z_{2} of degree 1 or 2 or 3 or 6 has all its roots in the subfield H of F with 2^{6} elements. Hence for every $a \in W=F-H$, degree $\left(\operatorname{Irr}\left(a, Z_{2}\right)\right)$ is 4 or 12. Thus $|W=F-H|=2^{12}-2^{6}$. Hence
Let K be the subfield of F with 2^{4} elements and L be the subfield of F with 2^{2} elements. Thus each element in $X=K-L$ is a root of an irreducible monic polynomial over Z_{2} of degree 4. Thus $|X=K-L|=2^{4}-2^{2}$.
Hence each element in $W-X$ is a root of an irreducible monic polynomial over Z_{2} of degree 12.
Thus $\left|P_{12}\right|=|W-X| / 12=\left(2^{12}-2^{6}-2^{4}+2^{2}\right) / 12=335$
(v) ($\mathbf{8}$ points) Find all elements of the Galois group $\operatorname{Aut}\left(F / Z_{2}\right)$. For each subgroup H of $\operatorname{Aut}\left(F / Z_{2}\right)$ find the corresponding subfield of F, say L_{H}, that is fixed by H.
Solution: We know $F^{*}=<a>$ and $a, a^{2}, a^{2^{2}}, \ldots, a^{2^{11}}$ are the roots of $\operatorname{Irr}\left(a, Z_{2}\right)$ and $\operatorname{Aut}\left(F / Z_{2}\right)=\left[F: Z_{2}\right]=$ 12. Let $f_{i}: F \rightarrow F$ such that $f_{i}(a)=a^{2^{i}}$ (note f_{0} is the identity map). Hence $\operatorname{Aut}\left(F / Z_{2}\right)=\left\{f_{0}, f_{1}, \ldots, f_{11}\right\}$ is a cyclic group with 12 elements and it is clear that $\operatorname{Aut}\left(F / Z_{2}\right)=<f_{1}>$. For each $m \mid 12 \operatorname{Aut}\left(F / Z_{2}\right)$ has exactly one subgroup (cyclic) of order m.
For $m=1, G_{1}=\left\{f_{0}\right\}$ and F is the fixed field by G_{1}
For $m=2, G_{2}=\left\{f_{0}, f_{6}\right\}$ and the unique subfield H_{2} with 2^{6} elements is fixed by G_{2} (note that $\left[F: Z_{2}\right]=[F$: $\left.H_{2}\right]\left[H_{2}: Z_{2}\right]$ and since $\left[F: H_{2}\right]=12$ and $\left[F: H_{2}\right]=\left|G_{2}\right|=2$, we conclude $\left[H_{2}: Z_{2}\right]=6$)
For $m=3, G_{3}=\left\{f_{0}, f_{4}, f_{8}\right\}$ and the unique subfield H_{3} with 2^{4} elements is fixed by G_{3}.
For $m=4, G_{4}=\left\{f_{0}, f_{3}, f_{6}, f_{9}\right\}$ and the unique subfield H_{4} with 2^{3} elements is fixed by G_{4}
For $m=6, G_{6}=\left\{f_{0}, f_{2}, f_{4}, f_{6}, f_{8}, f_{10}\right\}$ and the subfield H_{6} with 2^{2} elements is fixed by G_{6}.
For $m=12, G_{12}=\operatorname{Aut}\left(F / Z_{2}\right)$ and Z_{2} is the unique subfield fixed by G_{12}.
QUESTION 2. Let E be the 5th cyclotomic extension field of Q
(i) (2 points) $E=Q(a)$ for some $a \in C$ (C is the ring (field) of all complex numbers). Find a.
$a=e^{2 i \pi / 5}=\cos (2 \pi / 5)+\sin (2 \pi / 5) i$
(ii) (6 points)Let a as in (i), find $\operatorname{Irr}(a, Q)$, find $[E: Q]$, and find all roots of $\operatorname{Irr}(a, Q)$ inside E. Is $A u t(E / Q)$ a cyclic group under composition? how many elements does $\operatorname{Aut}(E / Q)$ have?
We know $[E: Q]=\phi(5)=4=\operatorname{degree}(\operatorname{Irr}(a, Q))$. It is clear that $x^{5}-1=(x-1)\left(x^{4}+x^{3}+x^{2}+x+1\right)$ and hence $\operatorname{Irr}(a, Q)=f_{a}(x)=x^{4}+x^{3}+x^{2}+x+1$. Also, we know a, a^{2}, a^{3}, a^{4} are the roots of $f_{a}(x)$ (since for every $i, 1 \leq i<5$, we have $g c d(i, 5)=1$ and thus $\left|a^{i}\right|=5$ for every $1 \leq i<5$). We know $\operatorname{Aut}(E / Q)$ is group-isomorphic to $U(5)$ and since $U(5)$ is cyclic, we conclude that $A u t(E / Q)$ is a cyclic group with 4 elements.
(iii) (2 points) Find a basis B (in terms of a) of E over Q.

Solution: Since $[Q(a): Q]=4$, we know $E=Q(a)=\operatorname{span}\left\{1, a, a^{2}, a^{3}\right\}$ over Q.
(iv) (2 points) write $a^{6}+a^{5}+a^{4}$ as a linear combination of the elements in the basis B (B is as in iii).

Solution: We know $a^{6}+a^{5}+a^{4}$ in $E \leftrightarrow x^{6}+x^{5}+x^{4}+\left(f_{a}(x)\right)$ in $Q[x] /\left(f_{a}(x)\right)$. Now dividing $x^{6}+x^{5}+x^{4}$ by $f_{a}(x)$ and taking the remainder, we conclude $x^{6}+x^{5}+x^{4}+\left(f_{a}(x)\right)=-x^{3}-x^{2}+\left(f_{a}(x)\right)$ in $Q[x] /\left(f_{a}(x)\right)$. Thus $a^{6}+a^{5}+a^{4}=-a^{3}-a^{2}$
(v) (4 points) For each subgroup of $A u t(E / Q)$ with 2 elements, say H, find the corresponding subfield of E, say L_{H}, that is fixed by H.
Solution: Since $A u t(E / Q)$ is a cyclic group with 4 elements $A u t(E / Q)$ has exactly one subgroup with 2 elements, say H. Let I be the identity map on E and $f_{4}: E \rightarrow E$ such that $f_{4}(a)=a^{4}$. Then $H=\left\{I, f_{4}\right\}$ is the unique subgroup of $A u t(E / Q)$ with 2 elements. Since $a+a^{4} \notin Q$ and $f_{4}\left(a+a^{4}\right)=f_{4}(a)+f_{4}\left(a^{4}\right)=a^{4}+a$, we conclude that $Q\left(a+a^{4}\right)$ is the subfield of E that is fixed by H.
QUESTION 3. Let $E=Q(\sqrt{5}, \sqrt{7})$.
(i) (3 points). We know that $E=Q(a)$ for some $a \in R$. Find $\operatorname{Irr}(a, Q)$ (i.e., find the unique irreducible monic polynomial over Q that has a as a root. What is $[E: Q]$?
Solution: We know $a=\sqrt{5}+\sqrt{7}$.
$x=\sqrt{5}+\sqrt{7} \rightarrow x^{2}=12+2 \sqrt{35} \rightarrow\left(x^{2}-12\right)^{2}=140$. Hence $\operatorname{Irr}(a, Q)=\left(x^{2}-12\right)^{2}-140=x^{4}-24 x^{2}+4$. Thus $[Q(a): Q]=4$.
(ii) (3 points) It is clear that $L=Q(\sqrt{35})$ is a subfield of E. Find the subgroup, say H, of $\operatorname{Aut}(E / Q)$ that fixes the field L.
Solution: Since Let I be the identity map on $E=Q(a)$ and $f: E \rightarrow E$ such that $f(\sqrt{5})=-\sqrt{5}$ and $f(\sqrt{7})=-\sqrt{7}$. It is clear that $H=\{I, f\}$ is the subgroup that fixed the field $L=Q(\sqrt{35})$.
(iii) (3 points) Is the field $Q(\sqrt{5})$ isomorphic to the field $Q(\sqrt{7})$? If yes, then construct such ring-isomorphism (fieldisomorphism)? If no, then explain briefly why not?
Solution: No. Why? Assume that $f: Q(\sqrt{5}) \rightarrow Q(\sqrt{7})$ is a ring-isomorphism. First we know that $f(q)=q$ for every $q \in Q$. Hence $f\left(\right.$ a root of $\left.x^{2}-5\right)$ must map to a root of $x^{2}-5$. Thus $f(\sqrt{5})$ must be $\sqrt{5}$ or $-\sqrt{5}$. But neither $\sqrt{5}$ nor $-\sqrt{5}$ is in $Q(\sqrt{7})$. Thus such f does not exist.
QUESTION 4. (3 points) Let E be the splitting field of the polynomial $f(x)=x^{7}-18$. We know that E is a Galois Extension of Q. Prove that $\operatorname{Aut}(E / Q)$ is a non-abelian group.

Solution: We know that $f(x)$ is irreducible over Q by Einstein's Result. Thus $[E=Q(\sqrt[7]{18}): Q]=7$. It is clear that $E \subset R$ and $\sqrt[7]{18}$ is the only real root of $f(x)$. Hence $f(x)$ does not split in E. Since E is not a normal extension of Q, we know by a class result that $\operatorname{Aut}(E / Q)$ must be a non-abelian group.
QUESTION 5. (i) (2 points) Give me an example of an integral domain that is not a UFD (Unique Factorization Domain).
Let $A=Z+x^{2} Z[x]$. Then x^{2} is an irreducible element of A (note $x \notin A$), but x^{2} is not a prime element of A since $x^{2} \mid x^{3}$. x^{3} but $x^{2} \nmid x^{3}$ in A. Thus A can not be a UFD (in a UFD every irreducible element is prime).
(ii) (2 points) Give me an example of a Unique Factorization Domain that is not a principal ideal domain.

Solution: We know that $Z[x]$ is a UFD, but the ideal $(x, 2)$ of $Z[x]$ is not a principal ideal
(iii) (4 points) Let A be a principal ideal domain. Prove that every prime ideal of A is a maximal ideal of A.[Hint: Every proper ideal is a principal ideal, and every proper ideal is contained in a maximal ideal].
Solution: Let I be a proper ideal of A. We know $I=(a)=a A$ for some prime element a of A. Thus I is contained in a maximal ideal M. Since every maximal ideal is prime, we conclude that $M=(x)$ for some prime element x of A. Since $I \subseteq M$, we conclude that $a=u x$ for some $u \in A$. Since A is a UFD, we know that an element, say b, in A is prime if and only if b is irreducible. Hence a is a irreducible element A. Since a is irreducible and $a=u x$, by definition of irreducible elements, we conclude that $u \in U(A)$ or $x \in U(A)$. Since $M=(x), x \notin U(A)$. Hence $u \in U(A)$. Thus $u^{-1} a=x$. Thus $x \in(a)$, and hence $(x) \subseteq(a)$. Since $(a) \subseteq(x)$ and $(x) \subseteq(a)$, we conclude that $M=(x)=(a)=I$. Thus I is a maximal ideal of A.
(iv) (4 points) Let A be a commutative ring with 1 . Suppose that A has exactly one maximal ideal. Prove that $I d(A)=$ $\{0,1\}$. [Hint: note if $x \notin U(A)$, then the ideal $(x)=x A$ is a proper ideal of A].
Solution: Let M be the maximal ideal of A. Assume there is $e \in I d(A)$ such that $e \neq 0,1$. Hence we know that $1-e \in I d(A)$. Since (e) and ($1-\mathbf{e}$) are proper ideals of A and M is the only maximal ideal of A, we conclude that the ideals (e) and $(1-e)$ 'live" inside M. In particular, $e, 1-e \in M$. Hence $e+1-e=1 \in M$, which is impossible since M is a proper ideal of A. Thus $i d(A)=\{0,1\}$.
(v) (4 points) Let A be an integral domain, P be a prime ideal of A, and I be a proper ideal of A such that $I \cap P=\{0\}$. Prove that there exists a prime ideal F of A such that $I \subseteq F$ and $F \cap P=\{0\}$ [Hint: Let $W=P-0$, note $I \cap W=\emptyset]$ Solution: Let $W=P-\{0\}$. Since A is an integral domain, W is a multiplicative subset of A (i.e., W is a multiplicatively closed subset of A). Since $W \cap I=\emptyset$, we know by a class result, there is a prime ideal F of A that contains I and $F \cap W=\emptyset$. Hence $F \cap P=\{0\}$

QUESTION 6. (4 points). Let F be a group with 12 elements. Prove that F must have a normal subgroup with 3 elements OR F must have a normal subgroup with 4 elements.

Solution : $|F|=12=3.2^{2}$. We know to show that $n_{3}=1$ or $n_{2}=1$. Deny. Then $n_{3}=4$ and $n_{2}=3$. Now $n_{3}=4$ implies that F has exactly 8 elements of order 3. Since $|F|=12$, there is a room for one and only one subgroup with 4 elements, a contradiction. Thus $n_{3}=1$ or $n_{2}=1$. Hence F must have a normal subgroup with 3 elements OR F must have a normal subgroup with 4 elements.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

2.2.4 Solution for HW-ONE

```
                                    - Amani Ali Algamez
                            - good 87115
(i) Let \(\mathcal{F}\) be a group and \(a \in \notin\). Given \(|a|=m<\infty\). Show that
    \(D=\left\{a, a^{2}, a^{3}, \ldots, a^{m}\right\}\) is a subgroup of with m elements.
    \(|a|=m \longrightarrow a^{m}=e\)
    let \(a^{k}, a^{n} \in D\) where \(n, k \in \mathbb{Z}\), want: \(a^{k+h} \in D\)
    - If \(0 \leqslant k+h \leqslant m\) then \(a^{k+h} \in D, \sin \varphi a^{0}=a^{m}=e \in D\)
    - If \(k+h>m\), by division algorithem \(\exists q \& r\) s.t
    \(k+h=q m+r\) where \(0 \leqslant r<m\)
    now
                        \(a^{k+n}=a^{q m+r}\)
            \(=a^{q m} a^{r}\)
            \(=a^{m q} a^{r}\)
            \(=e^{a} a^{r}\)
            \(=a^{r}\) since \(r<m\) then \(a^{r} \in D\), (note
            Hence \(\begin{array}{r}a^{k+h} \in D \text { and } D \text { is closed } \quad \begin{array}{r}a^{\theta}=a^{m}=e \\ \in D J\end{array}\end{array}\)
(ii) Let \(D\) be a group and \(a \in D\). Given \(|a|=m<\infty\). Assume that \(a^{n}=e\) Prove that \(m 1 n\).
\[
|a|=m \rightarrow a^{m}=e, \text { want }: m / n
\]
\[
\text { By division algorithem } \exists q \times r \text { st }
\]
\[
n=q^{m}+r \text { where } 0 \leqslant r<m
\]
\[
\text { given } e=a^{n}
\]
\[
=a^{q m+r}
\]
\[
\begin{aligned}
& =\left(a^{m}\right)^{2} a^{r}
\end{aligned}
\]
\[
=e^{q} a^{r}
\]
\[
=a^{r}
\]
\[
\begin{aligned}
& \text { since } m \text { is the smallest integer st } a^{m}=e \text { \& } r<m \text { then } r=0
\end{aligned}
\]
\[
\rightarrow n=q m+0 \rightarrow n=q m \rightarrow m / n
\]
(iii) Let \(D\) be a group and \(a \in D\). Given \(|a|=m<\infty\). Let \(b \in D\) such that \(b=a^{k}\) where \(\operatorname{gcd}(k, m)=1\). Prove that \(|b|=m\).
\[
\begin{aligned}
& |a|=m \rightarrow a^{m}=c \\
& b=a^{k} \\
& \operatorname{gcd}(k, m)=1 \quad, \quad \text { want: }|b|=m \rightarrow b^{m}=\left(a^{k}\right)^{m}=e
\end{aligned}
\]

Let \(b^{h}=e\) for some \(h \in \mathbb{R}\), want to show \(h=m\)
\[
\begin{array}{rlrl}
\text { Let } b^{h} & =e \text { for (some } h \in \mathbb{Z}) \text {, want to show } h=m \\
e=b^{h} & =\left(a^{k}\right)^{h} \\
& =a^{k h} \\
& =a^{h k} \\
& =\left(e^{h}\right)^{k} & \text { Assume }
\end{array}
\]
\[
=e
\]
now \(a^{m}=c=a^{h k}\)
\[
a^{m}=a^{h k}
\]
\[
m \mid h k
\]
\(m \backslash h\) since \(\operatorname{gcd}(k, m)=1\)
\(\rightarrow m \leqslant h\)
\[
\text { also, } b^{m}=\left(a^{k}\right)^{m}=\left(a^{m}\right)^{k}=e^{k}=e \quad \rightarrow h \leqslant m
\]

Hence \(h=m\).
(iv) Let \(D=\left(\mathbb{R}_{20},+\right)\). Given \(H=\{0,4,8,12,16\}\) is a subgroup of \(D\). Find all left coseks of \(H\).
\[
\left.\begin{array}{rl}
a_{4} H & =\left\{a_{4} n \mid n \in H\right\} \\
(1) 0+H & =\{0,4,8,12,16\}=a_{1}+H \\
(2) 1+H & =\{1,5,9,13,17\}=a_{2}+H \\
(3) 2+H & =\{2,6,10,14,18\} \\
=a_{3}+H \\
(4) 3+H & =\{3,7,11,15,19\}
\end{array}=a_{4+H}\right\}
\]
all Left cosets of H
(v) Let \(D=\left(Q_{+}+\right)\). Then \(H=(\mathbb{Z},+)\) is a subgroup of \((Q,+)\). Prove that \(H\) has infinitely many left cosets. Give me 5 distinct left cosets of \(1 t\). let \(a \in O\) sit \(0 \leqslant a<1\) then there are infinity many sets \(\{a+H\}\)

There are left coset of H of the form.
\(a_{+1}=\{a+h \mid\) hE \& \(0 \leqslant a<1\}\)
- Five distinct left cosets:
(1) \(0.1+1-1\)
(2) \(0.2+1.1\)
(3) \(0.3+H\)
(4) \(0.4+\mathrm{H}\)
(5) \(0.5+\mathrm{H}\)

(vi) Let \(F=\{6,12,18,24\}\) Convince me that \(F\) is a group under multiplication module 30 by constructing the Caley's Table. what is \(e\) ? What is \(12^{-1}\) ?
what is \(24^{-1}\) ?
\begin{tabular}{c|cccc}
\(\cdot\) & 6 & 12 & 18 & 24 \\
\hline 6 & 6 & 12 & 18 & 24 \\
12 & 12 & 24 & 6 & 18 \\
18 & 18 & 6 & 24 & 12 \\
24 & 24 & 18 & 12 & 6
\end{tabular}
- I is closed under multip. since \(\forall a, b \in F\), \(a \cdot b \in F\)
- \(e=6, \quad 6 . a=a .6=6 \quad \forall a \in F\)
- \(24^{-1}=24,12^{-1}=18,18^{4}=12,6^{4}=6\)
- \((a \cdot b) \cdot c=a .(b, c) \quad \forall a, b, c \in F\)

\subsection*{2.2.5 Solution for HW-Two}

HiNs gooos1566.
i) Let \(D\) be a group, \(a \in D\) suth that \(|a|=n<\infty\). Let be a positive integer and \(r=\operatorname{gcd}(m, n) \Rightarrow\left|a^{m}\right|=n \mid r\) (proved in solution-book). Just know this fact and use it.
ii) Let \(D=\left(z_{24},+\right)\). Find \(|91,|141,|181,|11|\)
(hint : note that \(z_{24}=\langle 1\rangle\) and for ex, \(8=1^{8}\), then use (i)).
first of all \(|D|=\left|z_{24}\right|=24\)
and since \(z_{24}=\langle 1\rangle \Rightarrow|1|=24\).
- \(|9|=\left|1^{9}\right|\) and \(|1|=24\)
where \(r=\operatorname{gcd}(9,24)=3\)
\[
r=3 .
\]

Hence by \((i) \Rightarrow|9|=\frac{24}{3}=8\)
\[
\begin{aligned}
& \quad|14|=\left|1^{14}\right| \quad \text { and }|1|=24 \\
& r=\operatorname{gcd}(14,24) \Rightarrow r=2 . \\
& 14227 .
\end{aligned}
\]
\[
\text { Hence by }(i) \Rightarrow|14|=\frac{24}{2}=12
\]
- \(\left||8|=\left|1^{18}\right|\right.\) and \(| 1 \mid=24, r=\operatorname{gcd}(18,24)\)
by (i) \(\Rightarrow|18|=\frac{24}{6}=4\)
\[
\Rightarrow r=6
\]
- \(|11|=\left|1^{\prime \prime}\right|\) and \(|1|=24\)
\[
\begin{aligned}
\Rightarrow r & =\operatorname{gcd}(24,11) \\
r & =1
\end{aligned}
\]
\[
\text { by }(i) \Rightarrow 1111=24
\]
(iii) Let \(a, b \in D\). Assume that \(|b|=m<\infty\) prove that \(\left|a^{-1} b a\right|=m\).
let \(|b|=m<\infty\).
let \(|b|=m<\infty\). for some \(+v e\)
and let \(\left|a^{-1} b a\right|=k<\infty\).
Now, we need to show
that \(m=K\).
- lets start by:
\[
\begin{aligned}
\left|a^{-1} b a\right|=k & \\
\Rightarrow\left(a^{-1} b a\right)^{k} & =\left(a^{-1} b d\right) *\left(a^{-1} b \notin\right) *\left(a^{-1} b a\right) \ldots *\left(a^{-1} b a\right)
\end{aligned}=e .
\]
\(\Rightarrow a^{-1} b^{k} a=e\). "operate \(a\) on both sides".
\(b^{k} a=a\). "where \(a * a^{-1}=e\) and \(a * e=a \quad \forall a \in D\) as \(D\) is agroup."
\(b^{k}=e\) "operate \(a^{-1}\) on both sides"
Hence r by Hiw(1) \(m / k\)
\(a k c^{-1}=e\)
- Now take,
\[
\begin{aligned}
& \text { low take, } \\
&\left(a^{-1} b a\right)^{m}=\left(a^{-1} b a\right) *\left(a^{1} b a\right) * \cdots *\left(a^{-1} b a\right) \\
&=a^{-1} b^{m} a \\
&=a^{-1} * e * a \quad \text { "since } b^{m}=e^{11} . \\
&=e
\end{aligned}
\]

Hence, \(\mathrm{K} / \mathrm{m} \ldots .\). (2)
by (1) and (2) \(\Rightarrow m=k \Rightarrow\left|a^{-1} b a\right|=m\)
iv) Let \(D=z_{n} \oplus Z_{m} \quad n, m \geqslant 2\)

Cof course the binary operations ane addition mod and addition \(\bmod m\) ).
Let \((a, b) \in D\). Prove that \(|(a, b)|=\operatorname{LCM}[|a|,|b|]\)
\(\left[\right.\) hint: Note that if \(k, w\) are integers, then \(\left.L C M[K, \omega]=\frac{k w}{\operatorname{gcd}(k, \omega)}\right]\)
Let \((a, b) \in D\) where \(a \in z_{n}\) and \(b \in \varepsilon_{m}\) and \(l e t|a|=k\) and \(|b|=\omega\)

Sol
Sol, identity of Enurder alditon
\[
\begin{aligned}
& \Rightarrow a^{k}=0 \quad \bmod n \\
& \Rightarrow b^{\omega}=0 \quad \bmod m
\end{aligned}
\]

Now: let \(|(a, b)|=t\)
\[
\begin{equation*}
\Leftrightarrow \quad(a, b)^{t}=\left(a^{t}, b^{t}\right)=(0,0) \tag{1}
\end{equation*}
\]

Since by def. kw one the smallest integers where \(a, b=0\) respecting and by Hiw (1) problem (ii)
\(\Rightarrow K / t\) and \(w / t\).
then, \(t\) is a common multiple of both \(k, \omega \ldots\) (2) and If \(r=L C H(K, \omega) \quad \stackrel{50}{\Rightarrow} \cdots(a, b)^{r}=(0,0) \cdots\) (3)
by (1) and (3) \(\Rightarrow t \leqslant r\) sin \(a t / r\).
by (2) and (3) \(\Rightarrow r \leqslant t\)
\[
\Rightarrow t \leq r \leq t
\]

Hence \(\quad t=r\)
\[
\begin{aligned}
|(a, b)| & =\operatorname{LCM}(k, \omega) \\
& =\operatorname{LCM}(|a|,|b|)
\end{aligned}
\]
(v) Let \(D=z_{n} \oplus z_{m}\)

Prove that \(D\) is cyclic if and ont if \(\operatorname{gcd}(n, m)=1\). [hint: use part IV].
\(\Rightarrow)\) let \(D=z_{n}(t) z_{m}\) is cyclic and prove that \(\operatorname{gcd}(n, m)=1\).
since \(D\) is cyclic so,
\((a i b) \in D\).
\(D=\langle(a, b)\rangle, \quad(a, b)\) is the generator of D where
\[
\begin{aligned}
& \text { D where } \\
& z_{n}=\langle a\rangle \text { ant } z_{m}=\langle b\rangle \text {. }
\end{aligned}
\]
then, \(\left|z_{n}\right|=n,\left|z_{m}\right|=m\),
and \(|D|=n m\).
- from (iv):
\[
\begin{aligned}
|(a, b)| & =\operatorname{LCM}(|a|,|b|) \\
& =\frac{|a||b|}{\operatorname{gcd}(|a|,|b|)}
\end{aligned}
\]
\(=n \cdot m \ldots(1)\) since \(z_{n}, z_{m}\) are cyclic and \(a, b\) are Here gernutans respectively, Hence.
\[
|a|=n,|b|=m
\]
- we also know:
\[
|(a, b)|=n m \quad \cdots-(2)
\]

Since garatior of \(D\).
Hence, (1) \(=\) (2)
\[
\begin{aligned}
\frac{n m}{\operatorname{gcd}(n, m)} & =n m \\
\Rightarrow g(d(n, m) & =1
\end{aligned}
\]

Let \(\operatorname{gcd}(n, m)=1\), show that is cyclic::
proof \(\left|z_{n}\right|=n,\left|z_{m}\right|=m,||D|=n m<\infty\).
let \((a, b) \in D\), and \(\begin{aligned} & z_{n}=\langle a\rangle=\left\{a, a^{2}, \ldots, a^{n}=c\right\} \\ & z_{m}=\langle b\rangle=\left\{b, b^{2},\right.\end{aligned}\)
Let \(|(a, b)|=S<\infty \quad\) for some the integer \(\delta\).
Now by Hew (i)
we can construct a subgroup of \(D\) of order \(S\).
sit
\[
\left\{(a, b),(a, b)^{2},(a, b)^{3}, \ldots,(a, b)^{s}\right\} \text {. }
\]
\[
\begin{aligned}
& \text { - by (iv) } \begin{aligned}
& \Rightarrow|(a, b)|=\delta \\
&=\frac{|a||b|}{\operatorname{gcd}(|a|,|b|)} \\
&=\frac{n m}{\operatorname{gcd}(n, m)} \\
&=\frac{n m}{1} \text { give. } \\
& \Rightarrow|(a, b)|=S=n m=\mid 1) \\
&\left\{(a, b),(a, b)^{2}, \ldots \ldots,(a, b)^{n m}\right\}
\end{aligned}
\end{aligned}
\]

Hence, \(D=\langle(a, b)\rangle\).
\(\Rightarrow D\) is cyclic
vi) Let \(D=z_{6} \oplus z_{14}\)
a) convince me that \(D\) is not cyclic. Find the value of integer \(m\) such that the order of each element in \(D\). is \(\leqslant m\)
\(\operatorname{gcd}(6,14)=2 \neq 1\), Hence, by \((V)\) is
Not cyclic.
as. \(D\) is of the form \(z_{n} \oplus Z m\) and it is an iff statement, [also, note part (d) gives a counter example if we assume D is cydic ]
\(|D|=|6(14)|=84\). and by The in class
If \((a, b) \in D\) then \(|(a, b)| /|D|\)
also, by iv)
\[
\begin{aligned}
& |(a, b)|=\operatorname{LCM}(6,14)=\frac{84}{2}=42 . \\
\Rightarrow & m=42 .
\end{aligned}
\]
of both
the least common multiple of the max order of an element a in \(z_{6}=6\). and the max order of an element \(b\) in \(z_{14}=14\)
(b) Find \(|(3,5)|\) and \(|(4,10)|\)
[Hint i note \(3=1^{3}\) and \(5=1^{5}\). Now use (i) and (iv)].
- \(|(3,5)|=\frac{|3| \cdot|5|}{\operatorname{gcd}(|3|, \mid 51)} \cdots\) by (iv).
\(|3|=\left|1^{3}\right|\) since \(z_{6}=\langle 1\rangle\) as \(3 \in z_{6}\).
and \(|1|=6\)
\[
\Rightarrow \operatorname{gcd}(3,6)=3
\]

Hence by \((i) \Rightarrow|3|=\frac{6}{3}=2\)
Now,
\[
\begin{aligned}
& 151=1,51 \quad \text { sine } z_{14}=\langle 1\rangle \text { and } 5 \in z_{14} \\
& 111=14 \quad \operatorname{ged}(5,14)=1 \\
& 151=14 \\
& \Rightarrow|(3,5)|=\frac{2 \cdot 14}{\operatorname{gcd}(2,14)}=\frac{2,14}{2}=14
\end{aligned}
\]
- \(|(4,10)|:\)
\[
\begin{aligned}
& 141=\left|1^{4}\right| \text { and }|1|=6 \text {. } \\
& \operatorname{gcd}(4,6)=2 \\
& \Rightarrow|4|=\frac{6}{2}=|3| \\
& |10|=11^{10} \mid \text { and } \mid 11=10 \text {. } \\
& \operatorname{gcd}(10,14)=2 \text {. } \\
& \left\lvert\, 101=\frac{14}{2}=17\right. \\
& \Rightarrow|(4,10)|=\frac{141|10|}{\operatorname{gcd}(141,1101)}=\frac{3.7}{1}=217
\end{aligned}
\]
(c) Give me two subgroups of \(D\). say \(H_{1}, H_{2}\) such that \(\left|H_{1}\right|=\left|H_{2}\right|=2\).
\[
\begin{aligned}
& z_{6}=\{0,1,2,3,4,5\} \oplus z_{14}=\{0,1,2, \ldots, 13\} . \\
& (a, b) \in H_{1} \sigma_{H} H_{2} . \\
& |(a, b)| /\left|H_{1}\right| \text { or }|+h| \\
& \left.|(a, b)| / 2 \Rightarrow|(a, b)|=2 . \quad \begin{array}{l}
\text { when } \\
\text { w he } a \in z_{6}
\end{array}|a|,|b|\right)
\end{aligned}
\] when \(a \in Z_{6}\) and
Hence
\[
\begin{aligned}
& \text { lUne }|a|=2 \bmod 6 . \\
& \Rightarrow a=3 \\
& |b|=2 \bmod 14 \quad b \in Z_{14} . \\
& H_{1}=\{(0,0),(3,7)\} \quad \rightarrow(3,7)^{2}=\left(3^{2}, 7^{2}\right)=(0,0) \\
& H_{2}=\{(0,0),(3,0)\} . \\
& \text { to checkehent }) \\
& (3,0)^{2}=(0,0)
\end{aligned}
\]
(d) does \(D\) have a cyclic subgroup of order 21?

If yes find a generator to such group.
(1) \(D\) is an abelian group and 21/84
\(\Rightarrow\) so \(D\) has a subgroup oforcler 21
(2) from port (b) \(|(4,10)|=21\), then by H.w(1)
we cur have a subgroup as \(\left.\left\{(4,10),(4,10)^{2}\right\} \ldots,(4,10)^{21}\right\}\)
\(\Rightarrow\) Th subgroup is cyclic
and \((4,10)\) can be agenerator of such a subgroup.
\[
|(4, \mid 0)|=\mid \text { subgnap } \mid \text {. }
\]
or in general:
\[
(a, b)^{21}=(0,0)
\]
\(\left(a^{21}, b^{21}\right)=(0,0)\). \(a \in z_{G}\) and \(b \in Z_{14}\).
\(|a| / 21\) and \(|b| / 2 \mid\). and \(\operatorname{gcd}(|a|,|b|)=1\)
to be cyclic .(V)
and since \(\quad 1 \leqslant|a| \leqslant 6, \quad 1 \leqslant|b| \leqslant 14\)
\[
|a|=3 \quad,|b|=3,7
\]

Hence, \((2,2)^{2}\). is another example of the gereruter of a cyclic subgroup of order 21 .
\(\Rightarrow\) Yes, \(D\) has acyclic subgroup of order 21 and examples of the generates. \((2,2)\) and \((4,10)\).
* Note. for part (a):-
this can be unothor way to prove that
\(D\) is Not cydic, where if we assume \(D\) cyclic the contradiction appears since we have 2 different subgroups of the same size (Not unique) Hence, D is Not cyclic.

\subsection*{2.2.6 Solution for HW-Three}
Isrda Alhamarna \(\frac{\text { MIM } 5 S}{\text { Hew }}\) goo o81566.
(i) Fact: (for a proof just see it in any Algebra Text Book). Let \(H\) be a subset of a group D. Cote that \(H\) can be infinite or finite). Then \(H\) is a subgroup of \(D\) If \(a^{-1} * b \in H\) for every \(a, b \in H\). ( \(u, b\) lined Not to be distinct).
(ii) Let \(F, L\) be subgroups of a group \(D\). Prove that \(M=F \cap L\) is a subgroup of \(D\). (hint :use (i) above).
we know \(F, L \leqslant D\) (Fils subgroups of \(1 D\) ).
want to show that if \(a, b\) any 2 elements in \(M\), then. \(a^{-1} k b \in M\).
proof: let \(a, b \in M\) since \(M=F \cap L\), then
\(a, b \in F\) and \(a, b \in L\).
\(a^{-1} \in F\) and \(a^{-1} \in L\) "since by the def. of the group or (subgroup) now, \(\forall a, b \in F, L\). for each \(a \in F, L \exists a^{-1}\) unique sit \(a^{-1} \in F, L\). \(n\).
\(a^{-1} * b \in F\) and
\(a^{-1} * b \in L\)
since subgroups of \(D\) by (i)
Hence.
\(\Rightarrow \quad a^{-1} * b \in M\). "intersection of \(F\) ind \(L\) "
So, \(M\) is a subgroup of \(D\).

(iii) by (ii), \(N=12 Z \cap 15 z\) is a subgroup of \((z,+)\).
since \(z\) iscyclic, we know \(N=u z\), finch \(a\).
using a class-Note.
Every subgroup of \((z,+)=\langle\hat{1}\rangle\) for sone \(n \in z\).
\[
\begin{array}{rlr}
12 z & =\langle 12\rangle=\left\langle 1^{12}\right\rangle \\
15 z & =\langle 15\rangle=\left\langle 1^{15}\right\rangle \\
N & =12 z \cap 15 z \\
& =L C M(12,15) z \\
& =60 z=\left\langle 1^{60}\right\rangle . & L C M=3.5 \cdot 2 \cdot 2=60 . \\
\Rightarrow a & =60
\end{array}
\]
iv) Let \(D\) be an abelian group with 9 elements. Given that D has two distinct subgroups, \(H_{1}, H_{2}\) such that \(\left|H_{1}\right|=\left|H_{2}\right|=3\) Convince me that it is impossible that \(D=\left(z_{y}, t\right)\). What will be an example of such group \(D\) ?
\(\left(Z_{y}, t\right)\) is cyclic group, so although it is abelian of 9 elements it is impossible that it has more then one unique subgroups. of the same order (31.9). and since iD here has 2 distinct subgroups of order 3 Hen \(D\) canst be \(\left(z_{q},+\right)\).
\[
\begin{aligned}
& \text { Hen } D \text { canst be (t alt } H \text { (by 2) } \\
& D=Z_{3} \oplus Z_{3} \text { (such } D, \text { w) }
\end{aligned}
\]
is an example of such \(D\), where it is abelian, Not cyclic
- \(|D|=9 \rightarrow\left\{H_{1}=[(0,0),(1,2),(2,1)\}\right.\) example \(H_{2}=\{(0,0),(1,1),(2,2)\}\) of subgroups. \(\left|H_{1}\right|=\left|H_{2}\right|=3\), where \(H_{1} \neq H_{2}\).
(v) Let \(f \in S_{n}\) such that \(f\) is \(m\)-cycle. Convince me that if \(m\) isoddinteger, then \(f \in A_{n}\), and if \(m\) is an evan integer then \(f \notin A_{n}\)

Let \(f=\left(\begin{array}{llll}a_{1} & a_{2} & \cdots & a_{n}\end{array}\right) \in S_{n}\).
- We know by class-Thernem that any bijective function \(f \in S_{n}\) can be written as composition of 2 -cycles as following:
\[
f=\left(a_{1} a_{2} \cdots a_{m}\right)=\left(a_{1} a_{m}\right)\left(a_{1} a_{m-1}\right) \cdots\left(a_{1} a_{2}\right)
\]
- by staring and few exampls. The:
\[
\begin{aligned}
& \left(a_{1} a_{2} a_{3}\right)=\left(a_{1} a_{3}\right)\left(a_{1} a_{2}\right) \\
& \left(a_{1} a_{2} a_{3} a_{4} a_{5} a_{6}\right)=\left(a_{1}^{2} a_{6}\right) \underbrace{\left(a_{1}, a_{5}\right)\left(a_{1} a_{4}\right)\left(a_{1} a_{3}\right)\left(a_{1} a_{2}\right)}
\end{aligned}
\]
(*) We notice that \(f\) can be written as \((m-1) 2\)-cycles.
Hence,
- when \(m\) is odd \(\Rightarrow(m-1)\) is even \(\Rightarrow f \in A_{n}\).
- when \(m\) is even \(\Rightarrow(m-1)\) is odd \(\Rightarrow f \& A_{n}\).

Vi) let \(f=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 3 & 6 & 8 & 7 & 2 & 1 & 5\end{array}\right) \in S_{8}\).
(a) Find \(|f|\). IS \(F \in A 8\) ? Explain.
\[
f=\left(\sqrt{4857} c_{1}^{c_{1}}\binom{c_{2}}{236}\right.
\]

2 disjoint cycles., so by cluss Thm.
\[
\begin{aligned}
|f| & =\operatorname{LCM}\left(\text { legthof } c_{1}, \text { length of } c_{2}\right) \\
& =\operatorname{LCM}(5,3) \\
& =15
\end{aligned}
\]
- \(f=\frac{(14857)(236)}{\left(\frac{1}{\text { oddr-cyle }} \quad \text { odd-cycle }\right.}\)
\(\Rightarrow\) even. even \(=\) even \(\Rightarrow f \in A_{8}\) as \(f \in S_{8}\) by (V).
Also,
\[
\begin{aligned}
f= & (14857)(236) \\
= & (17)(1.5)(18)(14)(26)(23) . \\
& 6 \text {-2cyces. }
\end{aligned}
\]

Since \(f\) can be wortten as eun number of \(2-c y c l e\) So, Ves \(f \in A_{8}\). since by cluss Thm if \(f\) cyde can be written as an euen number of 2-cyoles then it \(\in A_{n}\) (tle subgroup of \(S_{n}\) ) and can't be off odd 2-cycles.

Continue VI)
(b) Does \(A_{8}\) has an abetian subgroup with \(15^{\prime}\) elements. [Hint: If you show that \(A_{8}\) has a cyclic subgroup isth 15 elements, then you are done, since cyclic implies abeliar].

Inorcler to show abelian subynup.
we need to find a cyclic subgroup with 15 elements. and to do so, element
we should show thant \(\exists f \in A_{8}\) sit
\[
\begin{aligned}
|f| & =15 \quad c_{1}, c_{2} \text { disioninit } \\
& =\operatorname{LCM}\left(\text { length of } C_{1}, \text { length of } C_{2}\right) . \\
& =\operatorname{LCM}(5,3) \\
& =(12345)(678) . \\
& =15 .
\end{aligned}
\]

Hence, by Hew (1)
\(\exists\) a cycle subgroup \(\langle f\rangle\) sit:
\[
\left\{f, f^{2}, f^{3}, \ldots, f^{15}\right\},
\]
\(\Rightarrow A_{8}\) has a cyclic subgroup of 15 elements So, it has an abelian subgroup of \(15^{-}\)elements since. cycle empties abelian.
Vii) let \(f=(143)(14) \in S_{4}\). Find \(|f|\). let \(k=(143)\left(15^{\circ}\right) \in S_{5}\) find \(|k|\).
\[
\begin{aligned}
& f=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 2 & 1 & 4
\end{array}\right) \Rightarrow \begin{array}{l}
f=(13) \\
|f|=2 \\
k=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 2 & 1 & 3 & 4
\end{array}\right) \Rightarrow k=(1543) \\
|k|=4
\end{array}
\end{aligned}
\]
Viii) Given \(H=\{(1),(143),(134)\}\) is a subgroup of \(S_{5}\). (this is given, you do not need to check). Find the left coset (15).H and find the right coset \(H_{0}(15)\). What do you observe? can we say thant \(H\) is a normal subgroup of \(S_{5}\) ?
\[
\begin{aligned}
& \text { * } 1 \text { iffcoset : }(15) \circ H=\{(15)(1),(15)(143),(15)(134)\} \\
& \cdot(15)(143)=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 2 & 5 & 3
\end{array}\right)=(1435) \\
& \cdot(15)(134)=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 2 & 4 & 5
\end{array}\right)=(1345) \\
& \Rightarrow(15) \circ H=\{(15),(1435),(1345)\}
\end{aligned}
\]
* right coset: \(H_{0}(15)=\{(1)(15) ;(143)(15),(134)(15)\}\)
\[
\begin{aligned}
& 0(143)(15)=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 2 & 1 & 3 & 4
\end{array}\right)=(1543) \\
& 0(134)(15)=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 2 & 4 & 1 & 3
\end{array}\right)=(1534)
\end{aligned}
\]
\[
\Rightarrow H 0\left(15^{-}\right)=\{(15),(1543),(1534)\}, \square
\]
we notice that. (15) oH \(\neq \mathrm{Ho}(15)\)
Hence \(H\) Can't be a normal subgroup of \(S_{5}\) since \(\exists\left(15^{-}\right) \in S_{5}\) where left coset \(\neq\) right coset which gives a Counter example and according to Cluss-Noke it is enough to show not normal subgroup.
(ix) Let \(a, b\) be element of a group such that \(a * b=b * a\)

Assume \(|a|=n\) and \(|b|=m\). let \(k=|a * b|\). Prove \(k / n m\).
\[
a * b=b * a \text { for } a, b \in D \Rightarrow a<b \in D
\]
(by group closure, under)
let \(|a|=n\) and \(|b|=m\). (*) operation
and \(|a \times b|=k . \quad a^{n}=e, \quad b^{m}=e\) and \((a \times b)^{k}=e\).
Now,
\[
\begin{aligned}
\Rightarrow(a * b)^{n m} & =(a * b)(a * b)(a * b) \ldots(a * b) \\
& =(a * a)(b * a)(b * b) \ldots(b * b) \Rightarrow \frac{\text { given }}{\text { since }} \\
& =\frac{(a * a * b=b * a}{n m \text { times }} \\
& =a^{n m} * b^{n m}
\end{aligned}
\]
\[
=\left(a^{n}\right)^{m} *\left(b^{m}\right)^{n}
\]
\[
\Rightarrow(a * b)^{n m} \equiv e
\]
"or by Hiw(i)since \(n / \mathrm{nm}\)
\[
=(e)^{m} *(e)^{n}
\] and \(m / n m\) ".
\[
=e
\]
n/ n
Hence, by How( \(\mathrm{K} / \mathrm{nm}\).al
\((x)\) Give me an example of two elements \(a, b\) in a group where \(|a|=n,|b|=m\) and \(|a \times b|=k\) but \(k y_{n m}\).
[hent: stare at the element \(k\) in vii and sorrelow find \(a, b\) ].
let the group be \(\delta_{5}\)
\[
\begin{aligned}
& k=(143)(15) \in S_{5} \\
& a=(143) \in S_{5} \quad \text { and } \quad b=(15) \in S_{5} . \\
& |a|=3=n, \quad|b|=2=m \\
& k=a \times 1=(143)(15) \quad(*=0) \\
& |k|=4 \\
& n m=3.2=6 \\
& \quad \Rightarrow 4 \times 6.7
\end{aligned}
\]
\(x_{i}\) ) let \(a, b\) be element of a group such that \(a * b=b * a\)
Assume \(|a|=n,|b|=m\) and \(g c d(n, m)=1\). let \(k=|a k-b|\) prove \(k=n m\) [Hint: you may want to use the fact from number Thing thant if \(\operatorname{gcd}(\omega, d)=1, d / c\) and woe the \(w d / c\) where wide are the integers].
- by (ix) we know that if \(a, b \in D\) where \(a * b=b * a\) \(|a|=n\) and \(|b|=m\) and \(|a * b|=k \quad\) then \(|k| n m\)-(1)
- So we only reed to show \(\mathrm{nm} / \mathrm{K}\).
\[
|a * b|=k \Leftrightarrow(a * b)^{k}=e \Rightarrow a^{k} * b^{k}=e
\]
\(\Rightarrow a^{k n} * b^{k n}=e \quad\) for the integer \(n\)
\[
\Rightarrow\left(a^{n}\right)^{k} * b^{k n}=e \quad \Rightarrow e k b^{k n}=e \Rightarrow b^{k n}=e
\]

Hence, \(m / k n\) but \(\operatorname{ccd}(m, n)=101\) !
\[
\Rightarrow m / k
\]

Now, similarly for \(m\) the integer.
\[
\begin{aligned}
& a^{k m} * b^{k m}=e \\
& a^{k m} *\left(b^{m}\right)^{k}=e \Rightarrow a^{k m} * e^{k}=e \\
& \Rightarrow a^{k m}=e
\end{aligned}
\]

Then, \(n / \mathrm{km}\) and \(\operatorname{gcd}(n, m)=1\)
\[
\left(a^{k} * b^{k}\right)^{m}=d^{k m} * b^{k m}=e^{m}=e
\] since \(a b=b a\).
\[
-\quad-\quad+\quad+
\]
\[
\Rightarrow n / K
\]
using the hint., \(m / k, n / k\), and \(\operatorname{gad}(n, m)=1\).
\[
\Rightarrow m n / K
\]
by (1) and (2) \(K=n m\)
xii) Let \(F:\left(D_{1}, *_{1}\right) \longrightarrow\left(D_{2}, *_{2}\right)\) be a group-homomor phis and \(H<D_{1}\). Pore that \(F(H)\) is a subgroup of \(D_{2}\). (note it is possible that \(H=D_{1}\) ) [Hint i Use part (i) above]. want to show that \([F(a)]^{-1}+F(b) \in F(H)\)
\[
\forall F(a), F(b) \in F(H), a, b \in H
\]

Now, we know \(H<D_{1}\), then by (i) no know \(H\) is
\[
a^{-1} k_{1} b \in H \quad \forall a, b \in H
\]
and \(F(a *, b)=F(a)+t_{2} F(b) \cdot \forall a, b \in D_{1}\)
and as \(H<D_{1}\). then, \(\forall a, b \in H\)
\[
\begin{aligned}
& \text { as } H<D_{1} \text {, then, } \\
& {\left[F(a *, b)=F(a) *_{2} F(b)\right] \in F(H) \text {. }} \\
& \text { mince } \forall a \in H, \exists a^{-1} \text { unique } \in H \text {. }
\end{aligned}
\]
since \(\forall a \in H, \exists a^{-1}\) unique \(\in H\).
Hence,
\[
\begin{aligned}
& \text { since } \forall a \in H, \exists a^{-1} \text { unique } \in H \text {. } \\
& \begin{aligned}
F\left(a^{-1} *, b\right) & =F\left(a^{-1}\right) *_{2} F(b) . \\
& \left.=[F(a)]^{-1} *_{2} F(b)\right] \in F(H)
\end{aligned}
\end{aligned}
\]
\(\Rightarrow F(H)\) is a subgroup of \(D_{2}\)
xiii) Let \(F_{i}\left(Z_{24},+\right) \longrightarrow\left(Z_{15},+\right)\) be a group homomorphism such that \(F(1) \neq 0\). Find \(F\left(Z_{24}\right)\). E Hint: Note that \(Z_{n}\) is cyclic, \(F\left(Z_{24}\right)\) is a subgroup of \(Z_{15}\) by \(x i i\) and \(\mid F(c a \mid\) must be a factor of \(|a|\) for every at \(z_{24}\) by Class - Theorem I.
Find \(F(1), F(8), F(12)\).
\[
\begin{aligned}
& F:\left(z_{24},+\right) \rightarrow\left(z_{15},+\right) \\
& F(a+b \bmod 24)=(F(a)+F(b)) \bmod 15 \\
& z_{24}=\{0,1,2,3, \ldots, 23\}, z_{15}=\{0,1,2, \ldots, 14\} \\
& \quad F\left(z_{24}\right)<z_{15}(\text { by xiv })
\end{aligned}
\]
- by lagrange \(\left|F\left(z_{23}\right)\right| / 15\) order of \(z_{15}=\left(z_{y c h c}\right)\)
- Also, by class big Tim \(|F(a)| /|a| \quad \forall a \in Z_{2 x}\) and since \(z_{29}\) is cyclic \(\Rightarrow\left|F\left(z_{24}\right)\right| / 24\)
factors of 15 , (1) \(15,3,5\)
(H) factors of \(24:(1,24,2,12,(3), 8,4,6\).

Hence by \((*)\left|F\left(z_{24}\right)\right|=1\) or 3 .
Now, by class - Most important-Resut after lagrange. we have
\[
\begin{gathered}
\text { we have } \\
(* *)-f_{i}:\left(z_{2 v} / \text { per }(F) ; \Delta\right) \longrightarrow F\left(z_{2 v}\right)
\end{gathered}
\]
where \(z_{\text {EU }} / \operatorname{ker}(F) \approx F\left(z_{24}\right)\).
Hence, \(\left|f\left(z_{24}\right)\right| \neq\) since. if \(\left|F\left(z_{24}\right)\right|=1\), then
\[
\left|z_{24} / \operatorname{ker}(F)\right|=1 \Rightarrow z_{24}=\operatorname{Ker}(F)
\]
which means \(\forall a \in Z_{24} \Rightarrow F(a)=0\) contradiction since. given \(F(1) \neq 0\).

Hence, we are only left with
\[
\left|F\left(z_{24}\right)\right|=3, \quad \text { and } \quad, \frac{15}{3}=5 \text {, }
\]
then \(f\left(z_{24}\right)=\{0,5,10\}<z_{15}\)
\[
\begin{gathered}
\text { subgroup of cyclic so, cyclic. Answer. } \\
f\left(z_{24}\right)=\{0,5,10\}=5 z_{15}, \begin{array}{l}
\text { Hen }\{0,5,10\} \text { icy is a unique. } \\
\text { subgroup of croat 3, Hence. }
\end{array}
\end{gathered}
\]


/a \(|\operatorname{Ker}(F)|=3 \Rightarrow|\operatorname{Ker}(F)|=8\).
and since \(\operatorname{Ker}(F)=\left\{b \in z_{24}, F(b)=0 \cdot \bmod 15\right\}\)
\[
\begin{aligned}
& \operatorname{ker}(F)=\{0,3,6,9,12,15,18,21\} \\
& Z_{24} / \operatorname{kar}(F)=\{\underbrace{\operatorname{ker}(F)}_{\frac{1}{b}}, \frac{1+\operatorname{ker}(F)}{\frac{1}{5}}, \frac{2+\operatorname{kar}(F)}{10}\} \\
& \cdot f(1+\operatorname{ker}(F))=F(1) \\
& \quad 1+\operatorname{kur}(F)=\{1,4,7,10,13,16,19,22\}
\end{aligned}
\]
\[
4 / 4
\]
we notice that any element in \(1+k\) er \((F) \rightarrow 5\) in \(F\left(Z_{2 n}\right)\).
\[
\Rightarrow \quad F(1)=5
\]
- \(F(12)=f(12+\operatorname{ker}(F))=f(\operatorname{Mer}(F))\) since \(12 E^{T} \operatorname{Ker}(F)\)
\[
\Rightarrow F(12)=0
\]
- \(F(8)=f(8+\operatorname{ker}(F))=f(2+\operatorname{ker}(F))\)
as \(2+\operatorname{ter}(F)=\{2,5,8,11,14,17,20,23\}\) so, \(8 \in 2+\operatorname{ker}(F)\).
\[
\Rightarrow \bar{F}(8)=10^{\left.2+\operatorname{kr}(F) \rightarrow 10 \text { in } 5 z_{15}\left(F\left(z_{2}\right)\right) . . .\right) .}
\]
2.2. Solution for HW-Four

Q1) (i) Let \(D\) be a group with 27 elements. You just observed that \(C(D)\) has at least 4 elements. Prove that \(D\) is abellan.
\[
|D|=27 \quad, \text { given }|C(D)| \geqslant 4
\]
want to prove that \(\frac{D}{C(D)}\) is cyclic. Hence, by class result \(D\) is abclian.
Now,
\(\Rightarrow\) From class notes, we know \(C C D)<D\), thence by Lagrange: as \(D<\infty\).
\(|C(D)|||D|\) then,
\(|C(D)|=1,3,9,27\) but cant be \(|C(D)| \neq \mid\) or 3 .
since given \(x|C(D)| \geqslant 4\).
So we are only left with \(|C(D)|=9,27\).
(1) if \(|C(D)|=27\)
\(\Rightarrow C(D)=D\) then by the Definition of \(C(D)\).
\(D\) is abelian since all elements of \(D\) are center elements.
(2) if \(|C(D)|=9\).
\[
\Rightarrow\left|\frac{D}{C(D)}\right|=\frac{|D|}{|C(D)|}=\frac{27}{9}=3 \text { prime, so }
\]
\(\frac{D}{C C D)}\) is cyclic. by class notes and then, by class. Theorem \(D\) is abelian.
by (1) and (2) \(\rightarrow\)
(iii) Let \(D\) be a finite group, \(K, H\) ane normal subgroups of \(L\) such that \(H * K=0\) and \(H \cap K=\{e\}\).
(a) Prove that \(K \approx D / H\)
[ Hint note that \(|D| H|=|K|\). define \(f: K \rightarrow 0| H\) such that \(f(k)=K * H\) for every \(k \in k\). Show that \(f\) is group hooverphism and then you only need to slow that \(f\) is \(1-1]\)

Let \(f: k \rightarrow D \mid H: s\) such that \(f(k)=k * H\) for \(k \in K\)
- to show homorphism: \(k \Delta 0\).
let \(k_{1}, k_{2} \in K\), want \(f\left(k_{1} * k_{2}\right)=f\left(k_{1}\right) \Delta f\left(k_{2}\right)\)
\[
\begin{aligned}
f\left(K_{1} * K_{2}\right) & =\left(K_{1} * K_{2}\right) * H \quad \text { "by Def of }(D, \Delta) " \\
& =K_{1} * H \Delta K_{2} * H \\
& =f\left(K_{1}\right) \Delta f\left(K_{2}\right)
\end{aligned}
\]

Hence \(f\) is homarphism... (1)
- Since \(|D / H|=|K|\) then \(1-1\) is enough for \(f\) to be. bijective:
so, let \(f\left(k_{1}\right)=f\left(k_{2}\right) \quad\) for any \(k_{1} k_{2} \in K\)
\[
\left(k_{1} * H=k_{2} * H\right) \times k_{2}^{-1}
\]
\(\quad\) Now, \(\quad K_{2}^{-1} * k_{1} * H=H\)
So, \(k_{2}^{-1} \neq k_{1} \in H\)
"by Def of cosets"
we also know that, by \(K\) bering asubnrow.
\[
k_{2}^{-1}+k_{1} \in K \quad \forall k_{1}, k_{2} \in K
\]

Now, since given \(H \cap K=\{e\} \Rightarrow\) the only common elanent but we showed thant of \(K\) and \(H\) is \(e^{\prime}\) \(k_{2}-1 \times k \in H\) and \(k\).
\[
\begin{aligned}
& k \in H \text { and } k \\
& \Rightarrow k_{2}^{-1} \times k_{1}=\{e\} \Rightarrow \begin{array}{l}
k_{1}^{-1}=k_{2}^{-1} \\
k_{1}=k_{2}
\end{array}
\end{aligned}
\]
\(+\infty\)
Thus, \(f\) is \(1-1\) …2)
by (1) and (2) \(K \approx D / H\).
(b) prove \(H \approx D / K\).

Let \(g: H \longrightarrow(D / k, s)\) sit \(\left(g(h)^{(*)}=h * k\right) \forall h \in H\).
- Homerphism i by (*)
\[
\begin{aligned}
m / i_{\text {by }}(*) & \\
g\left(h_{1} * h_{2}\right) & =\left(h_{1} * h_{2}\right) * K \quad \text { for any } h_{1}, h_{2} \in H \\
& =\left(h_{1} * k\right) \Delta\left(h_{2} * k\right) \quad \text { "Def of D/K" } \\
& =g\left(h_{1}\right) \Delta g\left(h_{2}\right)
\end{aligned}
\]
- \(1-1\)
\[
|k|=|D / k|
\]
it is enough to show \(g\) is \(1-1\), to be bijective.
So, for any \(h_{1}, h_{2} \in H \Delta D\)
Let \(g\left(h_{1}\right)=g\left(h_{2}\right)\)
\[
\left(h_{1} * K=h_{2} * K\right)+h_{2}^{-1}
\]
\[
\begin{aligned}
&\left(h_{1} * K\right.=h_{2} * K, * n_{2} \\
& \underbrace{h_{2}^{-1} * h_{1} * K}_{\epsilon H}=K \Rightarrow h_{2}^{-1} \times h_{1} \in K \quad \text { Def of coseds" } \\
& k, \forall h_{1}, h_{2} \in H
\end{aligned}
\]
we also know, since \(H<D, \forall h_{1}, h_{2} \in H\)
\[
h_{2}^{-1} * h_{1} \in H \text { since } h_{2}^{-1} \in H \text {. }
\]

But given \(H \cap K=\{e\}\)
\[
\Rightarrow \quad h_{2}^{-1} * h_{1}=\{e\}
\]
\(h_{2}^{-1}=h_{2}^{-1} \quad\) by uniquess of inverse.
\[
\begin{equation*}
h_{1}=h_{2} \tag{2}
\end{equation*}
\]
by (1) and (2) \(H \approx D / K\).
(c) Prove that \(D \approx \frac{D}{H} \oplus \frac{\left(G, \Delta_{3}\right)}{K} \approx K \oplus H\).
\[
\left(D_{1}^{i}, \Delta_{1}\right) \quad\left(\frac{p}{k}, \Delta_{2}\right)
\]

Let \(f: D \rightarrow \frac{D}{H} \oplus \frac{D}{K}\) where for \(\forall d \in D\).
\[
f(d)=(d * H, d * k)
\]
- Homorphism: -
for any \(d_{1}, d_{2} \in D\).
\[
\begin{aligned}
& f\left(d_{1} * d_{2}\right)=\left(\left(d_{1} * d_{2}\right) * H,\left(d_{1} * d_{2}\right) * K\right) \\
& \text { by Def } \\
& \text { of }=\left(d_{1} * H, d_{1} * K\right) \Delta_{3}\left(d_{2} * H, d_{2} * K\right) \\
& \text { Group }=f\left(d_{1}\right) \Delta_{3} f\left(d_{2}\right) \text { Homorphisim. (1) }
\end{aligned}
\]
- Now since \(|O|=\left|\frac{D}{H} \oplus \frac{D}{K}\right|\)
\[
C_{\text {by (ii) }}|D|=|H \times K|=\left|\frac{|H| K \mid}{I}=\left|\frac{P}{K}\right|\right| \frac{D}{H}\left|=\left|\frac{D}{H} \oplus \frac{D}{K}\right|\right.
\]
- 1-1 :
let \(f\left(d_{1}\right)=f\left(d_{2}\right)\) for any \(d_{1}, d_{2} \in 1\).
\[
\left(d_{1} * H, d_{1} * K\right)=\left(d_{2} * H, d_{2} * K\right) \text {. }
\]

Hence,
and
\[
\begin{aligned}
\left(d_{1} * H\right. & \left.=d_{2} * H\right) * d_{2}^{-1}=d_{2}^{-1} * d_{1} * H=H \\
d_{1} * K & =d_{2} * K .
\end{aligned}
\]
\[
\begin{aligned}
& \text { and } d_{1} * K=d_{2} * K . \\
& d_{2} d_{2}^{-1} * d_{1} * K=K \Rightarrow d_{2}^{-1} * d_{1} \in K . \\
& d_{2}{ }^{-1} * d_{1} \in H \cap K \\
& \Rightarrow H \cap K=\{e\} \Rightarrow d_{1} t \\
&
\end{aligned}
\]

Hence \(f\) is \(1-1\) …(2)
\(\Rightarrow\) (1) and (2) \(D \approx \frac{D}{H} \oplus \frac{D}{K}\).
c) Now to finish up te proof.
by part \(c\) we know \(D \approx \frac{D}{1-1} \oplus \frac{D}{k}\)
\[
\begin{aligned}
& \text { by } \operatorname{part}(a) \Rightarrow K \approx \frac{D}{H} \\
& \text { by } \operatorname{part}(b) \Rightarrow \frac{D}{K} \approx H
\end{aligned}
\]

Hence by \(a, b \Rightarrow \frac{D}{H} \oplus \frac{D}{K} \approx K \oplus H\)
\[
b y(c) \Rightarrow D \approx \frac{D}{H} \oplus \frac{D}{K} \approx k \oplus H
\]
iv) Let \(H, K\) be subgroups of a group \(D\). In geneal, \(H * K\) need not be a subgroup of \(D\). However, if \(K\) is a normal subgroup of \(D\), then prove that \(K * H\) is a subgroup of \(D\).
want: show \(a^{-1} * b \in K * H\) for even \(a, b \in K * H\).
by Def of (ii)
\[
K * H=\{k * h \mid k \in K \text { and } h \in H\}
\]

Now, Let \(a, b\) any elements in \(K * H\). Hence thy should be of the furn:
\[
\begin{aligned}
& a=k_{1} * h_{1} \\
& b= k_{2} * h_{2}
\end{aligned} \quad \begin{aligned}
\text { where } & k_{1}, k_{2} \in k \quad \text { and } \\
& n_{1}, h_{2} \in H \\
\Rightarrow & a, b \in K * H .
\end{aligned}
\]

Now,
we want to show
\[
\begin{aligned}
a^{-1} * b & =\left(K_{1} * h_{1}\right)^{-1} * K_{2} * h_{2} \in K * H \\
& =h_{1}^{-1} * K_{1}^{-1} * K_{2} * h_{2} \in K * H
\end{aligned}
\]
since \(K\) is normal, we know by class Tim.
from Lecture. \(\quad h_{1}^{-1} * \underbrace{k_{1}^{-1} * k_{2} * h_{2}}_{=k_{3} \in k}={ }^{\prime} k_{1}^{-1} * k_{2}=k_{3} \in k\).
trick
\(a^{-1} * b=\)
\(\left(h_{1}^{-1} * k_{3} * h_{1}\right) * h_{1}^{-1} * h_{2}=k_{3} * h \in K * H\) forsume \(h \in H\).
(v) Let \(D\) be agroup with 38 elements, \(K, H\) are subgroups of \(D\). such that \(|K|=19\) and \(|H|=2\) sit \(H\) is a normal subgroup of \(D\). Prove that \(D \approx z_{38}\).

Dis finite, we need to show \(D\) is cyclic.
\(|D / K|=2\) ц pone so, cyclic.
\(D / K=\{\) the set of all distinct left corsets \(\}\).
\[
=\{K, a \not k\} \quad \text { for } \forall a \in D \text {. and } a \notin K \text {. }
\]
this also means we have 2 distinct right corsets.
\[
=\{k, k * a\} \text { for } a \in D \text { and } a \notin k \text {. }
\]

So, \(\forall b \in D \rightarrow\) F \(b \in K \Rightarrow b * K=K=K * b\).
since on two distinct two di coset
lief
\[
\text { y if } b \notin D \Rightarrow b * k=D-k=a * k
\] an dight
\[
\begin{aligned}
& =k * a . \longleftarrow \text { here. } \\
& =k * b \text {. } \quad \text { b ea. }
\end{aligned}
\]
\(\Rightarrow\) Hence \(k \Delta D\).
Now since \(H, K\) ac normal.
by (ii) and \(|K|=19,|H|=2\)
\[
\begin{aligned}
& \Rightarrow|D|=|H \times K|=\frac{|H||K|}{|H \cap K|}=\frac{19 \times 2}{0}=38 \text {. } \\
& \Rightarrow|H \cap K|=1 \rightarrow \text { where } H \cap K=\{e\} \text {. } \\
& \text { by previous Hin. }
\end{aligned}
\]

Now, using (iii)(c)
\(D \approx\)
\(\approx H \oplus K\). where \(H, K\) are cyclic since
\[
\begin{array}{ll}
\approx H \oplus K & \mathrm{~K} . \\
\approx Z_{2} \oplus Z_{14} & |H|=2 \text { pare e } ;|K|=19 \text { - parse } \\
\text { and a }
\end{array}
\]
\(\begin{array}{rlrl} & \approx z_{2} \oplus z_{14} & |H|=2 \text { pane } ;|k|=19 \text { - paine } \\ \text { By How (2) since. } & \text { by class The } 1 \text { and both are finite. }\end{array}\)
\[
\operatorname{gcd}(19,2)=1
\]
\(\Rightarrow H \oplus \mathrm{~K}\) is cyclic and D is cycle
Thus, by class - Th . Since \(D\) is finite cyclic with 38 elements then \(D \approx z_{38}\) 둔
vi) Let \(D\) be an infinite cyclic group. Prove that \(D\). has exactly two generators.

Since \(D\) is infinite and cyclic, then by class the. \(D \approx z\).
we know \(Z\) is general al by \(1,-1\). By the def a generator \(\frac{1,-1}{}\) can generate \(z\). and since \(D \approx z\), then \(D\) has exactly two generators.
Vii) Let \(U(n)=\left\{a \in Z_{n} \mid \operatorname{gcd}(a, n)=1\right\}\). Prove that \(U(n)\) is agroup. under multiplication mod \(n\) with \(\phi(n)\) elements.
- first lets show \(|V(n)|=\phi(n)\).
\(|U(n)| \Rightarrow\) \# of elements \(a \in Z_{n}\) sit \(\operatorname{gcd}(a, n)=1\) we know \(z_{n}=\{0,1,2, \ldots, n-1\}\)
So, \(a \in U(n)\) are \(1 \leqslant a \leqslant n\). sit relative pome with \(n\),
\(\Rightarrow\) Hence, by Def. of \(\phi(n) \Rightarrow \nRightarrow\) of such \(a=\phi(n)\). when \(\phi(n)=\#\) of all numbers between 1 and \(n\) that ore relatively prime with n.
\[
\Rightarrow|U(n)|=\phi(n) .
\]
- closure:

Let \(x, y \in U(n)\)
\(\Rightarrow \operatorname{gcd}(x, n)=1\) and \(\operatorname{gcd}(y, n)=1\). by Number Teary Facts:
\((a x+b y=1) \cdot y\) for some \(a, b, c d \in z^{\text {+re. }}\)
\((c y+d n=1) \cdot x\).
\[
\begin{aligned}
& \Rightarrow \underbrace{a x y+d x n=x}_{c x y+d x y+b y n=y} \Rightarrow \\
& \quad c x[a x y+b y n]+d x n=x . \\
& \\
& \Rightarrow r[\underbrace{c}_{\pi} a x y+c b y n+d n]=x . \\
& \Rightarrow r y+\underbrace{(b c y+d}) n=1
\end{aligned}
\]

Thus, \(y \subset d(x y, n)=1\), and \(x y \in Z_{n}\) sine \(x, y \in z_{n}\)
\(\Rightarrow\) Hence \(x y \in U(n)\)
(2) inure:

Let \(a \in U(n)\) and since \(\operatorname{gcd}(a, n)=1 \quad n \in z^{+}\)
\(\Rightarrow\) by Euler Fermat Result,
\[
n \mid a^{\phi(n)}-1
\]
\(n k=a^{(\phi(n)}-1\) some \(k \in Z^{-1}\)
\(\Rightarrow a^{\phi(n)}=n k+1\) where we know \(\phi(n) \cdot \epsilon Z^{+}\)
which means.
\[
a^{\phi(n)}=1 \bmod n
\]
, identity under multiplicatur.
So, \(a \cdot((x(n)-1)=1 \bmod (n)\).
Hence, \(a^{-1}=a^{(\otimes(n)-1)} \bmod (n)\).
where \(a^{\phi(n)-1}\) is just a some \(m \in z^{+}\)
and since we know \(\operatorname{gcd}(a, n)=1 \rightarrow\) by prions closove port.
\[
\Rightarrow \operatorname{gcd}\left(a^{m}, n\right)=1 \quad \Rightarrow \operatorname{gcd}\left(d^{\phi(n)-1}, n\right)=1
\]
\[
\Rightarrow a^{\phi(n)-1} \in U(n)
\]

Hence 1
\[
\begin{aligned}
& \text { Hence , } \\
& \forall a \in U(n), \exists a^{-1}=a^{\phi(n)-1} \in U(n) \boxminus
\end{aligned}
\]
(3) Identity:
want \(\forall a \in U(n)\). Fe \(\in U(n)\) sit
\[
a \cdot e=e \cdot d=a \quad \bmod (n)
\]

Hence, \(e=1 \bmod (n)\) where \(\operatorname{gcd}(1, n)=1\)
so, \(e=1 \in U(n) \square\)
- Associative properity:

Let \(a, b, c \in U(n)\)
Now,
\[
a \cdot(b, c)=(a, b) \cdot c \bmod n
\]
multiplication modn is Associathe.
Hence, By (1) \(\stackrel{\text { to (4) } \Rightarrow U(n) \text { is agoup. } \square \square}{\square}\)
(ix) prove that \(U(n), n \geqslant 3\) is cyclic if and only if \(n=4\) or \(n=p^{k}\) or \(n=2 p^{k}\) for some ODID prime \(p\) and \(k \geqslant 1\)
\(\Rightarrow\) (1) Prove \(U(n), n \geqslant 3\) is cyclic if \(n=4=2^{2} \quad p_{1}=2, \alpha_{1}=2\) by (viii)
\[
\begin{aligned}
|U(4)| & =\phi(4) \\
& =(2-1)(2)^{\prime}=2 .
\end{aligned}
\]

Hence, by class notes since \(|U(4)|=2\) (prime) then, \(U(4)\) is cyclic.
(2). Prove \(U(n)\) is cyclic if \(n=p^{k}\) where \(P\) is an ODD prime,\(k \geqslant 1\)
\[
\begin{aligned}
& \text { prime, } k \geqslant 1 \text { al ole ell } \\
& \Rightarrow n=p^{k}=\underbrace{p \cdot p_{1} p \ldots \rho}_{k \text { times }} \mathrm{n} \text { d's odd }
\end{aligned}
\]

So, by (Vil)
\[
\begin{aligned}
& \text { by }(v i l) \\
& \left.U(n) \approx z_{p-1}^{\text {an }}\right)
\end{aligned}+z_{p^{k-1}} \text {, odd where } k-1=m \in z^{+} \text {. }
\]

Now using the Hinit:
\(\operatorname{gcd}(p-1, p)=1 \rightarrow p-1<p, p-1\) is even and \(P\) is odd prime.
\[
\Rightarrow p-1 \times p
\]
\(\Rightarrow p-1 \neq p\) because \(p\) is prime.

Hen for \(p^{m}=\underbrace{p \cdot p \ldots p}_{m \text { tines }}\) for \(m \in Z^{+}\)
the factors for \(p^{m}=1, p^{i} 1 \leq i \leq m\).
\(\Rightarrow\) Hence, \(p-1 \times p^{m}\)
\(\Rightarrow \operatorname{gcd}\left(p-1, p^{m}\right)=1 \Rightarrow \operatorname{gcd}\left(p-1, p^{k-1}\right)=1\).
Hen by Haw (2)
\(z_{p-1} \oplus z_{p_{k-1}}\) is cyclic
and thus,
\(V(n)\) is cyclic since isomorphic to \(z_{p-1} \oplus z_{p k-1}\)
(3) Prove Un) is cyclic if \(n=2 p^{k}\) ( \(p\) is odd prime)
\[
n=\underbrace{2}_{\substack{\text { even } \\ \text { paine } \\ \text { even }}} \cdot \underbrace{k}
\]

Sine \(p\) is odd prime it will be \(>2\) so, \(p_{1}<p_{2}=p\). Hen by (Nil) since \(\alpha_{1}=1\).
\[
\Rightarrow U(n) \approx z_{p-1} \oplus z_{p^{k-1}}
\]

When \(\operatorname{gcd}\left(p-1, p^{k-1}\right)=1\) as proved above. then by How result, \(z_{p-1} \oplus z_{p k-1}\) is cyclic.
\(\Rightarrow U(n)\) is cyclic
\(\left[\begin{array}{c}\text { Hene, by (1) (2) and (3), } U(n) \text { is cyclic for } n \geqslant 3 \text { if } \\ n=4 \text { or } n=p^{k} \text { or } n=2 p^{k} \text { where } k \geqslant 1 \text {. }\end{array}\right]\)
if \(U(n)\) is cyclic prove that \(n=4\) or \(n=p^{k}\) or \(n=2 p^{k}\) for \(k \geqslant 1\).

Now it we studly the cases if \(n\),
\[
\begin{aligned}
& n=\longrightarrow \text { odd } \longrightarrow \text { prime } \longrightarrow n=p \text { for some pood, prime } \\
& n=\longrightarrow \text { notprime. ©ase1 } \longrightarrow n=p_{1} p_{2} p_{i}-p_{k} \times \\
& \rightarrow \text { even } \longrightarrow 2 \longrightarrow U(2)=\{1\} \rightarrow \text { trivial. }
\end{aligned}
\]
\(n=2^{\alpha_{1}} P_{1} P_{2} \cdots P_{k} X\).
- First notice if \(n=p\).
then \(U(n) \approx z_{p-1} \Rightarrow z_{p-1}\) is cyclic.
implies U(n) cyclic as assumed.
Now, it remains to study case 1 and case 2:
case 1: \(n=P_{1}^{\text {cant wowitten }} P_{2}^{\alpha_{1}} \cdot P_{2}^{\alpha_{2}} P_{3}^{\alpha_{3}} \ldots P_{k}^{\alpha_{k}} \quad\) for sore \(k \in z^{+}\).
where \(P_{1}, P_{2} P_{3} \cdots P_{k}\) are odd prime numbers. \(P_{i}, P_{j}\)
W.L.O.G:

Let \(n=p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \quad\) where \(P_{1} \neq p_{2} \quad \begin{aligned} & \text {, } p_{1} \text { and } p_{2} \text { ane. } \\ & \text { old primes and } p_{1}<p_{2}\end{aligned}\)
Then by (viii) "odd"
\[
\begin{aligned}
& U(n) \approx z_{p_{1}-1}^{z_{1}+z_{p_{1}-1}+}+{\underset{p_{2}-1}{ }+z_{p_{2}^{\alpha_{2}-1}}}_{\substack{\operatorname{gcd}\left(p_{1}-1, p_{1}^{\left.\alpha_{1}-1\right)=1} \\
\downarrow\right.}}^{\operatorname{gcd}\left(p_{2}-1, p_{2}^{\alpha_{2}-1}\right)=1} \begin{array}{l}
\downarrow_{\text {cyclic }}
\end{array} \\
& \text { cyclic } \\
& \operatorname{gcd}\left[\left(p_{1}-1\right)\left(p_{1}^{\alpha_{1}-1}\right) ;\left(p_{2}-1\right)\left(p_{2}^{\alpha_{2}-1}\right)\right]
\end{aligned}
\]
and the \(\operatorname{gcd}\) (even ,even) \(\neq 1\)
\(\sin \operatorname{ce}\left(p_{1}-1\right)\left(p_{1}^{\alpha_{1}-1}\right)\) and \(\left(p_{2}-1\right)\left(p_{2}^{\alpha_{2}-1}\right)\) are even.
Hence, \(U(n)\) is Not cyclic Contradiction.
as, \(z_{p_{1}-1} \oplus z_{p^{\alpha_{1}-1}}+z_{p_{2}-1} \ldots\). is Not cyclic. by previous \(H_{1} w\) problem.
\(\Rightarrow\) Note that this can be generated to any \(K\) prime odd. numbers \(\Rightarrow n=p_{1}^{\alpha_{1}} p_{2}^{a_{2}} \cdots p_{k}^{\alpha_{k}}\)
Thus, \(P_{i}=P_{j}\) can't be distinct for \(\forall 1 \leqslant i \neq j \leqslant k\).
(a) Hence, \(n=p^{k}\) for \(k \geqslant 2\) and \((*) \Rightarrow n=p^{k}+k \geqslant 1\) When \(U(n)\) is cyclic and \(p\) are odd pome numbers

Now, case 2:
Where \(n\) is even, we know that any even number \(n\) can be written in the prime factorization as

where 2 is the only even pome number so, \(p_{2}, P_{3}, \cdots, p_{k}\) are odd pome numbers., then by case (1) we know, \(P_{i}\), Pi cas't be distinct whir \(1 \leqslant i^{i} \neq k\), for the same reason as in Case (1).

Hence, \(n=2^{\alpha_{1}} p^{k} \quad k \geqslant 1, \alpha_{1} \geqslant 1\)

Now, Lets assume that \(\alpha_{1}>1\) and \(n=2 \alpha_{1} p^{k}\) so, \(n\) (even), Hence by (Viii)
\[
U(n) \approx z_{2} \oplus z_{2^{k-2}} \oplus z_{p-1} \oplus z_{p^{k-1}}
\]
clearly \(\operatorname{gcd}\left(2,2^{\alpha_{1}-2}\right) \neq 1\), so \(U(n)\) is Not cyclic since by How result \(z_{2} \oplus Z_{2} \alpha_{1-2}\) is Not cyclic, Also if \(\alpha_{1}=2 \Rightarrow \operatorname{gcd}(2, p-1) \neq 1\) since \(p-1\) is even.
But, according to the Hint in (vii) \(z_{2} \oplus z_{2^{d i-2}}\) part will be removed if \(\alpha_{1}=1\)
\[
\Rightarrow \quad \text { so, } U(n) \approx z_{p-1} \oplus z_{p k-1}
\]
where as proved earlier in this question

\(\Rightarrow\) Thus, if U(n) is cyclic, \(n=2 p^{k}\)
(b) for \(p\) odd pome odd number and \(k \geqslant 1\).
- Now, we treat the last possible case, where. as in \((* *) \quad n=2^{\alpha_{1}}, \alpha_{1} \geqslant 1\)
\[
U(n) \approx z_{2} \oplus z_{2} \alpha_{1-2}
\]
\(\rightarrow \operatorname{gcd}\left(2,2^{\alpha-2}\right)=2 \neq 1\) Hence contradiction \(U(n)\) not cyclic
So, \(\alpha_{1}=1\) or \(\alpha_{4}=2\)
\[
\begin{gather*}
\alpha_{1}=1 \text { or }  \tag{c}\\
\text { trivial } \\
\alpha_{4}=2 \\
\lfloor
\end{gather*} n=2^{2}=4
\]
\[
U(4) \approx Z_{2} \Rightarrow \begin{aligned}
& U(4) \text { is cyclic } \\
& \text { as } z_{2} \text { is cyclic }
\end{aligned}
\]
[Hence, by (a), (b), (c) \(\Rightarrow\) If \((x n)\) is cyclic then \(n=4\) or \(n=p^{k}\) or \(n=2 p^{k} \quad k \geqslant 1\) and \(p\) odd prime. and by the two results in green
\(\Rightarrow U(n), n \geqslant 3\) is cyclic if \(n=4\) or \(n=p^{k}\) or \(n=2 p^{k}\) for some ODD prime \(p\) and \(k>1\).
x) Prove that \(U(64)\) has an element of order 16. but it has no elements of carder 32 .
\[
\begin{aligned}
& n=64=2.32=2.2 .16=2^{6} \\
& \begin{aligned}
|U(64)| & =\varnothing(64) \\
& =(2-1) 2^{6-1} \\
& =2^{5}=32<\infty \text { So, by class notes. }
\end{aligned}
\end{aligned}
\]
for \(\forall a \in U(64) \Rightarrow|a| \mid 32\)
Then, \(|u|=1,32,2,16,4,8\),
but since \(n=\frac{2^{5}}{2^{\text {even }}}\) where \(n \neq 4\) and \(n \neq p^{k}\) and \(n \neq 2 \rho^{k}\).
Hence, \(U(64)\) is Not cyclic by \((i x)\)
then by class notes since \(|\cup(64)|<\infty, \nexists a \in U(64)\)
sot \(|a|=32\). (No element with order 32).
Now by ( \(V\) iii)
\[
\begin{align*}
U(64) & \approx z_{2} \oplus z_{2^{4}} \\
& \approx z_{2} \oplus z_{16} \tag{2}
\end{align*}
\]
then by previous \(H_{1} \omega \quad|(a, b)|=\operatorname{LCM}(|a|,|b|) \quad \forall(a, b) \in z_{2} \oplus z_{16}\). take the yeneruturs of \(z_{z}\) and \(z_{16}\). (to fined the Max elementisorder)
\[
\begin{aligned}
|(1,1)| & =\frac{|1| 11 \mid}{\operatorname{gcd}(2,16)} \\
& =\frac{2 \cdot 16}{2}=16
\end{aligned}
\]

Hence, \(\forall a \in N(64) \Rightarrow|a| \leq 16\), so \(U(64)\) has an -element of order 16 but Not 32 .
(xi) prove that \(D=\left(z_{5},+\right) \oplus U(18)\) is cyclic and Hence. \(D \approx\left(z_{m}, t\right)\) find \(m\).
\[
\begin{aligned}
& z_{5}=\{0,1,2,3,4\}, z_{18}=\{0,1,2, \ldots, 17\} \\
& \begin{aligned}
U(18) & =\left\{a \in z_{18} \mid \operatorname{gcd}(a, 18)=1\right\} \\
& =\{1,5,7,11,13,17\}
\end{aligned}
\end{aligned}
\]
to check:
\[
\begin{aligned}
& \text { check: } \\
& \varnothing(18)=(2-1) \cdot 2^{1-1} \cdot(3-1) 3^{1} \\
&=2 \cdot 3=6
\end{aligned}
\]

Poof:
\(\Rightarrow n=18=2 \cdot 3^{2}\), we notice it is of the form \(2 p^{k}\) where \(p=3\) odd prime, Hence by \((i x) \cup(18)\) is cyclic

Also,
\[
\begin{aligned}
\mid \overline{|D|} & =\left|z_{5} 1\right| \cup(18) \mid \\
& =5 \cdot 6=30<\infty
\end{aligned}
\]

Now, by class Thm \(D\) is a finite, cyclic group with 30 elements so, \(\Rightarrow D \approx\left(z_{30,}+\right) \Rightarrow m=30\)
( \(x i i\) ) prove that \(\left(Q^{*}, 0\right)\) is not cyclic.
A ssume by contradiction that \(Q^{*}\) is cydic, and since it is infinite group. Hen by class the.
for \(\forall q \in Q^{*}|\{c\} \rightarrow| q \mid=\infty\).
but \(\exists-1 \in Q^{*}\) and \(-1 \neq e=1\) where \(|-1|=2<\infty\) contralictiu!

\section*{2.2.s Solution for HW-Five}

Farah Zeyad
HE 5 go0086476
1) Let \(D\) be an abelian group with \(2^{3} 5^{2}\) elements
i) Suppose that \(D\) has exactly one subgroup with 4 elements. Find all non-isomorphic group with these properties.

Solution:
All non-isomorphic group without the condition \(\begin{array}{cc}3 & 2 \\ 1+2 & 1+1 \\ 1+1+1\end{array}\) we have
(1) \(\mathbb{Z}_{8} \oplus Z_{25}\), (2) \(Z_{8} \oplus Z_{5} \oplus \mathbb{Z}_{5}\), (3) \(\mathbb{Z}_{2} \oplus Z_{4} \oplus \mathbb{R}_{25}\)
(4) \(Z_{2} \oplus Z_{4} \oplus Z_{5} \oplus Z_{5}\)
(5) \(Z_{2} \oplus \mathcal{Z}_{2} \oplus \mathcal{Z}_{2} \oplus \mathcal{Z}_{25}\)
(6) \(Z_{2} \oplus Z_{2} \oplus Z_{2} \oplus Z_{s} \oplus Z_{s}\)

Now suppose \(D\) has exactly one subgroup with element: Then we have to check which one of them has exactly. one subgrop with 4 elements: by using "obsevation"
(1) \(D=Z_{8} \oplus Z_{25}\) : Let \(H\) be a subgroup of \(Z_{8}\) with order 4
\(\Rightarrow H \oplus\{0\}\) is the only subgrup with order 4
(2) \(D=\mathbb{Z}_{8} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{3}\) : same of \(\mathbb{Z}_{8} \oplus \mathbb{R}_{2}, H+\{0\}+\{0\}\) The only subgroup of order 4
(3) \(D=\mathbb{Z}_{2} \oplus \mathbb{Z}_{4} \oplus \mathbb{Z}_{25}\) : Let \(K\) be a subgroup of \(\mathbb{Z}_{4}\) with 2 elements \(\Rightarrow Z_{2} \oplus K \oplus\{0\}\) and \(\{0\}+Z_{4} \oplus\{0\}\) are two subgroup with 4 elements but \(D\) has exactly one subgroup of ode 4 contradiction
(4) \(D=\mathbb{Z}_{2} \oplus \mathbb{Z}_{4} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{5}\) : same of (3) because \(\mathbb{Z}_{2} \oplus K \oplus\{0\}+\{0\}\) and \(\{0\} \oplus Z_{4} \oplus\{0\}_{3}+\{0\}\) are two subgroup with order 4. Contradiction
(5) \(D=Z_{2} \oplus Z_{2} \oplus Z_{2} \oplus Z_{25}\), it has three subgroup of order 4 \(F=Z_{2} \oplus\{0\} \oplus Z_{2} \oplus\{0\}\) and \(W=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus\{0\} \oplus\{0\}\) and \(L=\{0\} \oplus Z_{2} \oplus Z_{2} \oplus\{0\}\) like \(|(1,0,1,0)|=|(1,1,0,0)|=|(0,1,1,0)|\) \(=4\) contradiction
(6) \(D=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{5}\) : same as (5) has three element of order 4. Contradiction

Therefore The all non-isomorphic group with this properties are:
\(Z_{8} \oplus Z_{25}\) and \(Z_{8} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{5}\)
ii) Suppose that D has exactly one subgroup with 4 elements and it has exactly one subgroup with 5 elements. Find all non-isomorphic group with these properties.
From (i) we have only two group that has one subgroup of order 4:
\[
D=\mathbb{Z}_{8} \Theta \mathbb{Z}_{25} \text { and } D=\mathbb{Z}_{8} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{s}
\]

Now check if thy have alse one subgroup of order 5
(1) \(D=Z_{8} \oplus Z_{25}\) : Let \(H\) be a subgroup of \(Z_{25}\) with 5 elements Then \(\{0\}+H\) is the only subgroup of order \(S\).
\(\Rightarrow D\) has one subgroup of order 5
(2) \(D=\mathbb{Z}_{8} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{5}\) : this group has two subgroup of order 5 \(\{0\} \oplus \mathbb{Z}_{S} \oplus\{0\}\) and \(\{0\} \oplus\{0\} \oplus \mathbb{Z}_{S}\)
\(\Rightarrow D\) has two subgroup of order 5 contradiction
\(\Rightarrow \mathbb{Z}_{8} \oplus \mathbb{Z}_{25}\) are the only group that has one subgroup of order 4 and one subgroup of order 5 .
2) Let \(D\) be a cyclic group with 100 elements. Convince me that (Put (D), 0) is abelian group and find \(m_{1}, \ldots, m k\) such that \(\operatorname{Aut}(D) \approx \mathbb{Z}_{m_{1}} \oplus \ldots \oplus \mathbb{Z}_{m k}\)
Solution:-
Since \(D\) is finite Cyclic group with 100 element
\[
\begin{aligned}
& \Rightarrow D \approx Z_{100} \\
& \Rightarrow(\operatorname{Aut}(D), 0) \approx\left(\operatorname{Aut}\left(Z_{100}\right), 0\right)
\end{aligned}
\]

From Lecture notes we know \(\forall n \geqslant 2\left(\operatorname{Aut}\left(I_{n}\right), 0\right) \approx(U(n),\).
\[
\Rightarrow\left(\operatorname{Aut}\left(Z_{100}\right), 0\right) \approx(U(100), .)
\]

From \(H W\) :- \(U(100)\) is a group under multiplication \(\bmod 100\)
\[
\Rightarrow \quad U(100) \approx \mathbb{Z}_{2}(1) \mathbb{Z}_{4} \oplus \mathbb{Z}_{s} \quad \text { since } \operatorname{gcd}\left(4^{\prime}, 5\right)=1^{\prime}
\]
\(U(100) \approx Z_{2} \oplus Z_{20} \Rightarrow\) since \(Z_{2} \oplus I_{20}\) is abelian
\(\Rightarrow U(100)\) is abelian group.
\[
\Rightarrow \operatorname{since} \operatorname{Aut}\left(\pi_{400}\right) \approx U(100)
\]
\(\Rightarrow\) (Ant \(\left.\left(\lambda_{100}\right), 0\right)\) is abclian group
\(\Rightarrow(\) Ant \((D), 0)\) is abchian group
From HW 4 :
\[
\text { Auth }(D) \approx \operatorname{Aut}\left(\mathbb{Z}_{100}\right) \approx U(100) \approx \mathbb{Z}_{2} \oplus \mathbb{Z}_{4} \oplus \mathbb{Z}_{5}
\]
\(\Rightarrow \operatorname{Aut}(D) \approx Z_{2} \oplus Z_{4} \oplus Z_{S}\)
case \(\Rightarrow \quad m_{1}=2, m_{2}=4, m_{3}=5\)
but also since \(Z_{2} \oplus Z_{4} \oplus \mathbb{Z}_{5} \tilde{N}^{\prime} Z_{2} \oplus Z_{20}\) since \(\operatorname{gcd}(4,5)=1\)
\(\Rightarrow \operatorname{Aut}(D) \approx Z_{2} \oplus Z_{20}\)
case \(2 \Rightarrow m_{1}=2, m_{2}=20\)
3) Prove that every group with \(n=17 \times 3^{2}\) is abelian. Find all
hon -isomorphic group with \(n\) elements
Solution:- \(|D|=153=17 \times 3^{2}\) prove \(D\) is abelian
\[
\begin{aligned}
& n_{3}=\# \text { of all sylow-3-subgroup } \\
\Rightarrow & n_{3}\left|\frac{|D|}{\mid \text { sy| } 3| |}=n_{3}\right| 17 \Rightarrow n_{3}=1 \text { or } 17 \\
\Rightarrow & 3\left|n_{3}-1 \Rightarrow 3\right|(1-1) \Rightarrow 3 \mid 0 \text { but } 3 \times 17-1 \Rightarrow 3 \times 16
\end{aligned}
\]
\(\Rightarrow n_{3}=1 \Rightarrow D\) has exactly one sylow-3-subgroup say \(H\)
since \(n_{3}=1 \Rightarrow H \triangleleft D \Rightarrow|H|=3^{2}=9\)
\[
\begin{aligned}
& n_{17}=\# \text { of all sylow-17-subgroup } \\
\Rightarrow & n_{17} \left\lvert\, \frac{\mid D 1}{\left|S_{y}\right|(17) \mid \Rightarrow}\right. \\
\Rightarrow & n_{17} \mid 3^{2} \Rightarrow n_{17}=1 \text { or } 3 \text { or } 9 \\
& 17 n_{87}-1 \Rightarrow \\
& \text { if } n_{17}=1 \Rightarrow 17|(1-1) \Rightarrow 17| \circ \\
& \text { if } n_{17}=3 \Rightarrow 17 \times(3-1) \Rightarrow 17 \times 2 \times \\
& \text { if } n_{7}=9 \Rightarrow 17 \times(9-1) \Rightarrow 17+8 \times
\end{aligned}
\]
\(\Rightarrow n_{17}=1 \Rightarrow D\) has exactly one sylow- 17 -subgroup say since \(n_{17}=1 \Rightarrow k \Delta D . \Rightarrow|k|=17\)
Since \(H, K \triangle D\) and \(H \cap K=\left\{e^{3} \Rightarrow|H K|=\frac{|H||K|}{|H \cap K|}=\frac{9 \times 17}{1}=153\right.\) \(\Rightarrow H K=D \Rightarrow D \approx H \oplus K\).
\(\Rightarrow\) since \(|K|=17 \Rightarrow K \approx R_{1 s}\) and \(|H|=3^{2}=9\) since
\(H\) is abelian subgroup of \(D \quad H \approx \mathbb{Z}_{9}\) or \(H \approx \mathbb{Z}_{3} \oplus \mathbb{Z}_{3}\)
\(\Rightarrow D \approx \mathbb{Z}_{9} \oplus \mathbb{Z}_{17}\) since \(\operatorname{gcd}(9,17)=1 \Rightarrow D\) iscyclic
\(\Rightarrow D\) is abelian
\(\Rightarrow\) and \(D \approx \mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{17} \Rightarrow\) Not Cyclic but since \(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}\) and \(\mathbb{Z}_{17}\) is abelian \(\Rightarrow\) Dis abelian
\(\Rightarrow D\) is abelian and \(\mathbb{Z}_{4} \oplus \mathbb{Z}_{17}\) and \(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{17}\) are the all Non-isomorphic group with \(n=153\) elenents
4) Let \(D\) be a group with \(5 \cdot 11 \cdot 29\). prove that \(D\) has exactly one subgroup with 29 elements, say \(H\) and \(H \subseteq C(D)\).

Solution:-
Prove that \(D\) has one subgroup of order 29
So by sylow theorem:
\[
\begin{aligned}
& n_{29}=\# \text { of all sylow-29-subgroup } \\
& n_{29} \left\lvert\, \frac{|D|}{\left|s_{y y}\right|(2 a)} \Rightarrow\right. \\
& \Rightarrow 29\left|n_{29}\right| 5 \times 11 \Rightarrow n_{29}-1 \Rightarrow 1,5,11,55 \\
& \Rightarrow \text { if } n_{29}=1 \Rightarrow 29|(1-1) \Rightarrow 29| 0 \\
& \text { if } n_{29}=5 \Rightarrow 29 \times(5-1) \Rightarrow 29 \times 4 \times \\
& \text { if } n_{29}=11 \Rightarrow 294(11-1) \Rightarrow 29410 \times \\
& \text { if } n_{29}=55 \Rightarrow 297(55-1) \Rightarrow 29+54 \times
\end{aligned}
\]
\[
\Rightarrow n_{29}=1
\]
\(\Rightarrow D\) has exactly one sylow-29-subgroup say \(H\) let \(H\) be sylow-29. subgroup \(\Rightarrow H \triangle D\)
Since \(H \triangle D\) we conclude \(D /(H) \approx\) subgroup of \(\operatorname{Aut}(H)\)
since \(|H|=29, H\) is cyclic \(\Rightarrow H \approx Z_{2} 9\)
\(\Rightarrow \underset{C(H)}{D} \approx\) subgroup of \(\operatorname{Aut}\left(\mathcal{I}_{29}\right) \approx U(2 a)\)
\(\Rightarrow|D / C(H)|||D|\) and \(| D /(H)| | U(2 a) \mid=28\)
\[
\begin{aligned}
& \Rightarrow|/(H)| \\
& \Rightarrow \operatorname{gcd}(28,1595)=1 \Rightarrow|D / c(H)|=1
\end{aligned}
\]
\[
\Rightarrow \quad H \subseteq C(D)
\]
5) Let \(D\) be a group with 216 elements. prove that \(D\) is Not Simple

Solution:
Let \(D\) be a group where \(|D|=216=2^{3} \cdot 3^{3}\)
\(n_{3}=\#\) of all sylow-3-subgroup
\[
\begin{aligned}
& n_{3}\left|\frac{|D|}{\left.\left|S_{y}\right|(3)\right) \mid}=2^{3} \Rightarrow n_{3}\right| 2^{3} \Rightarrow n_{3}=1,2,4,8 \\
B \mid\left(n_{3}-1\right) \Rightarrow & \text { if } n_{3}=1 \Rightarrow 3|(1-1) \Rightarrow 3| 0 \vee \\
& \text { if } n_{3}=2 \Rightarrow 3 \mid(2-1) \Rightarrow 3+1 \times \\
& \text { if } n_{3}=4 \Rightarrow 3|(4-1) \Rightarrow 3| 3 \vee \\
& \text { if } n_{3}=8 \Rightarrow 3|(8-1) \Rightarrow 3| 7 \times
\end{aligned}
\]
\(n_{2}=\#\) of all sylow-2-subgroup
\[
\begin{aligned}
n_{2} \left\lvert\, \frac{|D|}{\mid \text { SI| }|(2)|} \Rightarrow\right. & n_{2} \mid 3^{3} \Rightarrow n_{2}=1,3,9,27 \\
\Rightarrow 2 \mid\left(n_{2}-1\right) \Rightarrow & \text { if } n_{2}=1 \Rightarrow 21(1-1) \Rightarrow 210 \\
& \text { if } n_{2}=3 \Rightarrow 2 /(3-1) \Rightarrow 2 / 2 \\
& \text { if } n_{3}=9 \Rightarrow 2 /(9-1) \Rightarrow 218 \mathrm{~V} \\
& \text { if } n_{2}=27 \Rightarrow 2127-1 \Rightarrow 2 / 26
\end{aligned}
\]
since \(n_{3}=1\) or \(n_{3}=4 \Rightarrow\) Assume \(n_{3} \neq 1, n_{2} \neq 1\)
Let \(n_{3}=4 \quad \exists\) a group homorphisim \(K: D \longrightarrow S_{4}\) s.t
\(\frac{D}{\operatorname{ker}(K)} \underset{\sim}{\sim}\) Subgroup of \(S_{4}\) and \(\operatorname{Ker}(K) \neq D[\operatorname{Ker}(K) \Delta D]\) we want to show \(\operatorname{Ker}(K) \neq\{e\} \Rightarrow \operatorname{Deny}\) Assume \(\operatorname{Ker}(K)=\{e\}\)
\(\Rightarrow D \approx\) Subgroup of \(S_{4}\) but since \(|D|=216\) and \(\left|S_{4}\right|=4!=24\) impossible contradiction
\(\Rightarrow \operatorname{Ker}(k) \neq\{e\} \Rightarrow D\) is Not Simple.
6) Let \(D\) be a group with 5.7.17 elements. prove that \(D\) is not simple. - Assume that \(n_{17} \neq 1\). How many element in \(D\) have order 17.?
solution
Let \(D\) be a group with \(5 \times 7 \times 17=595\) elements Prove \(D\) is not Simple.
\(n_{5}=\) \# of all sylow-5-subgroup
\[
\begin{aligned}
\Rightarrow n_{5} \left\lvert\, \frac{|D|}{|S y|(5) \mid} \Rightarrow\right. & n_{5} \mid 7 \times 17 \Rightarrow n_{5}=1,7,17,119 \\
\Rightarrow 5 \mid\left(n_{5}-1\right) \Rightarrow & \text { if } \left.n_{5}=1 \Rightarrow 5\right)(1-1) \Rightarrow 510 \\
& \text { if } n_{5}=7 \Rightarrow 5 \times(7-1) \Rightarrow 5 \times 6 \times \\
& \text { if } n_{5}=17 \Rightarrow 5 \times(17-1) \Rightarrow 5 \times 16 \times \\
& \text { if } n_{5}=119 \Rightarrow 5 \times(119-1) \Rightarrow 5 \times 118 \times
\end{aligned}
\]
\(\Rightarrow n_{5}=1 \Rightarrow D\) has exactly one sylow-5-subgroup
\(\Rightarrow\) Let \(H\) is the sylow-5-subgroup \(\Rightarrow H \triangle D\)
\(\Rightarrow\) Therefore \(D\). is Not Simple.
\(n_{17}=\#\) of an sylow-17-subogroup
\[
\begin{aligned}
& n_{17}\left|\frac{|D|}{|S y|(i) \mid} \Rightarrow n_{17}\right| 5 \times 7 \Rightarrow n_{17}=1,5,7,35 \\
& \begin{aligned}
\Rightarrow 17 \mid\left(n_{17}-1\right) \Rightarrow & \text { if } n_{17}=1 \Rightarrow 17 \mid(1-1) \Rightarrow 1710 \\
& \text { if } n_{17}=5 \Rightarrow 17 \times(5-1) \Rightarrow 17 \mid 4 \times
\end{aligned} \\
& \text { if } n_{17}=7 \Rightarrow 174(7-1) \Rightarrow 17+6 x \\
& \text { if } n_{17}=35 \Rightarrow 17|(35-1) \Rightarrow 17| 34 \mathrm{~V}
\end{aligned}
\]
\(\Rightarrow n_{17}=1\) or \(n_{17}=35\)
Assume \(n_{17} \neq 1 \Rightarrow\) There are 35 sylow- 17 -subgroup but \(|e|=1 \Rightarrow\) so we have only 16 element of order 17

So the 35 sylow-17-subgroup have \(35 \times 16=560\) element of order 17.

Farah Zeyad
900086476
Question 1 i): Let \(B=\left[\begin{array}{ll}\{1,2\} & \{2,4\} \\ \{3,4\} & \{1,4\}\end{array}\right]\). Does \(/ B^{-1}\) exists? if yes then
find it. If no then explain
solution
1) check if \(|B| \in U(A) \Rightarrow|B|=F\), so by finding deterimant of \(B\) we have.
\[
\begin{array}{rlr}
\Rightarrow|B|= & \{1,2\} \cdot\{1,4\}+-\{2,4\}\{1,4\} \quad \text { Note }-\{2,4\}=\{2,4\} \\
& =\{1,2\}\{1,4\}+\{2,4\}\{1,4\} \\
= & \{1,2\} \cap\{1,4\}+\{2,4\}\{1,4\} \quad 1 \\
& \{1\}+\{4\}=\{1\}-\{4\} \cup\{4\}-\{1\}=\{1,4\} \\
\Rightarrow & |B|=\{1,4\}
\end{array}
\]

No, \(B^{-1}\) Does not exist because \(B\) is invertible if and only if \(|B| \in U(A)\) where \(U(A)=\{F\}\), \(\sin \subset \bar{e}|B|=\{1,4\} \neq F \Rightarrow|B| \notin U(A)\)
Therefore \(B\) is not invertible has no inverse \(\Rightarrow B^{-1}\) Does notexist.
ii) Let \(B=\left[\begin{array}{ll}\{2,3\} & \{1,3,4\} \\ \{1,3,4\} & \{2,4\}\end{array}\right]\) Does \(B^{-1}\) exist? if yes then findit. If no then explain.
solution
1) check if \(|B| \in \cup(A) \Rightarrow|B|=F\) so by Finding the determinat we have.
\[
\begin{aligned}
|B|= & \{2,3\}\{2,4\}+-\{1,3,4\}\{1,3,4\} \quad \text { Note }-\{1,3,4\}=\{1,3,4\} \\
= & \{2,3\} \cap\{2,4\}+\{1,3,4\} \cap\{1,3,4\} \\
& \{2\}+\{1,3,4\} \\
= & \{2\}-\{1,3,4\} \cup\{1,3,4\}-\{2\} \\
= & \{2\} \cup\{1,3,4\} \\
\Rightarrow & |B|=\{1,2,3,4\} \\
\Rightarrow & |B| \in U(A)=\{F\} \\
& \text { yes, } B^{-1} \text { exist since }|B|=F \text {. Now Find } B^{-1}
\end{aligned}
\]
\[
\begin{aligned}
& \Rightarrow B^{-1}=\frac{F}{F}\left[\begin{array}{ll}
\{2,4\} & \{1,3,4\} \\
\{1,3,4\} & \{2,3\}
\end{array}\right]=F\left[\begin{array}{ll}
\{2,4\} & \{1,3,4\} \\
\{1,3,4\} & \{2,3\}
\end{array}\right] \\
& \Rightarrow B^{-1}=\left[\begin{array}{ll}
\{2,4\} & \{1,3,4\} \\
\{1,3,4\} & \{2,3\}
\end{array}\right]
\end{aligned}
\]

Check ' if \(B B^{-1}=\left[\begin{array}{ll}F & \phi \\ \phi & F\end{array}\right]=B^{-1} B\)
Note \(\{3\}+\{3\}=\varnothing\)
\[
\Rightarrow B B^{-1}=\left[\begin{array}{ll}
\{2,3\} & \{1,3,4\} \\
\{1,3,4\} & \{2,4\}
\end{array}\right]\left[\begin{array}{ll}
\{2,4\} & \{1,3,4\} \\
\{1,3,4\} & \{2,3\}
\end{array}\right]=\left[\begin{array}{ll}
\{2\}+\{1,3,4\} & \{33+\{3\} \\
\{4\}+\{4\} & \{1,3,4\}+\{2\}
\end{array}\right.
\]
\[
=\left[\begin{array}{ll}
F & \phi \\
\phi & F
\end{array}\right] \text { There Fore } B \text { has inverse } B^{-1}=\left[\begin{array}{ll}
\{2,4\} & \{1,3,4\} \\
\{1,3,4\} & \{2,3\}
\end{array}\right]
\]
iii) Let \(B=\left[\begin{array}{ccc}F & \{2,4\} & \{1\} \\ \{1,3\} & F & \{3\} \\ \{2\} & \{2\} & F\end{array}\right]\). If possible Find \(B^{-1}\). \(\quad\) Note \(-\{2,4\}=\{2,4\}\)
- First check if \(|B| \in U(A)=F\)
\[
\begin{aligned}
&|B|= F\left[\begin{array}{cc}
F & \{3\} \\
\{2\} & F
\end{array}\right\}-\{2,4\}\left[\begin{array}{cc}
\{1,3\} & \{3\} \\
\{2\} & F
\end{array}\right]+\{1\}\left[\begin{array}{cc}
\{1,3\} & F \\
\{2\} & \{2\}
\end{array}\right] \\
&=F(F \cap F+-\{2\} \cap\{3\})+\{2,4\}(\{1,3) \cap F+-\{23 \cap\{3\})+\{13(\{1,3) \cap\{2\}-\{2\} \cap F) \\
&=F(F+\phi)+\{2,4\}(\{1,3\}+\phi)+\{1\}(\phi+\{2\}) \\
&=F+\phi+\varnothing=F
\end{aligned}
\]
\(\Rightarrow|B|=F \Rightarrow B^{-1}\) exist. Now Find \(B^{-1}\) using row operation
\[
\left[\begin{array}{ccc:ccc}
F & \{2,4\} & \{1\} & F & \phi & \varnothing \\
\{1,3\} & F & \{3\} & \varnothing & F & \varnothing \\
\{2\} & \{2\} & F & \varnothing & \varnothing & F
\end{array}\right] \xrightarrow{\{1,3\} R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{ccc:ccc}
F & \{2,4\} & \{1\} & F & \varnothing & \phi \\
\phi & F & \{1,3\} & \{1,3\} & F & \phi \\
\varnothing & \phi & F & \{2\} & \Phi & F
\end{array}\right]
\]
\(\left\{\begin{array}{l}\{2,4\} R_{2}+R_{1} \rightarrow \\ R_{1}\end{array}\left[\begin{array}{ccc:ccc}F & \phi & \{1\} & F & \{2,4\} & \phi \\ \phi & F & \{1,3\} & \{1,3\} & F & \phi \\ \phi & \phi & F & \{2\} & \phi & F\end{array}\right] \xrightarrow{\{1,3\} R_{3}+R_{2} \rightarrow R_{2}}\right.\)
\[
\left[\begin{array}{ccc:ccc}
F & \phi & \phi & F & \{2,4\} & \{1\} \\
\phi & F & \phi & \{1,3\} & F & \{1,3\} \\
\phi & \phi & F & \{2\} & \phi & F
\end{array}\right]
\]
\[
\begin{aligned}
& \text { So } B^{-1}=\left[\begin{array}{ccc}
F & \{2,4\} & \{1\} \\
\{1,3\} & F & \{1,3\} \\
\{2\} & \phi & F
\end{array}\right] \\
& \text { Now check that } B B^{-1}=\left[\begin{array}{ccc}
F & \phi & \phi \\
\phi & F & \phi \\
\phi & \phi & F
\end{array}\right] \\
& \Rightarrow B B^{-1}=\left[\begin{array}{ccc}
F & \{2,4\} & \{1\} \\
\{1,3\} & F & \{3\} \\
\{2\} & \{2\} & F
\end{array}\right]\left[\begin{array}{ccc}
F & \{2,4\} & \{1\} \\
\{1,3\} & F & \{1,3\} \\
\{2\} & \phi & F
\end{array}\right]=\left[\begin{array}{lll}
F & \phi & \phi \\
\phi & F & \phi \\
\phi & \phi & F
\end{array}\right] \text { I }
\end{aligned}
\]

Therefore it's possible for \(B\) to have an inverse
where \(B^{-1}=\left[\begin{array}{ccc}F & \{2,4\} & \{1\} \\ \{1,3\} & F & \{1,3\} \\ \{2\} & \varnothing & F\end{array}\right]\)

Question 2: Convince me that \(B=\left[\begin{array}{lll}2 & 5 & 4 \\ 1 & 1 & 2 \\ 3 & 3 & 5\end{array}\right]\) is invertible over \(\mathbb{R}_{8}\)
Solution:-
* \(B\) is invertible iff. \(|B| \in U\left(Z_{8}\right)=U(8)\) so Now Find the determinant of \(B\). " \(|B|^{\prime}\)
\[
\begin{aligned}
|B|= & 2\left[\begin{array}{ll}
1 & 2 \\
3 & 5
\end{array}\right]-5\left[\begin{array}{ll}
1 & 2 \\
3 & 5
\end{array}\right]+4\left[\begin{array}{ll}
1 & 1 \\
3 & 3
\end{array}\right] \\
& 2(5-6)+3(5-6+4(3-3) \\
= & 2(-1)+3(-1)+0 \\
= & 2(7)+3(7)=35 \bmod 8=3
\end{aligned}
\]

There fore \(|B|=3\) since \(3 \in U\left(R_{8}\right)=U(8)\) There Fore \(B\) is invertible.

Now Find the inverse using row operation
\(\left[\begin{array}{lll:lll}2 & 5 & 4 & 1 & 0 & 0 \\ 1 & 1 & 2 & 0 & 1 & 0 \\ 3 & 3 & 5 & 0 & 0 & 1\end{array}\right] \xrightarrow{\substack{\text { Change } \\ R_{1} \text { in }_{1} \nrightarrow R_{2} \\ R_{1} \leftrightarrow R_{2}}}\left[\begin{array}{lll:lll}1 & 1 & 2 & 0 & 1 & 0 \\ 2 & 5 & 4 & 1 & 0 & 0 \\ 3 & 3 & 5 & 0 & 0 & 1\end{array}\right]\)
\(\xrightarrow{-2 R_{1}+R_{2}}\left[\begin{array}{lll:lll}1 & 1 & 2 & 0 & 1 & 0 \\ 0 & 3 & 0 & 1 & -2 & 0 \\ 5 & 3 & 5 & 0 & 0 & 1\end{array}\right] \xrightarrow{-3 R_{1}+R_{3}}\left[\begin{array}{ccc:ccc}1 & 1 & 2 & 0 & 1 & 0 \\ 0 & 3 & 0 & 1 & 6 & 0 \\ 0 & 0 & -1 & 0 & -3 & 1\end{array}\right]\)

\(\frac{1}{3}\) have a meaning in \(\pi_{8}\) since \(3 \in U\left(Z_{8}\right)=U(8) \stackrel{7}{\Rightarrow} \frac{7}{3}^{-1} \times 1=3 \in \pi_{8}\) \(\frac{1}{7}\) have meaning in \(\mathbb{R}_{8}\) since \(7 \in U\left(\mathbb{R}_{8}=U(8) \Rightarrow 7^{-1} \times 1=7 \in \pi_{8}\right.\) \(\frac{1}{7}\) have meaning in same For \(\left\{\frac{12}{7} \Rightarrow 7 \in U\left(Z_{8}\right) \Rightarrow 7^{-1} \times 5=3 \in \mathbb{R}_{8}\right.\)
\(\longrightarrow\left[\begin{array}{lll:lll}1 & 1 & 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 3 & 2 & 0 \\ 0 & 0 & 1 & 0 & 3 & 7\end{array}\right] \xrightarrow{R_{1}-R_{2}}\left[\begin{array}{ccc:ccc}1 & 0 & 2 & -3 & -1 & 0 \\ 0 & 1 & 0 & 3 & 2 & 0 \\ 0 & 0 & 1 & 0 & 3 & 7\end{array}\right]\)
\(\left[\begin{array}{lll:lll}1 & 0 & 2 & 5 & 7 & 0 \\ 0 & 1 & 0 & 3 & 2 & 0 \\ 0 & 0 & 1 & 0 & 3 & 7\end{array}\right] \xrightarrow{-2 R_{3}+R_{1}}\left[\begin{array}{ccc:ccc}1 & 0 & 0 & 5 & 1 & -14 \\ 0 & 1 & 0 & 3 & 2 & 0 \\ 0 & 0 & 1 & 0 & 3 & 7\end{array}\right]\)
\(\xrightarrow{-14 \bmod 8}=2\left[\begin{array}{ccc:ccc}1 & 0 & 0 & 5 & 1 & 2 \\ 0 & 1 & 0 & 3 & 2 & 0 \\ 0 & 0 & 1 & 0 & 3 & 7\end{array}\right]\)
\[
\Rightarrow E^{-1}=\left[\begin{array}{lll}
5 & 1 & 2 \\
3 & 2 & 0 \\
0 & 3 & 7
\end{array}\right]
\]

Now Shit \(E B^{-1}=I\)
\[
\Rightarrow E B^{-1}=\left[\begin{array}{lll}
2 & 5 & 4 \\
1 & 1 & 2 \\
3 & 3 & 5
\end{array}\right]\left[\begin{array}{lll}
5 & 1 & 2 \\
3 & 2 & 0 \\
0 & 3 & 7
\end{array}\right]=\left[\begin{array}{ccc}
25 & 24 & 32 \\
8 & 9 & 16 \\
24 & 24 & 41
\end{array}\right] \bmod 8
\]
\(\Rightarrow B\) invertible since \(B^{-1}\) exist \(\quad=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\)
* we note that \(\frac{1}{2}\) and \(\frac{1}{4}\) have no meaning since \(2 \notin U(Z 8)\) and \(4 \notin U\left(Z_{8}\right)^{2} \Rightarrow \frac{1}{2}\) and \(\frac{1}{4}\) are undefind in the Ring \(R_{8}\)
* Also we mote that \(\frac{1}{3}+\frac{1}{5}\) have meaning in \(\mathbb{R}_{8}\) since \(3 \in U\left(R_{8}\right)\) and \(s \in U\left(R_{8}\right)\) so \({ }^{3} 3^{-1} \times 1=3 \in \mathbb{R}_{8}\) and
\[
5^{-1} \times 5=5 \in \mathbb{R}_{8}
\]

Question 3: If our ring is \(R\), we know that \(-4=-1\) times 4. Let \(A\) be \(a\). ring with identity. Prove that \(-a=-1 \cdot a\) for every \(a \in A\)

Solution:-
Let \(a \in A\) prove \(-a=-1 \cdot a\) where \(-a\) is the addative inverse
we know that \(a \cdot 0=0 \cdot a=0\)
Let \((1+(-1))=0\)
So
\[
\begin{aligned}
& 0 \cdot a=(1+(-1)) a=(1+(-1)=0 \\
& \Rightarrow((1+(-1)) a=1 \cdot a+(-1) a=0 \\
& \Rightarrow 1 \cdot a+(-1) a=a+(-a)=0 \\
& \Rightarrow 1 \cdot a=a \quad \text { and }(-1) \cdot a=-a
\end{aligned}
\]

Therefore \(-a=(-1) \cdot a\).

Farah Zeyad
900086470
1) Let \(A\) be the ring \(Z_{12}\). Find \(Z(A), \operatorname{Nill}(A), U(A)\) and Id \((A)\) solution
\[
\begin{array}{rl}
Z_{12} & =\{1,2,3,4,5,6,7,8,9,10,11\} \\
* & Z(A)\left\{\begin{array}{l}
2 \times 6=0,3 \times 4=0,4 \times 9=0,6 \times 6=0,6 \times 10=0\} \\
\\
8 \times 9=0,8 \times 6=0
\end{array}\right. \\
\Rightarrow & Z(A)=\{0,2,3,4,6,8,9,10\}
\end{array}
\]

Vil \((A)\) : Let \(a \in Z_{12}\) where \(a^{n}=0\) so we have \(\sigma^{2}=0\)
\[
\Rightarrow \operatorname{Nil}(A)=\{0,6\}
\]
\[
U(A)=U\left(Z_{12}\right)=U(12)=\{1,5,7,11\}
\]

Id \((A)\) : Let \(a \in Z_{12}\) where \(a^{2}=a\) so we have \(4^{2}=4,9^{2}=9,1^{2}=1,0\)
\[
\Rightarrow \operatorname{Id}(A)=\{0,1,4,9\}
\]
2) Let \(A\) be the ring \(\mathrm{Zn} \oplus \mathrm{Zm}\). How many units (invertible element) does A have?
Solution:- Find |U(A)|
- we know \((a, b)\) is invertible in \(A\) iff \(a\) is invertible in \(Z_{n}\) \(\left(a \in U\left(Z_{n}\right)=U(n)\right)\) and \(b\) is invertible in \(Z_{m} \quad(b \in U(Z m)=U(m))\)
- Since \(U\left(Z_{n}\right)=U(n)\) has \(\phi(n)\) elements this mean a has \(\phi(n)\) possiblity or choices
- Since \(U(Z m)=U(m)\) has \(\phi(m)\) elements this mean \(b\) has \(\phi(m)\) possiblity or choices

There fore \((a, b)\) has \(\phi(n) \phi(m)\) possiblity this mean \(U(A)\) has \(\phi(n) \phi(m)\) units. \(\Rightarrow I U(A) \mid=\varnothing(n) \phi(m)\)
\(\Rightarrow\) Therefore \(A\) have \(\phi(n) \phi(m)\) units
3) Let \(A\) be the ring \(Z_{6} \oplus Z_{14}\). Find \(\operatorname{Char}(A)\). Find \(U(A)\).

Solution:-
\[
\begin{aligned}
& \text { - Find Char }(A) \text { where } A=Z_{6} \oplus Z_{14} \\
& \text { - Char }\left(Z_{6}\right)=\operatorname{char}((1))=6 \\
& \quad \operatorname{char}\left(Z_{14}\right)=\operatorname{char}((1))=14 \\
& \Rightarrow \operatorname{char}((1,1)))=\operatorname{Lcm}(\operatorname{char}(1), \operatorname{char}(1)) \\
& \\
& =\operatorname{Lcm}(6,14)=\frac{6 \times 14}{\operatorname{gcd}(6,14)}=\frac{84}{2}=42 \\
&
\end{aligned}=42 \quad \begin{aligned}
\operatorname{Char}(A) & =42
\end{aligned}
\]
- Find \(U(A)=U\left(Z_{6} \oplus Z_{14}\right)=U\left(Z_{6}\right) \oplus U\left(Z_{14}\right)\)
-U(Z6) \(U\left(Z_{6} U(6)=\{1,5\} \quad\left|U\left(Z_{0}\right) \oplus \|\left(Z_{14}\right)\right|\right.\)
- U(14) \(U(U(14)=\{1,3,5,9,11,13\}=2 \times 6=12\)
\(\begin{aligned} \Rightarrow \text { Therefore } U(A)= & \{(1,1),(1,3),(1,5),(1,9),(1,11),(1,13)\} \\ & \{(5,1),(5,3),(5,5),(5,9),(5,11),(5,1,3)\}\end{aligned}\)
41 Let \(A\) be a ring such that \(A=R_{1} \oplus R_{2}\) where \(R_{1}\) and \(R_{2}\) are rings such that \(\left|R_{1}\right| \geqslant 2\) and \(\left|R_{2}\right| \geqslant 2\) prove that \(A\) is never an integral
Domain. \(\qquad\)
\(\qquad\)
let \(a \in R_{1}\) and \(b \in R_{2}\) prove that \(A\) is not an integral domain since \(a \in R_{1}\) then \((a, 0) \in R_{1} \oplus R_{2}\) and since \(b \in R_{2}\)
then \((0, b) \in R_{1} \oplus R_{2}\).
\[
\Rightarrow(a, 0) \odot(0, b)=(0,0)
\]
\(\Rightarrow\) This mean \((a, 0)\) and \((0, b)\) are Zero divisors
\(\Rightarrow\) Since \((a, 0)\) and \((0, b)\) are Zero divisors
\(\Rightarrow\) Therefore \(A\) is not an integral domain
5) Let \(A\) be a commutative ring with \(1 u \in U(A)\) and, \(w \in \operatorname{Nil}(A)\) prove that \(u+w \in U(A)\) :-
solution:
Let \(u \in U(A)\) and \(w \in \operatorname{Nil}(A)\) where \(w^{n}=0, n \geqslant 1\) prove \(u+\omega \in U(A)\)
\[
\Rightarrow u+\omega=u\left(1+u^{-1} \omega\right) \text {, where } u^{-1} \omega \in \operatorname{Ni} \mid(A) \Rightarrow\left(u^{-1} \omega\right)^{n}=0
\]
if \(n\) is odd then we have
\[
\begin{aligned}
& \left(u^{-1} w\right)^{n}+1=\left(u^{-1} w+1\right)\left[\left(u^{-1} w\right)^{n-1}-\left(u^{-1} w\right)^{n-2}+\cdots+-\left(u^{-1} w\right)+\right] \\
& \operatorname{let}\left[\left(u^{-1} w\right)^{n-1}-\left(u^{-1} w\right)^{n-2}+\cdots+-\left(u^{-1} w\right)+1\right]=a \\
& \Rightarrow\left(u^{-1} w\right)^{n}+1=\left(u^{-1} w+1\right) a \quad \text { but }\left(u^{-1} w\right)^{n}=0 \text { since }\left(u^{-1} w\right) \in \text { Nil }(A) \\
& \Rightarrow 1=\left(u^{-1} w+1\right) a
\end{aligned}
\]
\(\Rightarrow\) There Fore \(\left(U^{-1} w+1\right) \in U(A)\)
\[
\begin{aligned}
& \left.\Rightarrow u+\omega=u\left(1+u^{-1} w\right) \text {, since } u \in U(A) \text { and }\left(1+u^{-1} \omega\right) \in V_{i}^{\prime}\right) \\
& \Rightarrow u+w \in U(A)
\end{aligned}
\]
only Note if \(n\) is even we have \(\left(u^{-1} w\right)^{n}=0\) if i multiply it by \(\left(u^{-1} w\right)\) we have \(\left(u^{-1} w\right)\left(u^{-1} w\right)^{n}=\left(u^{-1} w\right) \cdot 0 \Rightarrow\left(u^{-1} w\right)^{n+1}=0\) so \(n+1\) is odd so I can do the same step above:
\[
\begin{aligned}
& \left(u^{-1} w\right)^{n+1}+1=\left(u^{-1} w+1\right)\left[\left(u^{-1} w\right)^{n}-\left(u^{-1} w\right)^{n-1}+\cdots+-\left(u^{-1} w\right)+1\right] \text { so } l e t \\
& {\left[\left(u^{-1} w\right)^{n}-\left(u^{-1} w\right)^{n-1}+\cdots+-\left(u^{-1} w\right)+1\right]=a } \\
\Rightarrow & \operatorname{since}\left(u^{-1} w\right)^{n+1}=0 \\
& 1=\left(u^{-1} w+1\right) a \Rightarrow u^{-1} w+1 \in U(A) \\
\Rightarrow & u+w=u\left(u^{-1} w+1\right) \text { since } u \in U(A) \text { and }\left(u^{-1} w+1\right) \in U(A) \\
\Rightarrow & u+w \in U(A)
\end{aligned}
\]
6) let \(A\) be a Commutative ring with 1 and \(e \in \operatorname{Id}(A)\). prove that \(1-e \in I d(A)\) and \(1-2 e \in U(A)\)
solution
- prove that \(1-e \epsilon \operatorname{Id}(A)\), prove \((1-e)^{2}=(1-e)\)
\[
\begin{aligned}
& \Rightarrow \quad \overline{(1-e)^{2}}=(1-e)(1-e)=1+(-e)+(-e)+e^{2} \\
& =1+(-2 c)+e^{2} \\
& \text { Since e } \in \operatorname{Id}(A) \Rightarrow=1+(-2 e)+e \\
& \Rightarrow e^{2}=e \quad=1-e
\end{aligned}
\]
\(\Rightarrow\) Therefore \(1-e \in \operatorname{Id}(A)\)
- prove that \(1-2 e \in U(A)\), prove that \((1-2 e)^{2}=1\)
\[
\Rightarrow(1-2 e)^{2}=(1-2 e)(1-2 e)=1+(-2 e)+(-2 e)+4 e^{2}
\]

Since \(e \in \operatorname{Id}(A)\)
\[
\begin{aligned}
e^{2}=e \Rightarrow & =1+(-4 e)+4 e \\
& =1
\end{aligned}
\]
\(\Rightarrow\) Therefore \((1-2 e) \in U(A)\).
7) Let \(B=\{0,3,6, a, 12\}\) show that \((B,+\),\() is a subring of the\) ring \(\left(Z_{1 s},+, \cdot\right)\). IS \(B\) an ideal of \(Z_{1 s}\) ? Note that \(B\) is a ring too!. What is the " 1 " of the ring B? IS the "1" of B same "," of Lis? what is the char (B)? Is Char (B) defferent from char liz). ? is \(B\) is a feild?

Solution: By Constructing Caley's table For \(\left(B_{1}+\right)\) and \((B, \cdot)\)
\begin{tabular}{c|c|c|c|c|cc|c|c|c|c}
+ & 0 & 3 & 6 & 9 & 12 & & 3 & 6 & 9 & 12 \\
0 & 0 & 3 & 6 & 9 & 12 & 3 & 9 & 3 & 12 & 6 \\
3 & 3 & 6 & 9 & 12 & 0 & 6 & 3 & 6 & 9 & 12 \\
6 & 6 & 9 & 12 & 0 & 3 & 9 & 12 & 9 & 6 & 3 \\
\hline 9 & 9 & 12 & 0 & 3 & 6 & 12 & 6 & 12 & 3 & 9 \\
\hline 12 & 12 & 0 & 3 & 6 & 9 & & & &
\end{tabular}

11 Show that \((B,+, \cdot)\) is a subring of the ring \(\left(Z_{1}, 1,+\right)\)
. \(B\) is a subset of \(Z, B \subseteq Z_{1} s \ldots 0^{\circ \prime} \in B\) Addative inverse
- \(3+(-6)=3+(9)=12 \in B, 3,6 \in B\). Addative inverse
- \(3 \times 6=18 \mathrm{mod} l \mathrm{~S}=3 \in B, 3,6 \in B \quad-3=12,-6=9\)
\(\Rightarrow\) Therefore \((B,+\),\() is a subring of A\).
2) Is \(B\) an ideal of Xis?
yes, since \(b\) is asubring and also if we take for example \(7 \in Z_{15}\) and \(3 \in B\) this gives us \(3 \times 7=21 \bmod 15=6\) where \(G \in B\)
\(\Rightarrow\) Therefore \(B\) is an ideal.
3) What is " 1 " of the ring B?

6 is the " 1 " multiplicative identity of \(B\) because \(6 \times 3=3, \quad 6 \times 12=12, \quad 6 \times 9=9\) Tracefore " \(1 "=6\)
4) Is the "1" of the B the same "1" of Z心?

No, because 6 is the multiplicative identity of 3 and 1 is the multiplicative identity of \(Z_{1}\).
5) What is Char (B)?

The char (B) is 5 because when we multiply ire idnitity with 5 Gives zero where \(5(6)=6+6+6+6+6=0\). There Fore char \((B)=5\).
6) Is the Char (B) different from Char (Zs) o Yes because the \(\operatorname{Char}(B)\) is 5 but char \(\left(2_{s}\right)=15\) because \(1 \times 15=0\)

Is \(B\) is a Feild? Yes
- \(B\) is a commutative ring with identity " \(I^{n}=6\)

Since \(B\) is a subrina this mean it's a ring and each element is commutative like:-
\[
3 \times 9=9 \times 3=12, \quad 3 \times 12=12 \times 3=6
\]
so this mean \(B\) is an Abelian group under multiplication
- each Non-zero element invertible under multiplication:
\[
3 \times 12=6 \Rightarrow 3^{-1}=12,9 \times 9=6 \Rightarrow 9^{-1}=9 .
\]
\(\Rightarrow\) Since \(B\) is a commutative ring with identity and each non-zero element in \(U(B)\)
\(\Rightarrow\) Therefore \(B\) is a feild.

Also Note \(B\) has No zero divisor \(Z(B)=\{0\}\) This mean \(B\) is a finite integral domain "From class Notes"

Every finite integral domain is a Feild
\(\Rightarrow B\) is a Feild.

3 Section 3: Assessment Tools (unanswered)
3.1 Homework

\section*{HW I (WARM UP), MTH 532, Spring 2020}

\author{
Ayman Badawi
}

QUESTION 1. (i) Let \(D\) be a group and \(a \in D\). Given \(|a|=m<\infty\). Show that \(D=\left\{a, a^{2}, a^{3}, \ldots, a^{m}\right\}\) is a subgroup of \(D\) with \(m\) elements [hint: Since D is finite, just show that \(D\) is closed ]
(ii) Let \(D\) be a group and \(a \in D\). Given \(|a|=m<\infty\). Assume that \(a^{n}=e\) (recall \(e\) is the identity of D). Prove that \(m \mid n\).
(iii) Let \(D\) be a group and \(a \in D\). Given \(|a|=m<\infty\). Let \(b \in D\) such that \(b=a^{k}\) where \(g c d(k, m)=1\). Prove that \(|b|=m\).
(iv) Let \(D=\left(Z_{20},+\right)\). Given \(H=\{0,4,8,12,16\}\) is a subgroup of \(D\). Find all left cosets of \(H\).
(v) Let \(D=(Q,+)\). Then \(H=(Z,+)\) is a subgroup of \((Q,+)\). Prove that \(H\) has infinitely many left cosets. Give me 5 distinct left cosets of \(H\).
(vi) Let \(F=\{6,12,18,24\}\). Convince me that \(F\) is a group under multiplication module 30 by constructing the Caley's Table. What is \(e\) ? What is \(12^{-1}\) ? What is \(24^{-1}\) ?

Submit your solution on Saturday Feb 15, 2020 at 12.

\section*{Faculty information}

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

\subsection*{3.1.2 HW-Two}

\section*{HW II , MTH 532, Spring 2020}

\author{
Ayman Badawi
}

QUESTION 1. (i) Let \(D\) be a group, \(a \in D\) such that \(|a|=n<\infty\). Let \(m\) be a positive integer and \(r=\operatorname{gcd}(m, n)\). Prove that \(\left|a^{m}\right|=n / r\). I do not want to see a proof of this, the proof exists in the solution-book that \(I\) posted, but you need to know this fact and use it
(ii) Let \(D=\left(Z_{24},+\right)\). Find \(|9|,|14|,|18|,|11|\) (hint: note that \(Z_{24}=<1>\) and for example \(8=1^{8}\), then use (i)).
(iii) Let \(a, b \in D\). Assume that \(|b|=m<\infty\). Prove that \(\left|a^{-1} b a\right|=m\).
(iv) Let \(D=Z_{n} \oplus Z_{m}, n, m \geq 2\) (of course the binary operations are addition mod n and addition mod m ). Let \((a, b) \in D\). Prove that \(|(a, b)|=L C M[|a|,|b|][\) hint: note that if \(\mathrm{k}, \mathrm{w}\) are integers, then \(\mathrm{LCM}[\mathrm{k}, \mathrm{w}]=\mathrm{kw} / \mathrm{gcd}(\mathrm{k}, \mathrm{w})\), for example \(\operatorname{LCM}[8,12]=8.12 / 4=24]\)
(v) Let \(D=Z_{n} \oplus Z_{m}\). Prove that \(D\) is cyclic if and only if \(\operatorname{gcd}(n, m)=1\). [hint: use part IV]
(vi) Let \(D=Z_{6} \oplus Z_{14}\).
a. Convince me that \(D\) is not cyclic. Find the value of the integer \(m\) such that the order of each element in \(D\) is \(\leq m\).
b. Find \(|(3,5)|\) and \(|(4,10)|\) [Hint: note \(3=1^{3}\) and \(5=1^{5}\), now use (i) and (iv)].
c. Give me two subgroups of \(D\), say \(H_{1}, H_{2}\) such that \(\left|H_{1}\right|=\left|H_{2}\right|=2\).
d. Does \(D\) have a cyclic subgroup of size (order) 21 ? If yes find a generator to such subgroup.

\section*{Submit your solution any time on SUNDAY before midnight, Feb 23, 2020 .}

\section*{Faculty information}

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

\subsection*{3.1.3 HW-Three}

\title{
HW III , MTH 532, Spring 2020
}

\author{
Ayman Badawi
}

QUESTION 1. (i) Fact (you may use it whenever it is needed, for a proof just see it in any Algebra TextBook, but you must KNOW this FACT). Let \(H\) be a subset of a group \(D\) (note that \(H\) can be finite or infinite). Then \(H\) is a subgroup of D if and only if \(a^{-1} * b \in H\) for every \(a, b \in H\) ( \(\mathrm{a}, \mathrm{b}\) need not be distinct).
(ii) Let \(F, L\) be subgroups of a group \(D\). Prove that \(M=F \cap L\) is a subgroup of \(D\) (hint: Use (i) above)
(iii) by (ii), \(N=12 Z \cap 15 Z\) is a subgroup of \((Z,+)\). Since \(Z\) is cyclic, we know \(N=a Z\). Find \(a\).
(iv) Let \(D\) be an abelian group with 9 elements. Given that \(D\) has two distinct subgroups, \(H_{1}, H_{2}\) such that \(\left|H_{1}\right|=\) \(\left|H_{2}\right|=3\). Convince me that it is impossible that \(D=\left(Z_{9},+\right)\). What will be an example of such group D ?
(v) Let \(f \in S_{n}\) such that \(f\) is \(m\)-cycle. Convince me that if \(m\) is odd integer, then \(f \in A_{n}\) and if \(m\) is an even integer, then \(f \notin A_{n}\).
(vi) Let \(f=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 3 & 6 & 8 & 7 & 2 & 1 & 5\end{array}\right) \in S_{8}\).
a. Find \(|f|\). Is \(F \in A_{8}\) ? explain
b. Does \(A_{8}\) has an abelian subgroup with 15 elements? [Hint: If you show that \(A_{5}\) has a cyclic subgroup with 15 elements, then you are done, since cyclic implies abelian]
(vii) Let \(f=\left(\begin{array}{lll}1 & 4 & 3\end{array}\right)\left(\begin{array}{l}1\end{array} 4\right) \in S_{4}\). Find \(|f|\). Let \(k=\left(\begin{array}{lll}1 & 4 & 3\end{array}\right)(15) \in S_{5}\). Find \(|k|\).
(viii) Given \(H=\left\{(1),\left(\begin{array}{lll}1 & 4 & 3\end{array}\right),\left(\begin{array}{ll}1 & 3\end{array}\right)\right\}\) is a subgroup of \(S_{5}\) (this is given, you do not need to check unless you do not believe me). Find the left coset (15) o \(H\) and find the right coset \(H o(15)\). What do you observe? Can we say that \(H\) is a normal subgroup of \(S_{5}\) ?
(ix) Let \(a, b\) be element of a group such that \(a * b=b * a\). Assume \(|a|=n\) and \(|b|=m\). Let \(k=|a * b|\). Prove \(k \mid n m\).
(x) Give me an example of two elements \(a, b\) in a group where \(|a|=n,|b|=m\) and \(|a * b|=k\), but \(k \nmid n m\) [hint: Stare at the element \(k\) in vii and some how find \(a\) and \(b\) !]
(xi) Let \(a, b\) be element of a group such that \(a * b=b * a\). Assume \(|a|=n,|b|=m\) and \(g c d(n, m)=1\). Let \(k=|a * b|\). Prove \(k=n m\).[Hint: you may want to use the fact from number theory that if \(\operatorname{gcd}(w, d)=1, d \mid c\) and \(w \mid c\), then \(w d \mid c\), of course \(w, d, c\) are some positive integers]
(xii) Let \(F:\left(D_{1}, *_{1}\right) \rightarrow\left(D_{2}, *_{2}\right)\) be a group-homomorphism and \(H<D_{1}\). Prove that \(F(H)\) is a subgroup of \(D_{2}\) (note it is possible that \(H=D_{1}\) )[Hint: Use part (i) above]
(xiii) Let \(F:\left(Z_{24},+\right) \rightarrow\left(Z_{15},+\right)\) be a group homomorphism such that \(F(1) \neq 0\). Find \(F\left(Z_{24}\right)\). [Hint: Note that \(Z_{n}\) is cyclic, \(F\left(Z_{24}\right)\) is a subgroup of \(Z_{15}\) by xii and \(|F(a)|\) must be a factor of \(|a|\) for every \(a \in Z_{24}\) by class-Theorem ]. Find \(F(1), F(8), F(12)\).

Submit your solution (by EMAIL) any time / all HWs must be submitted by Wed. before midnight, March 4, 2020.

\section*{Faculty information}

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

\subsection*{3.1.4 HW-Four}

\section*{HW IV , MTH 532, Spring 2020}

\author{
Ayman Badawi
}

QUESTION 1. (i) Let \(D\) be a group with 27 elements. You just observed that \(C(D)\) has at least 4 elements. Prove that \(D\) is abelian.
(ii) You need this fact, so you must know it and make use of it. Assume that \(H, K\) are subgroups of a group \((D, *)\). Note that \(H * K=\{h * k \mid h \in H, k \in K\}\). Then \(|H * K|=\frac{|H||K|}{|H \cap K|}\). (no proof is needed)
(iii) Let \(D\) be a finite group, \(K, H\) are normal subgroups of D such that \(H * K=D\) and \(H \cap K=\{e\}\).
a. Prove that \(K \approx D / H\) [ Hint note that \(|D / H|=|K|\), define \(f: K \rightarrow D / H\) such that \(f(k)=k * H\) for every \(k \in K\). Show that f is group homomorphism and then you only need to show that f is 1-1.]
b. Prove that \(H \approx D / K\).
c. Prove that \(D \approx \frac{D}{H} \oplus \frac{D}{K} \approx K \oplus H\). [hint: Define \(f: D \rightarrow \frac{D}{H} \oplus \frac{D}{K}\) such that \(f(d)=(d * H, d * K)\) for every \(d \in D\). Show that \(f\) is a group homomorphism. Then show that \(f\) is 1-1 (note both groups have same cardinality. Then use (a) and (b) and finish the proof.)]
(iv) Let \(H, K\) be subgroups of a group \(D\). In general, \(H * K\) need not be a subgroup of \(D\). However, if \(K\) is a normal subgroup of \(D\), then prove that \(K * H\) is a subgroup of \(D\). [hint: Just show \(a^{-1} * b \in K * H\) for every \(a, b \in K * H\) ]
(v) Let \(D\) be a group with 38 elements, \(K, H\) are subgroups of \(D\) such that \(|K|=19\) and \(|H|=2\) such that \(H\) is a normal subgroup of \(D\). Prove that \(D \approx Z_{38}\) [hint: note that \(|D / K|=2\) and hence \(K\) is a normal subgroup of \(D\) by class notes and use (iii (c)), Show that \(D\) is cyclic and hence by class notes \(D \approx Z_{38}\) )]
(vi) Let \(D\) be an infinite cyclic group. Prove that \(D\) has exactly two generators. [Hint: We know \(D \approx Z\). Hence how many generators does \(Z\) have?]
(vii) Let \(U(n)=\left\{a \in Z_{n} \mid \operatorname{gcd}(a, n)=1\right\}\). Prove that \(U(n)\) is a group under multiplication mod \(n\) with \(\phi(n)\) elements. [Hint: Closure is clear, if \(x, y \in U(n)\), then \(\operatorname{gcd}(x, n)=\operatorname{gcd}(y, n)=1\) and hence \(\operatorname{gcd}(x y, n)=1\). Thus \(x y \in U(n)\). To prove the inverse, you need to use Fermat-Euler result: let \(a \in U(n)\), since \(\operatorname{gcd}(a, n)\) we know that \(n \mid\left(a^{\phi(n)}-1\right)\) and this means that \(a^{\phi(n)}=1 \bmod (\mathrm{n})\). Thus \(\left.a^{-1}=a^{(\phi(n)-1)} \bmod (n)\right]\). Example: \(U(12)=\{1,5,7,11\}\) is a group (abelian) with \(\phi(12)=4\) elements under multiplication \(\bmod (12)\).
(viii) (must KNOW, no need for a proof, nice result on \(U(n)\) ). Assume \(n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}\) (prime factorization of \(n\) where \(p_{1}<p_{2}<\cdots<p_{k}\) ). Then we know \(\phi(n)=\left(p_{1}-1\right) p_{1}^{\left(\alpha_{1}-1\right)} \cdots\left(p_{k}-1\right) p_{k}^{\left(\alpha_{k}-1\right)}\). Then (BEAUTIFUL RESULT) If \(n\) is even then \(\left(p_{1}=2\right)\) and
\(U(n) \approx Z_{2} \oplus Z_{2^{\left(\alpha_{1}-2\right)}} \oplus Z_{\left(p_{2}-1\right)} \oplus Z_{p_{2}^{\left(\alpha_{2}-1\right)}} \oplus \cdots \oplus Z_{\left(p_{k}-1\right)} \oplus Z_{p_{k}^{\left(\alpha_{k}-1\right)}}\). (note if \(\alpha_{1}=1\) then remove \(Z_{2} \oplus Z_{2^{\left(\alpha_{1}-2\right)}}\), note \(U(2)=\{1\}\) ). If \(n\) is odd, then
\(U(n) \approx Z_{\left(p_{1}-1\right)} \oplus Z_{p_{1}^{\left(\alpha_{1}-1\right)}} \oplus Z_{\left(p_{2}-1\right)} \oplus Z_{p_{2}^{\left(\alpha_{2}-1\right)}} \oplus \cdots \oplus Z_{\left(p_{k}-1\right)} \oplus Z_{p_{k}^{\left(\alpha_{k}-1\right)}}\). Example Assume \(n=2^{3} 5^{7} 11^{3}\). Hence \(\phi(n)=2^{2}(4) 5^{6}(10) 11^{2}\). (n is even). Hence \(U(n) \approx Z_{2} \oplus Z_{2} \oplus Z_{4} \oplus Z_{5^{6}} \oplus Z_{10} \oplus Z_{11^{2}}\). Example \(n=(2) 7^{8} 13^{2}\). (n is even). \(\phi(n)=(6) 7^{7}(12) 13^{1}\). Hence \(U(n) \approx Z_{6} \oplus Z_{7^{7}} \oplus Z_{12} \oplus Z_{13}\)
(ix) Prove that \(U(n), n \geq 3\), is cyclic if and only if \(n=4\) or \(n=p^{k}\) or \(n=2 p^{k}\) for some ODD prime \(p\) and \(k \geq 1\). [hint: note that if p is prime odd then \(\operatorname{gcd}(p-1, p)=1\), also note that if \(p\) is odd, then \(\mathrm{p}-1\) is even. Use (viii) and old HW!).
(x) Prove that \(U(64)\) has an element of order 16, but it has no elements of order 32. (Hint: of course you are not going to calculate the order of each element!, use (viii) and old HW).
(xi) Prove that \(D=\left(Z_{5},+\right) \oplus U(18)\) is cyclic, and hence \(D \approx\left(Z_{m},+\right)\). Find \(m\).
(xii) prove that \(\left(Q^{*},.\right)\) is not cyclic. [Hint: We know \(Q^{*}\) is a group under normal multiplication. Note that in an infinite cyclic group \(D\) we have \(|a|=\infty\) for each \(a \in D-\{e\}\) (class notes).

Submit your solution (by EMAIL) any time / all HWs must be submitted by Wed. before midnight, March 18, 2020.

\section*{Faculty information}

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

\subsection*{3.1.5 HW-Five}

\section*{HW V , MTH 532, Spring 2020}

\author{
Ayman Badawi
}

\section*{Observations}
(i) Let \(p, q\) be two primes numbers ( \(\mathrm{p}, \mathrm{q}\) need not be distinct) If \(\mathrm{H}, \mathrm{K}\) are two distinct groups with p elements and q elements, respectively, then \(H \cap K=\{e\}\). Note that if \(\mathrm{p}=\mathrm{q}\), but \(\mathrm{H}, \mathrm{K}\) are distinct, we still have \(H \cap K=\{e\}\).
(ii) If \(|H|=p^{m}\) and \(|K|=q^{n}\), where \(q, p\) are distinct prime integers, then \(H \cap K=\{e\}\).
(iii) If \(D=Z_{5} \oplus Z_{25} \oplus Z_{3}\), then \(D\) has many subgroups with 25 elements. For, let \(H\) be a subgroup of \(Z_{25}\) with 5 elements. We know that such H is unique (since \(Z_{25}\) is cyclic). Hence \(W=Z_{5} \oplus H \oplus\{0\}\) and \(K=\{0\} \oplus Z_{25} \oplus\{0\}\) are subgroups with 25 elements. Also since \(|(a, 1,0)|=25\) for every \(a \in Z_{5}\), we conclude that for each \(a \in Z_{5}\), the group \(F_{a}\) generated by \((\mathrm{a}, 1,0)\) is a cyclic subgroup of \(D\) with 25 elements. Also note that \(W, K, F_{a}(a \neq 0)\) are distinct subgroups and each is with 25 elements, note if \(\mathrm{a}=0\), then \(F_{a}=K\).

QUESTION 1. Let \(D\) be an abelian group with \(2^{3} 5^{2}\) elements
(i) Suppose that \(D\) has exactly one subgroup with 4 elements. Find all non-isomorphic groups with these properties. [hint: Observations above might be useful]
(ii) Suppose that \(D\) has exactly one subgroup with 4 elements and it has exactly one subgroup with 5 elements. Find all non-isomorphic groups with these properties.
QUESTION 2. Let \(D\) be a cyclic group with 100 elements. Convince me that \((A U T(D), o)\) is an abelian group and find \(m_{1}, \ldots, m_{k}\) such that \(A U T(D) \approx Z_{m_{1}} \oplus \cdots \oplus Z_{m_{k}}\). [hint: Use my lecture! and HW 4].
QUESTION 3. Prove that every group with \(n=17.3^{2}\) is abelian. Find all non-isomprphic groups with \(n\) elements. [Hint: See my first lecture on Sylow !]

QUESTION 4. Let \(D\) be a group with 5.11.29. Prove that \(D\) has exactly one subgroup with 29 elements, say \(H\), and \(H \subseteq C(D)\). [hint: see my part 2 lecture on sylows].

QUESTION 5. Let \(D\) be a group with 216 elements. Prove that \(D\) is not simple. [hint: note that \(216=2^{3} .3^{3}\) and it is possible that \(n_{3}=4\). Use the technique as in my part 2 lecture on Sylow's Theorem to construct a group homomorphism with non-trivial kernel.]

QUESTION 6. Let \(D\) be a group with 5.7.17 elements. Prove that \(D\) is not simple. Assume that \(n_{17} \neq 1\). How many elements in D have order 17? [hint: Find \(n_{5} \ldots\) so you may discover that \(D\) is not simple. see OBSERVATION (i) above..., then it should be clear how many elements in D have order 17]

Submit your solution (by EMAIL) any time by Wed. before midnight, March 25, 2020 .

\section*{Faculty information}

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

\subsection*{3.1.6 HW-Six}

\section*{HW six , MTH 532, Spring 2020}

\author{
Ayman Badawi
}
(1) you need to know this fact: Fix \(n \geq 2\) and \(A\) be a commutative ring with 1 . Then \(B \in U\left(A^{n \times n}\right)\) if and only if \(|A| \in U(A)\), i.e. using street language, an \(n \times n\) matrix \(B\) is invertible over \(A\) if and only if determinant of \(B\) is a unit of \(A\) (an element in a ring \(A\) is called unit, if it has inverse under multiplication)

For example A matrix \(B \in U\left(Z_{m}^{n \times n}\right)\) if and only if \(|B| \in U\left(Z_{m}\right)=U(m)\). A matrix \(B \in U\left(Z^{n \times n}\right)\) if and only if \(|B| \in U(Z)=\{1,-1\}\)
(2) You need to know the meaning of FRACTIONS in a ring: Let \(A\) be a commutative ring with 1 and \(a, b \in A\). Then \(\frac{a}{b}\) has a meaning in \(A\) if and only if \(b \in U(A)\). If \(b \in U(A)\), then \(\frac{a}{b}\) means \(b^{-1} a\).

For example \(\frac{4}{5}\) has a meaning in the ring \(Z_{6}\) since \(5 \in U\left(Z_{6}\right)=U(6)\) and \(\frac{4}{5}\) means the element \(5^{-1} 4=2 \in Z_{6}\). Since \(4 \notin U\left(Z_{14}\right)=U(14), \frac{5}{4}\) is undefined in the ring \(Z_{14}\).

QUESTION 1. Let \(F=\{1,2,3,4\}\) and \(A=P(F)(P(F)\) is the power set of \(F\), note \(|P(F)|=16\) ). We know (A, +,.) is a commutative ring with identity \(1=F\) (see class notes, \(a+b=(a-b) \cup(b-a)\) and \(a b=a \cap b\) for every \(a, b \in A\) ). Also, we know that \(U(A)=\{F\}\) and hence a matrix \(B \in U\left(A^{n \times n}\right)\) if and only if \(|B|=F\). Also, from class notes, we know \(-a=a\) and \(a^{2}=a\) for every \(a \in A\)

For example \(B=\left[\begin{array}{cc}\{1,3\} & \{2,4\} \\ \{1,2,4\} & \{1,2,3\}\end{array}\right] \in U\left(F^{2 \times 2}\right)\). You only need to know what + means and what . means in the ring \(A\). Then all techniques you learned from basic linear algebra can be applied on \(A\). In a basic linear algebra course your ring is \(R\), but here your ring is \(A\).

For example we know that if \(B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\) is invertible over \(R\) then \(B^{-1}=\frac{1}{|B|}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]\). We can use this fact for any \(2 \times 2\) matrix over a commutative ring with identity.

So \(|B|=\{1,3\}\{1,2,3\}+-\{2,4\}\{1,2,4\}=\{1,3\} \cap\{1,2,3\}+\{2,4\} \cap\{1,2,4\}=\{1,3\}+\{2,4\}=(\{1,3\}-\)
\(\{2,4\}) \cup(\{2,4\}-\{1,3\})=\{1,2,3,4\}=F \in U(A)\). Hence \(B\) is invertible. Thus \(B^{-1}=\frac{F}{F}\left[\begin{array}{ll}\{1,2,3\} & \{2,4\} \\ \{1,2,4\} & \{1,3\}\end{array}\right]=\)
\(F\left[\begin{array}{ll}\{1,2,3\} & \{2,4\} \\ \{1,2,4\} & \{1,3\}\end{array}\right]=\left[\begin{array}{ll}\{1,2,3\} & \{2,4\} \\ \{1,2,4\} & \{1,3\}\end{array}\right]\)
Note that \(B B^{-1}=B^{-1} B=\left[\begin{array}{ll}F & \phi \\ \phi & F\end{array}\right]=I_{2}\) since in our \(\mathrm{A}, 1=F\) and \(0=\phi\).
(i) Let \(B=\left[\begin{array}{ll}\{1,2\} & \{2,4\} \\ \{3,4\} & \{1,3\}\end{array}\right]\). Does \(B^{-1}\) exist? if yes, then find it. If no, then explain.
(ii) Let \(B=\left[\begin{array}{cc}\{2,3\} & \{1,3,4\} \\ \{1,3,4\} & \{2,4\}\end{array}\right]\). Does \(B^{-1}\) exist? if yes, then find it. If no, then explain.
(iii) Let \(B=\left[\begin{array}{ccc}F & \{2,4\} & \{1\} \\ \{1,3\} & F & \{3\} \\ \{2\} & \{2\} & F\end{array}\right]\). If possible find \(B^{-1}\) [Hint: Use the techniques you learned from linear Algebra. Use row operations and try to change the matrix \(\left[B \left\lvert\,\left[\begin{array}{lll}F & \phi & \phi \\ \phi & F & \phi \\ \phi & \phi & F\end{array}\right]\right.\right.\) into \(\left.\left.\left[\begin{array}{lll}F & \phi & \phi \\ \phi & F & \phi \\ \phi & \phi & F\end{array}\right] \right\rvert\, C\right]\). If you succeed then \(C=B^{-1}\), if you did not succeed, then \(B\) is not invertible over \(A\).

QUESTION 2. Convince me that \(B=\left[\begin{array}{lll}2 & 5 & 4 \\ 1 & 1 & 2 \\ 3 & 3 & 5\end{array}\right]\) is invertible over \(Z_{8}\). Again use the techniques you learned in linear algebra but here addition means addition \(\bmod 8\) and multiplication means multiplication mod 8 and in view of the comments in (2) observe that \(1 / 2,1 / 4\) have no meaning in \(Z_{8}\) but \(1 / 3,1 / 5\) have meaning!.

QUESTION 3. If our ring is \(R\), we know that \(-4=-1\) times 4 . Let \(A\) be a ring with identity. Prove that \(-a=-1 . a\) for every \(a \in A\) (i.e., prove that the additive inverse of \(a\) equals the additive inverse of the identity " 1 " times a). (Hint: use that fact that \(a .0=0=0 . a=0\) for every \(a \in A\) )

\section*{Faculty information}

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

\section*{HW SEVEN, MTH 532, Spring 2020}

\author{
Ayman Badawi
}

QUESTION 1. Let \(A\) be the ring \(Z_{12}\). Find \(Z(A), \operatorname{Nil}(A), U(A)\) and \(\operatorname{Id}(A)\).
QUESTION 2. Let \(A\) be the ring \(Z_{n} \oplus Z_{m}\). How many units (invertible elements) does A have? i.e., Find \(|U(A)|\) [Hint: it is trivial to see that \((\mathrm{a}, \mathrm{b})\) is invertible in A iff a is invertible in \(Z_{n}\) and \(b\) is invertible in \(Z_{m}\), some how the question is related to \(\phi(k)\) ]

QUESTION 3. Let A be the ring \(Z_{6} \oplus Z_{14}\). Find \(\operatorname{Char}(A)\). Find \(U(A)\).
QUESTION 4. Let \(A\) be a ring such that \(A=R_{1} \oplus R_{2}\), where \(R_{1}\) and \(R_{2}\) are rings such that \(\left|R_{1}\right| \geq 2\) and \(\left|R_{2}\right| \geq 2\). Prove that \(A\) is never an integral domain.

QUESTION 5. Let \(A\) be a commutative ring with \(1, u \in U(A)\) and \(w \in \operatorname{Nil(A)}\). Prove that \(u+w \in U(A)\). (hint: Note that \(u+w=u\left(1+u^{-1} w\right)\) and \(u^{-1} w \in \operatorname{Nil}(A)\). Also note that if \(m\) is an odd integer, then high school math tells us that \(x^{m}+1=(x+1)\left[\left(x^{m-1}-x^{m-2}+\ldots . .+-x+1\right]\right)\)

QUESTION 6. Let \(A\) be a commutative ring with 1 and \(e \in \operatorname{Id}(A)\). Prove that \(1-e \in \operatorname{Id}(A)\) and \(1-2 e \in U(A)\).
QUESTION 7. Let \(B=\{0,3,6,9,12\}\). Show that \((B,+,\).\() is a subring of the ring \left(Z_{15},+,.\right)\). Is B an ideal of \(Z_{15}\) ? note that B is a ring too!. What is " 1 " of the ring \(B\) ? Is the " 1 " of B the same " 1 " of \(Z_{15}\) ? What is Char \((B)\) ? Is Char( B\()\) different from \(\operatorname{Char}\left(Z_{15}\right)\) ? Is \(B\) a field? [hint: Just do the Caley's table of ( \(\mathrm{B},+\) ) and the Caley's table of ( \(\left.\mathrm{B},.\right)\), stare really well, then start answering the questions!, remember + means addition \(\bmod 15\) and . means multiplication mod 15]

Submit your solution (by EMAIL) any time by Monday midnight, April 27, 2020 .

\section*{Faculty information}

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

\section*{EXAM I, MTH 532, Spring 2020}

\author{
Ayman Badawi
}

QUESTION 1. Given \(D\) is a group with 48 elements. Assume that \(D\) has an element \(a \in C(D)\) such that \(|a|=16\). Prove that \(D\) is cyclic.

QUESTION 2. Does \(U(54)\) have an element of order 18? If yes, how many elements of order 18 does \(\mathrm{U}(54)\) have?
QUESTION 3. Let \(f:\left(Z_{18},+\right) \rightarrow(U(50),\).\() be a group homomorphism such that f(1) \neq 1\). Find \(f(0)\). Find \(\operatorname{Ker}(f)\).
QUESTION 4. Let \(D\) be a group with 100 elements. Assume that \(D\) has a subgroup \(H\) with 20 elements such that \(H \subseteq C(D)\). Prove that \(D\) is an abelian group.

QUESTION 5. (i) EXTRA CREDIT, but you need it to solve (ii). Let \(D\) be a finite group and \(H\) be a subgroup of \(D\) such that \([D: H]=m\) for some integer \(m\) (note that \([D: H]=|D| /|H|=\) number of all distinct left cosets of H). Prove that there is a group homomorphism, say \(f\), from \(D\) into \(S_{m}\) such \(\operatorname{Ker}(f) \subseteq H\).
(ii) Let \(D\) be a finite simple group. Assume that \(H, K\) are subgroups of \(D\) such that \([D: H]=p_{1}\) and \([D: K]=p_{2}\) for some prime integers \(p_{1}, p_{2}\). Prove that \(p_{1}=p_{2}\). (nice result!)

QUESTION 6. Let \(D\) be a group with \(p^{m}\) elements, where \(p\) is a prime integer and \(m \geq 2\). Prove that \(D\) has a normal subgroup with \(p^{m-1}\) elements. [Hint : Show that \(D\) must have a subgroup \(H\) with \(p^{m-1}\) elements by class note result (which result?). Then use class - lecture (result) to show that \(H\) is normal in H (which result?)].
QUESTION 7. Let \(D\) be a group with \(\left(5^{2}\right)\left(7^{2}\right)\) elements. Prove that \(D\) is an abelian group. Find all non-isomorphic groups with \(\left(5^{2}\right)\left(7^{2}\right)\) elements?

QUESTION 8. Let \(a=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right) o\left(\begin{array}{llll}1 & 3 & 4 & 2\end{array}\right) \in S_{6}\). Is \(a \in A_{6}\) ? Find \(|a|\).
QUESTION 9. Let \(D\) be a group with 105 elements \((105=(3)(5)(7))\).
(i) Prove that \(D\) is not simple. [Hint: Assume \(D\) is simple. How many elements of orders 7, 5, 3 does D have? is this possible?
(ii) Assume that \(n_{7}=1\) (i.e., D has exactly one sylow-7-subgroup). Prove that \(D\) has a normal cyclic subgroup with 35 elements [hint: Use a result from HW, use a result from class notes! and of course sylow's theorems] .

\section*{Submit your solution by 3 pm (as at most), March 28, 2020 .}

\section*{Faculty information}

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

\section*{EXAM II , MTH 532, Spring 2020}

\author{
Ayman Badawi
}

Submit your solution any time before 00: 15, (I will deduct points after 00:17) .
QUESTION 1. (i) Let \(A\) be a commutative ring with 1 and \(B\) be a commutative ring ( \(B\) may not have " 1 "). Assume \(f: A \rightarrow B\) is a ring-homomorphism. Prove that \(f(1) \in I d(B)\) (i.e., show that \(f(1)\) is an idempotent element of \(B\) ).
(ii) Let \(A\) be a commutative ring with 1 and \(B=2 Z\) ( B is the set of all even integers). Assume \(f: A \rightarrow B\) is a ring-homomorphism. Prove that \(f(a)=0\) for every \(a \in A\).
(iii) Let \(A, B\) be fields and \(f: A \rightarrow B\) is a ring-homomorphism such that \(f(a) \neq 0\) for some \(a \in A\). Prove that \(f\) is injective (i.e., prove that \(f\) is one-to-one).
(iv) Let \(f: Z_{6} \rightarrow Z_{9}\) be a ring-homomorphism. Prove that \(f(a)=0\) for every \(a \in Z_{6}\).

QUESTION 2. Let \(A\) be a commutative ring with 1 and let \(I\) be a proper ideal of \(A\) that is not a maximal ideal of \(A\). Hence, we know that \(I \subset M\) for some maximal ideal \(M\) of \(A\). Let \(a \in M-I\). Prove that \(a+I\) is not an invertible element of the ring \(A / I\) (i.e., show that \(a+I \notin U(A / I)\) ).

QUESTION 3. Let \(A\) be a finite commutative ring with 1 and \(a \in A\). Suppose that \(a \notin Z(A)\). Prove that \(a \in U(A)\).
QUESTION 4. Let \(A\) be a commutative ring with 1 and \(f(X) \in A[X]\) such that \(f(X) \neq 0\) and \(f(X) \in Z(A[X])\). For every \(n \geq 1\), prove that there exists a polynomial \(k(X) \in A[X]\) of degree \(n\) such that \(k(X) f(X)=0\).

QUESTION 5. Let \(A\) be a commutative ring with 1 and \(I\) be a prime ideal of \(A\). Prove that \(N i l(A) \subseteq I\).
QUESTION 6. (i) Let \(A=Z_{4} \oplus Z_{6}\). Find all prime ideals of \(A\).
(ii) Let \(A=Z_{12} \oplus Z_{8}\). Find \(\operatorname{Nil}(A)\).
(iii) Let \(B=\left[\begin{array}{ll}2 & 4 \\ 2 & 2\end{array}\right]\). Is \(B\) invertible over \(Z_{9}\) ? If yes, then find \(B^{-1}\). If No, then explain.
(iv) Let \(A=Z_{10}[X]\) and \(f(X)=2 X^{3}+5 X+4 \in A\). Is \(f(X) \in Z(A)\) ?
(v) Give me an example of a commutative ring \(A\) with 1 such that \(\operatorname{Char}(A)=5\) and \(Z(A) \neq\{0\}\).
(vi) Let \(A=Z_{18}[X]\) and \(f(X)=6 X^{2}+12 X+17 \in A\). Is there a polynomial \(k(X) \in A\) such that \(k(X) f(X)=1\) ? If yes, then explain (you do not need to find \(\mathrm{k}(\mathrm{X})\) ). If no, then tell me why not.

\section*{Faculty information}

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

\section*{Final Exam , MTH 532, Spring 2020}

\author{
Ayman Badawi
}

QUESTION 1. Let \(F\) be a finite field with \(2^{12}\) elements.
(i) (3 points) Let \(a \in F\). Then \(a\) is a root of an irreducible monic polynomial of degree \(m\) over \(Z_{2}\) Find all possibilities of \(m\).
(ii) (3 points) We know that \(\left(F^{*},.\right)\) is a cyclic group and hence \(\left(F^{*},.\right)=<a>\) for some \(a \in F^{*}\). Prove that the degree of \(\operatorname{Irr}\left(a, Z_{2}\right)=12\) ? (i.e., prove that the degree of the unique irreducible monic plolynomial over \(Z_{2}\) that has \(a\) as a root is 12 )
(iii) (3 points) We know \(\left|F^{*}\right|=2^{12}-1=4095\). Since \(819 \mid 4095\), then we know that \(F^{*}\) has a unique cyclic subgroup, say \(H=<b>\) for some \(b \in F^{*}\) with 819 elements. What is the degree of \(\operatorname{Irr}\left(b, Z_{2}\right)\) ? justify your answer
(iv) (4 points) Let \(P_{12}\) be the set of all irreducible monic polynomials of degree 12 over \(Z_{2}\). Find \(\left|P_{12}\right|\). Show the work.
(v) ( \(\mathbf{8}\) points) Find all elements of the Galois group \(\operatorname{Aut}\left(F / Z_{2}\right)\). For each subgroup \(H\) of \(\operatorname{Aut}\left(F / Z_{2}\right)\) find the corresponding subfield of \(F\), say \(L_{H}\), that is fixed by \(H\).

QUESTION 2. Let \(E\) be the 5th cyclotomic extension field of \(Q\)
(i) (2 points) \(E=Q(a)\) for some \(a \in C\) ( \(C\) is the ring (field) of all complex numbers). Find \(a\).
(ii) (6 points)Let \(a\) as in (i), find \(\operatorname{Irr}(a, Q)\), find \([E: Q]\), and find all roots of \(\operatorname{Irr}(a, Q)\) inside \(E\). Is \(A u t(E / Q)\) a cyclic group under composition? how many elements does \(\operatorname{Aut}(E / Q)\) have?
(iii) (2 points) Find a basis \(B\) (in terms of a) of \(E\) over \(Q\).
(iv) (2 points) write \(a^{6}+a^{5}+a^{4}\) as a linear combination of the elements in the basis \(B\) ( \(B\) is as in iii).
(v) (4 points) For each subgroup of \(\operatorname{Aut}(E / Q)\) with 2 elements, say \(H\), find the corresponding subfield of \(E\), say \(L_{H}\), that is fixed by \(H\).

QUESTION 3. Let \(E=Q(\sqrt{5}, \sqrt{7})\).
(i) (3 points). We know that \(E=Q(a)\) for some \(a \in R\). Find \(\operatorname{Irr}(a, Q)\) (i.e., find the unique irreducible monic polynomial over \(Q\) that has \(a\) as a root. What is \([E: Q]\) ?
(ii) (3 points) It is clear that \(L=Q(\sqrt{35})\) is a subfield of \(E\). Find the subgroup, say \(H\), of \(A u t(E / Q)\) that fixes the field \(L\).
(iii) (3 points) Is the field \(Q(\sqrt{5})\) isomorphic to the field \(Q(\sqrt{7})\) ? If yes, then construct such ring-isomorphism (fieldisomorphism)? If no, then explain briefly why not?

QUESTION 4. (3 points) Let \(E\) be the splitting field of the polynomial \(f(x)=x^{7}-18\). We know that \(E\) is a Galois Extension of \(Q\). Prove that \(\operatorname{Aut}(E / Q)\) is a non-abelian group.

QUESTION 5. (i) (2 points) Give me an example of an integral domain that is not a UFD (Unique Factorization Domain).
(ii) (2 points) Give me an example of a Unique Factorization Domain that is not a principal ideal domain
(iii) (4 points) Let \(A\) be a principal ideal domain. Prove that every prime ideal of \(A\) is a maximal ideal of \(A\).[Hint: Every proper ideal is a principal ideal, and every proper ideal is contained in a maximal ideal].
(iv) (4 points) Let \(A\) be a commutative ring with 1 . Suppose that \(A\) has exactly one maximal ideal. Prove that \(I d(A)=\) \(\{0,1\}\). [Hint: note if \(x \notin U(A)\), then the ideal \((x)=x A\) is a proper ideal of \(A\) ].
(v) (4 points) Let \(A\) be an integral domain, \(P\) be a prime ideal of \(A\), and \(I\) be a proper ideal of \(A\) such that \(I \cap P=\{0\}\). Prove that there exists a prime ideal \(F\) of \(A\) such that \(I \subseteq F\) and \(F \cap P=\{0\}\) [Hint: Let \(W=P-0\), note \(I \cap W=\emptyset]\)

QUESTION 6. ( 4 points). Let \(F\) be a group with 12 elements. Prove that \(F\) must have a normal subgroup with 3 elements OR \(F\) must have a normal subgroup with 4 elements.

\section*{Faculty information}

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

\section*{Faculty information}

Ayman Badawi, American University of Sharjah, UAE.
E-mail: abadawi@aus.edu```

