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 COURSE SYLLABUS 

 

A Course Title  
& Number ABSTRACT ALGEBRA:  MTH 532 

B Pre/Co-
requisite(s) Admission to MSMTH program  

C Number of 
credits 

3 

D Faculty Name  Ayman Badawi 

E Term/ Year Spring 2020 

F Sections 

 

 

CRN Course Day
s 

Time Location 

 
MTH 532 S 12—14:45 Nab 007 

G Instructor 
Information 

 

Instructor Office Telephon
e 

Email 

Ayman 
Badawi 

NAB 262 XXX I prefer: 
abadawi@aus.edu 

Office Hours:     By appointment 

H Course 
Description 

from Catalog 

Covers basic properties of groups, normal subgroups and direct sum of 
groups; homomorphism and isomorphism between groups; classification of 
finite abelian groups; and applications of Sylow’s Theorems. Introduces rings, 
ideals, polynomial rings, irreducible and prime elements of rings, unique 
factorization domains, fields and their extensions including finite fields. 

I Course 
Learning 

Outcomes 

Upon completion of the course, students will be able to: 

 Develop mathematical proofs and reason abstractly in exploring 
properties of rings and groups. ( Exam I, Exam II, and  Final) 

 Demonstrate an understanding of Lagrange Theorem and its 
applications, symmetric groups, quotient groups, cyclic groups.  (Exam I 
and Final) 

 Demonstrate an understanding of the structure of finite abelian groups 
(Exam I and Final).  

 Demonstrate an understanding of Sylow’s Theorems and their 
applications   (Exam I and Final) 

 Demonstrate an understanding of the intellectual structure of rings, 
ideals, prime ideals, primary ideals, 2-absorbing ideals, maximal ideals, 
prime elements, irreducible elements and quotient rings.  (Exam II and 
Final) 

 Use and apply homomorphism and isomorphism theory between rings 
and groups. (Exam I, Exam II and Final) 

 Demonstrate an understanding of fields, and field extension (Exam II 
and Final) 
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 Demonstrate an understanding of separable fields, splitting fields, 
Galois field, finite fields, and cyclotomic field extension.  (Exam II and 
Final) 

J Textbook and 
other 

Instructional 
Material and 

Resources  

 

Primary:    Instructor class notes. I-Learn, my personal webpage 

http://ayman-badawi.com/MTH%20530.html      and    

http://ayman-badawi.com/MTH%20531.html      

 

Reference: 
 
David S. Dummit and Richard M. Foote,  Abstract Algebra- Third Edition 
 Any graduate textbook will do.  
 

 

K Teaching and 
Learning 

Methodologies 

 

The teaching and learning tools used in this course to deliver the subject matter 
include white board and markers, formal lectures, class discussions, 
assignments, two exams and a final 

L Grading Scale, 
Grading 

Distribution, 
and Due Dates 

 

Grading Scale 

A:85—100,  A- : 81--84.99 ,  B+: 77--- 80.99,  B: 74 -- 76.99,  B-: 70 – 73.99 , C+: 67 --- 
69.99,  C:  63—66.99 ,  F <63 

 

Excellent 

A Equals 4.00 grade 
points 

Meet Expectation 

A- Equals 3.80 grade 
points 

B+ Equals 3.30 grade 
points 

B Equals 3.00 grade 
points 

Below Expectation 

B- Equals 2.70 grade 
points 

C+ Equals 2.30 grade 
point 

C Equals 2.00 grade 
point 

Fail 

F Equals 0.00 grade 
points 

Academic Integrity 
Violation Fail 
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XF Equals 0.00 grade 
points 

Withdrawal Fail 

WF Equals 0.00 grade 
points 

 
 

Grading Distribution 
 

Assessment Weight Date 

Homework 15 %  

Mid-Term one  25 %  

Mid-Term two 25%  

Final Exam 35% Comprehensive 

Total 100 %  

   
 

M Explanation of 
Assessments 

Exams, homework assignments will include proofs. So  students are expected 

to master some of the techniques that are commonly used in Abstract Algebra 

 

N Student 
Academic 

Integrity Code 
Statement 

Student must adhere to the Academic Integrity code stated in the graduate 
catalog.  

 

SCHEDULE 

Note: Tests and other graded assignments due dates are set.  No addendum, make-up exams, or 

extra assignments to improve grades will be given. 

# WEEKS CHAPTER/SECTIONS NOTES 

 1--6 

Groups, subgroups, cyclic groups, 

symmetric groups, quotient groups, 

product of groups, normal subgroups, 

Sylow’s groups, classification of finite 

abelian groups,  group homomorphism 

and isomorphism 

EXAM I 

 Definitions, Examples, proofs 

 7-13 

Rings, ideals, prime ideals, primary ideals, 

2-absorbing ideals,  maximal ideals, 

quotient rings, quotient fields, prime 

elements, irreducible elements, product of 

rings, localized rings, fields 

Definition  

Examples 

Proofs  
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Exam II 

 

 

 14--16 

separable fields, splitting fields, 

cyclotomic fields, finite fields, and Galois 

field  
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2.1 HANDOUTS
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2.1.1 Handout on the Unit-Group of Zn



Name—————————————–, ID ———————–

MTH 532 Abstract Algebra II, 2020, 1–1 © copyright Ayman Badawi 2020

U(n) is cyclic? , MTH 532, Spring 2020

Ayman Badawi

n ≥ 3. Then U(n) is cyclic iff n = 4, n = pm, or n = 2pm for some odd prime p and integer m ≥ 1.
Suppose that n = 4 or n = pm, or n = 2pm for some odd prime p and integer m ≥ 1. We show that U(n) is cyclic.
If n = 4, U(4) ≈ Z2 is cyclic. If n = pm for some odd prime p and integer m ≥ 1, then φ(n) = (p− 1)pm−1. Hence

U(n) ≈ zp−1⊕ zpm−1 . Since gcd(p−1, pm−1) = 1, U(n) is cyclic. If n = 2pm for some odd prime p and integer m ≥ 1,
, then φ(n) = (p− 1)pm−1. Hence U(n) ≈ zp−1 ⊕ zpm−1 . Since gcd(p− 1, pm−1) = 1, U(n) is cyclic.

Now assume that n 6= 4 and n 6= pm, and n = 2pm for some odd prime p and integer m ≥ 1. We show that U(n) is
not cyclic.

Case 1. Asuume n = 2m, m ≥ 3. Then U(n) ≈ z2 ⊕ z2m−2 . Since gcd(2, 2m−2) 6= 1, U(n) is not cyclic.
Case 2. Assume n = 2kpm, p is odd prime, k ≥ 2, and m ≥ 1. Then φ(n) = 2m−1(p− 1)pm−1. Thus U(n) ≈ D =

z2 ⊕ z2m−2 ⊕ zp−1 ⊕ zpm−1 . Now H = z2 ⊕ {0} ⊕ zp−1 ⊕ {0} is a subgroup of D. Since gcd(2, p − 1) 6= 1, H is not a
cyclic subgroup of D. Thus D is not not cyclic (we know every subgroup of a cyclic group is cyclic). Hence U(n) is not
cyclic.

Case 3. Assume n = 2pk1
1 p

k2
2 · · · pkm

m , where m ≥ 2, p1, ..., pm distinct prime odd integers. Then φ(n) = (p1 −
1)pk1−1(p2 − 1)pk2−1

2 ....(pm − 1)pkm−1
m . Thus U(n) ≈ D = z(p1−1) ⊕ zpk1−1 ⊕ z(p2−1) ⊕ zpk2−1

2
⊕ ....⊕ z(pm−1) ⊕ zpkm−1

m

(note m ≥ 2). Now H = zp1−1 ⊕ {0} ⊕ zp2−1 ⊕ {0} ⊕ ...⊕ {0} is a subgroup of D. Since gcd(p1 − 1, p2 − 1) 6= 1, H is
not a cyclic subgroup of D. Thus D is not not cyclic. Hence U(n) is not cyclic.

Case 4. Assume n = 2kpk1
1 p

k2
2 · · · pkm

m , where m ≥ 2 and k ≥ 2, p1, ..., pm distinct prime odd integers. Then
φ(n) = 2m−1(p1− 1)pk1−1(p2− 1)pk2−1

2 ....(pm− 1)pkm−1
m . Thus U(n) ≈D = z2⊕ z2m−2 ⊕ z(p1−1)⊕ zpk1−1 ⊕ z(p2−1)⊕

z
p
k2−1
2
⊕ .... ⊕ z(pm−1) ⊕ zpkm−1

m
(note m, k ≥ 2). Now H = {0} ⊕ {0} ⊕ zp1−1 ⊕ {0} ⊕ zp2−1 ⊕ {0} ⊕ ... ⊕ {0} is a

subgroup of D. Since gcd(p1 − 1, p2 − 1) 6= 1, H is not a cyclic subgroup of D. Thus D is not not cyclic. Hence U(n) is
not cyclic.

Case 5. Assume n is odd. Then n = pk1
1 p

k2
2 · · · pkm

m , wherem ≥ 2, p1, ..., pm distinct prime odd integers. Then φ(n) =
(p1−1)pk1−1(p2−1)pk2−1

2 ....(pm−1)pkm−1
m . Thus U(n) ≈D = z(p1−1)⊕zpk1−1⊕z(p2−1)⊕zpk2−1

2
⊕....⊕z(pm−1)⊕zpkm−1

m

(note m ≥ 2). Now H = zp1−1 ⊕ {0} ⊕ zp2−1 ⊕ {0} ⊕ ...⊕ {0} is a subgroup of D. Since gcd(p1 − 1, p2 − 1) 6= 1, H is
not a cyclic subgroup of D. Thus D is not not cyclic. Hence U(n) is not cyclic.

Faculty information
Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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2.1.2 Handout on Rings



Name—————————————–, ID ———————–

MTH 532 Abstract Algebra II, 2020, 1–2 © copyright Ayman Badawi 2020

Useful Information for Second Exam, Final, Common Knowledge , MTH 532,
Spring 2020

Ayman Badawi

Fact 1. Let A be a commutative ring with 1 and f(X) ∈ A[X]. Then f(X) ∈ Nil(A[X]) if and only if the coefficients
of f(X) are nilpotent elements of A.

Example: f(X) = 3X3 + 6X2 + 12X + 24 is a nilpotent element of the polynomial ring Z27[X] (i.e., f(X) ∈
Nil(Z27[X]), i.e., there exists a positive integer n such that f(X)n = 0 in Z27[X] since the coefficients of f(x) are
nilpotent elements of Z27. (note that 3, 6, 12, 24 ∈ Nil(Z27))

Example : f(X) = 5X3 + 2x+ 4 is not a nilpotent element of Z8[X] since 5 6∈ Nil(Z8).

Fact 2. Let A be a commutative ring with 1 and f(X) = anX
n + · · · + a1X + a0 ∈ A[X]. Then f(X) ∈ U(A[X]) if

and only if an, ..., a1 ∈ Nil(A) and a0 ∈ U(A).
Example: f(X) = 3X3 + 6X2 + 12X + 7 is a unit (invertible) element of the polynomial ring Z27[X] (i.e., f(X) ∈

U(Z27[X]), i.e., there exists a polynomial k(X) ∈ Z27[X] such that f(X)k(X) = 1 in Z27[X] since 3, 6, 12 are nilpotent
elements of Z27 and the constant term a0 = 7 ∈ U(Z27).

Example : f(X) = 2X3 + 5X + 4 is not a unit (invertible) element of Z8[X] since 5 6∈ Nil(Z8) and the constant
term a0 = 4 6∈ U(Z8).

Example : f(X) = 2X3 + 5X + 3 is not a unit (invertible) element of Z8[X] since 5 6∈ Nil(Z8).

Fact 3. (Surprising result!) Let A be a commutative ring with 1 and f(X) = anX
n + · · ·+ a1X + a0 ∈ A[X]. Then

f(X) ∈ Z(A[X]) if and only if an, ..., a1 ∈ Z(A) and bf(X) = 0 for some nonzero b ∈ Z(A).
Example: f(X) = 3X3 + 2X2 + 3X + 2 is not a zero-divisor element of the polynomial ring Z6[X] (i.e., f(X) 6∈

Z(Z6[X]), i.e., there is no nonzero-polynomial k(X) ∈ Z(Z6[X] such that f(X)k(X) = 0 in Z6[X]. Why? because
Z(Z6) = {0, 2, 3}, but bf(X) 6= 0 for every nonzero b ∈ Z(Z6).

Example : f(X) = 10X3 + 20X + 10 is a zero-divisor element of the polynomial ring Z30[X] (i.e., f(X) ∈
Z(Z30[X]), i.e., there is a nonzero-polynomial k(X) ∈ Z(Z30[X] such that f(X)k(X) = 0 in Z30[X]. Why? because
3 ∈ Z(Z30) and 3f(X) = 0.

Fact 4. Let A be a commutative ring with 1. Then Nil(A) is a proper ideal of A.
Trivial: Let a, b ∈ Nil(A). Then an = bm = 0 for some positive integers n,m. Hence by EXPANSION, we have

(a − b)n+m = 0 Thus a − b ∈ Nil(A). Also, (ab)m = ambm = am.0 = 0. Hence ab ∈ Nil(A). Thus Nil(A) is a
subring of A. Now let f ∈ A. Then (fa)n = fnan = fn.0 = 0. Hence fa ∈ Nil(A). Thus Nil(A) is a proper ideal of
A (note Nil(R) ∩ U(A) = ∅).

Fact 5. (Nice result on how to find nilpotent elements in Zn). Write n = pn1
1 pn2

2 · · · pnk

k (of course p1, ..., pk are distinct
prime integers) and let m = p1p2 · · · pk. Then Nil(Zn) = (m) = mZn = span{m} is the ideal of Zn generated by
m ∈ Zn.

Example: Let A = Z75. Then n = 75 = 3.52 and m = 3.5 = 15. Hence Nil(A) = (15) = 15A = span{15} =
{0, 15, 30, 45, 60}.

Example : Let A = Z30. Then n = 30 = 2.3.5 and m = 2.3.5 = 0 ∈ Z30. Hence Nil(A) = (0) = 0A = span{0} =
{0}.

Fact 6. (Recall (from lecture) this is nice result on how to find prime ideals and maximal ideal in Zn). Write
n = pn1

1 pn2
2 · · · pnk

k (of course p1, ..., pk are distinct prime integers). Let A = Zn. Then a proper ideal I of A is a prime
ideal of A if and only I is a maximal ideal of A if and only if I = (pi) = piA for some 1 ≤ i ≤ k.

Example: Let A = Z75. Then n = 75 = 3.52. Hence 3A = {0, 3, 6, 9, 12, ..., 72} and 5A = {0, 5, 10, ..., 70} are the
only prime (maximal) ideals of A.

Example : Let A = Z30. Then n = 30 = 2.3.5. Hence 2A = {0, 2, 4, 6, 12, ..., 28}, 3A = {0, 3, 6, ..., 27}, and
5A = {0, 5, 10, ..., 25} are the only prime (maximal) ideals of A.

Fact 7. (Recall (from lecture) this is a nice result, it is called the Chinese remainder Theorem): Let A be a com-
mutative ring with 1 and I1, I2, ..., Ik are proper ideals of A that are relatively prime ideals of A (i.e., Ii + Ij = A for
every i 6= j, 1 ≤ i, j ≤ k, some authors call such ideals co-prime ideals). Let F = I1 ∩ I2 ∩ · · · ∩ Ik. Then A/F is ring-
isomorphic to A/I1⊕A/I2⊕· · ·⊕A/Ik. In particular, if F = {0}, then A is ring-isomorphic to A/I1⊕A/I2⊕· · ·⊕A/Ik.

Fact 8. (Nice result, make sure that you know it): Let B,C be commutative rings with 1 and A = B ⊕ C. Let F
be a proper ideal of A. Then F = I1 ⊕ I2 for some ideal I1 of B and some ideal I2 of C. Furthermore (nice), A/F is
ring-isomorphic to B/I1 ⊕ C/I2. Furthermore (from Lecture):

(a) F is a prime ideal of A if and only if either F = I ⊕C for some prime ideal I of B or F = B⊕ J for some prime
ideal J of C.

(b) F is a maximal ideal of A if and only if either F = I ⊕C for some maximal ideal I of B or F = B ⊕ J for some
maximal ideal J of C.
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Fact 9. Let A be a commutative ring with 1 and I be a proper ideals of A. Then I is a prime ideal of A if and only if
A− I is a multiplicative subset of A (recall from lecture that what I call multiplicative subset of A, some authors call it
multiplicatively closed subset of A). The proof is so trivial (just use definitions)

REMARKS Let A be a commutative ring with 1.
(a) Note that every subring of A is a multiplicative subset of A.
(b) Note that every subgroup of U(A) is a multiplicative subset of A
(c) Chose an element a ∈ A. Then D = {a, a2, a3, ..., an, ...} = {am | m is a positive integer } is a multiplicative

subset of A.
d) an ideal I of A is proper if and only if 1 6∈ [ Easy: Suppose I is an ideal and 1 6∈ I . We claim that I is proper.

Deny. Hence I ∩ U(A) 6= ∅. Suppose there is a unit (invertible) element u ∈ I . Since I is an ideal of A and u−1 ∈ A ,
we have 1 = u−1u ∈ I , a contradiction.

e) A proper ideal of I of Z is prime if and only if I is a maximal ideal of Z if and only if I = pZ = (p) for some prime
integer p of Z. Thus the prime ideals of Z are maximal ideals of Z and they are of the form pZ for some prime integer
p. (Proof is trivial : We know that the proper ideals of Z has the form nZ for some positive integer n. Now assume that
nZ is a prime ideal of Z. Hence Z/nZ is an integral domain. But Z/nZ is Zn. Thus Zn is a finite integral domain and
hence a field. Thus n must be a prime number and nZ must be a maximal ideal.

f) A commutative ring A with 1 is called Noetherian if every proper ideal of R is finitely generated., i.e. if I is a
proper ideal of A, then I = span{a1, ..., an} over A for some elements a1, ..., an ∈ I , i.e., if x ∈ I , then there are
b1, ..., bn ∈ A such that x = b1a1 + ... + bnan. Interesting result about Noetherian rings : If A is Noetherian, then
A[x1, ..., xn] is Noetherian (i.e., the polynomial ring with n variables is Noetherian)

g) Let A be a commutative ring with 1. Then the radical of A (denoted by Rad(A)) = Intersection of ALL prime
ideals of A. It is Known, that the RADICAL of A = Nil(A). (the proof relies on the fact that I proved in the class if I is a
proper ideal of A and S is a multiplicative system such that I ∩S = ∅ then there is a prime ideal P of A such that I ⊆ P
and P ∩ S = ∅

h). Let A be a commutative ring with 1. Jacobson radical of A (denoted by J(A)) is the intersection of all MAXIMAL
ideals of A. Nice result about the Jacobson Radical of A : For every x ∈ J(A), x+ u ∈ U(A) for every u ∈ U(A). Also
Rad(A) ⊆ J(A) Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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2.1.3 Handout on Fields



Name—————————————–, ID ———————–

MTH 532 Abstract Algebra II, 2020, 1–6 © copyright Ayman Badawi 2020

Useful Information about FIELDS and Galois Extension, Common Knowledge ,
MTH 532, Spring 2020

Ayman Badawi

1 Q, fields of characteristic 0

QUESTION 1. Assume that [Q(α) : Q] = n and f(x) ∈ Q[x] is a monic polynomial of degree n such that f(α) = 0.
Prove that f(x) is an irreducible polynomial over Q. In fact, prove that f(x) = Irr(α,Q).

Solution: Let k(x) = Irr(α,Q). Since [Q(α) : Q] = n, we know that deg(k(x)) = n (note that k(x) is the unique
monic irreducible polynomial over Q such that k(α) = 0). Since f(α) = 0, we know (class notes) that k(x)|f(x).
Since f(x) and k(x) are monic and deg(f(x)) = deg(k(x)) = n, we conclude that k(x) = f(x).

QUESTION 2. Let α = e
2πi
10 and E = Q(α)).

(i) Find [E : Q]
Solution: By last lecture, note that E is the 10th cyclotomic extension field of Q (i.e, E is the splitting field of
the polynomial x10− 1, i.e. INSIDE E, we have x10− 1 = (x−α)(x−α2)....(x−αn). By class notes, we know
[E : Q] = φ(10) = 4.

(ii) What are the roots of Irr(α,Q)? Then find Irr(α,Q) written in the general form.
Solution: Let k(x) = Irr(α,Q). Then deg(k(x)) = φ(10) = 4 and by class notes (last lecture), the roots of
k(x) are the αk’s, where gcd(k, n) = 1 , 1 ≤ k < 10. Hence the roots are a1 = α, a2 = α3, a3 = α7 and
a4 = α9. Hence k(x) = (x − a1)(x − a2)(x − a3)(x − a4). Now how to find k(x) written in the general form
(note deg(k) = 4).

Note that x10 − 1 = (x5 − 1)(x5 + 1). Let h(x) = x5 + 1. Then it is clear that h(α) = α5 + 1 = [e
2πi
10 ]5 + 1 =

eπi+1 = −1+1 = 0. Thus we know k(x)|h(x). Now observe, we know x5 +1 = (x+1)(x4−x3 +x2−x+1).
Let d(x) = x4−x3+x2−x+1. Then h(x) = x5+1 = (x+1)d(x). Since h(α) = 0, we conclude that d(α) = 0.
Since deg(d(x)) = deg(k(x)) = 4 and d(α) = k(α) = 0, by Question 1 we conclude that k(x) = d(x) =
x4 − x3 + x2 − x+ 1.

(iii) Find a basis, B, for E over Q. Then Write w = α7 + 4α6 + 7α5 in terms of the elements in the basis B.
Solution: Since [E : Q] = 4, by class notes we know B = {1, α, α2, α3} is a basis of E over Q, i.e., if b ∈ E,
then b = a0 + a1α+ a2α

2 + a3α
3 for some a0, ..., a3 ∈ Q.

Now remember from the lecture, how we got the basis B: Let k(x) = Irr(α,Q) as in (ii). Then k(x) =
x4 − x3 + x2 − x + 1 and M = (k(x)) is a maximal ideal of Q[X] and L = Q[x]/M is a field. Then by
mapping x+M → α, we concluded that L is field-isomorphic to E. Since {1 +M,x+M,x2 +M,x3 +M}
is a basis for L over Q and x+M → α, we conclude that B = {1, α, α2, α3} is a basis of E over Q. Hence if
a ∈ L, then we know that a = a0 + a1x + a2x

2 + a3x
3 +M and thus a = a0 + a1x + a2x

2 + a3x
3 +M in L

↔ b = a0 + a1α + a2α
2 + a3α

3 in E. Hence w = α7 + 4α6 + 7α5 in E ↔ x7 + 4x6 + 7x5 +M in L. But we
know how to find x7 + 4x6 + 7x5 +M in L. Recall we divide x7 + 4x6 + 7x5 by k(x) = x4 − x3 + x2 − x+ 1
(high school math (division a polynomial by another polynomial)) and you find the remainder r(x). I did the
calculation, I got r(x) = −4x − 7 (if I made a mistake, then just correct it, I do not need to know about it!).
Hence x7 + 4x6 + 7x5 +M = −4x − 7 +M in L. Hence w = α7 + 4α6 + 7α5 = −4α − 7 in E (if this is not
beautiful, then nothing is beautiful!). (see the below Question...to see more beauty )

(iv) Let a ∈ E. Find all possibilities of deg(Irr(a,Q)).
Solution: From class notes deg(Irr(a,Q)) is a factor of [E : Q]. Why? Let a ∈ E. Then Q(a) is a field
between Q and E. Hence [E : Q] = [E : Q(a)][Q(a) : Q] and we know that [Q(a) : Q] = deg(Irr(a,Q)). Thus
deg(Irr(a,Q)) is a factor of 4 (since [E : Q] = 4). Thus deg(Irr(a, Q)) = 1 or deg(Irr(a, Q)) = 2 or deg(Irr(a,
Q)) = 4. Note that if deg((Irr(a, Q)) = 1, then a ∈ Q and Irr(a,Q) = x− a.

(v) Is E a Galois extension field of Q?
Solution: Yes. Why? because [E : Q] is a finite number. Since E is the splitting field of x10 − 1 (in particular,
E is the splitting field of k(x) = Irr(α,Q) = x4 − x3 + x2 − x + 1), then E is a normal EXTENSION of Q
(remember that E is a normal extension of Q means that for each a ∈ E, Irr(a,Q) has all its roots inside E,
i.e., Irr(a,Q) = (x − a1)(x − a2)...(x − ak) for some k that is a factor of 4 ( note that we just proved that if
a 6 inQ), then Irr(a,Q) has degree 2 or 4 and thus it has 2 distinct roots or 4 distinct roots).

(vi) Find all elements of the Galois group Aut(E/Q). How many subgroups does Aut(E/Q) have? Find them all.
Solution: Since E is a Galois extension of Q, we know that |Aut(E/Q)| = [E : Q] = 4. Since E is the
10th cyclotomic extension of Q, by class notes we know that Aut(E/Q) is group-isomorphic to U(10). Thus
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|Aut(E/Q)| = [E : Q] = |U(10)| = φ(10) = 4. Now let f ∈ Aut(E/Q). Then f : E → E is a field isomorphism
such that f(c) = c for every c ∈ Q (i.e., f is one to one, f is onto, f(a + b) = f(a) + f(b) and f(ab) = f(a)f(b)).
To construct these function, observe that if a ∈ E is a root of Irr(a,Q), then f(a) must be a root of Irr(a, Q)
(Why? because f is an isomorphism from E to E). Since each each element in E is a linear combination of 1,
α, α2,α3, we conclude that f can be determined completely if we know what f(α) maps to . For example if
f(α) = b, then f(a0 + a1α+ a2α

2 + a3α
3) = a0 + a1b+ a2b

2 + a3b
3. Now what are the choices of f(α)? Since

f is an isomorphism from E to E, f(α) must be a root of Irr(α,Q) = k(x) = x4 − x3 + x2 − x+ 1. Now we
know what to do: From part II, the roots of of k(x) are α, α3, α7, α9.
Thus here are all elements of Aut(E/Q): f1 : E → E such that f(α) = α (identity map), f2 : E → E such
that f2(α) = α3, f3 : E → E such that f3(α) = α5, and f4 : E → E such that f4(α) = α9. If you want, you
can write α5, α7, α9 as linear combination of 1, α, α2, and α3 (as I did in part III, for example α5 = −1), but
here we do not need to. Now since |Aut(E/Q)| = |U(8)| = 4 and U(10) is cyclic (Why? see class notes, 10
= (2)(5)), we know that the group Aut(E/Q) is isomorphic to Z4. Let us calculate the order of each element
in Aut(E/Q). |f1| = 1 (note f1 is the identity map). |f2| = 4. Why? note that Aut(E/Q) is a group under
composition. Hence we need to find the smallest integer m such that fm2 = f2 o f2o... o f2(mtimes) = f1.
But here f2 is determined by f2(α) = α3. Thus we need to find m such that [f2(α)]m = α. Now [f2(α)]2 =
f2(f2(α)) = f2(α3) = [f2(α)]3 = (α3)3 = α9 6= α. Since |f2| 6= 2 and |f2| must be a factor of 4 (lagrange
Theorem), we conclude that |f2| = 4. Important observation, in general, if f(a) = ck and the operation is
composition, then [f(a)]m = (f o o... of)(α)(mtimes) = ck

m . So, to see that [f2(α)]4 = α (the identity map),
[f2(α)]4 = α34

= α81. From class notes, observe that the set of all roots of the polynomial x10 − 1 under
normal multiplication is a cyclic group and α generates such groups, i.e., |α| = 10. Hence α81 = α80α and
since α10 = 1, we conclude α80 = 1. Thus α81 = α.
Hence we have Exactly one subgroup of order 1, G1 = {f1}, we have EXACTLY one subgroup of order 2,
G2 = {f1, f4} (note that [f4(α)]2 = α92

= α81 = α ), and exactly one subgroup of order 4, G3 = Aut(E/Q) =
{f1, f2, f3, f4} =< f2 >.

(vii) Find all distinct fields between Q and E (including Q, and E). For each subfield L between Q and E find [L : Q].
Solution: By last lecture, Galois Theorem tell us that number of all fields between Q and E (including Q and
E) is exactly the number of all subgroups of Aut(E/Q) (including the identity map, and Aut(E/Q)). From
Part VI, Aut(E/Q) has exactly 3 subgroups. Hence there are exactly 3 fields between Q and E (including
Q and E). Hence there is exactly one field L between Q and E such that L 6= Q and L 6= E. So how to
find L. Recall from last lecture, Galois Theorem tell us that each subgroup of Aut(E/Q) fix one and only
one field between Q and E. What do we mean with "fix one and only one field between Q and E? here is
the meaning (read it CAREFULLY ): If G is a subgroup of Aut(E/Q), then there is a largest field , say L,
between Q and E such that for every (read carefully for every) f ∈ G, we have f(i) = i for every i ∈ L and
|G| = |Aut(E/L)| = [E : L].
So from part 1. Q is the fixed field that corresponds to the group G3 = Aut(E/Q) = {f1, f2, f3, f4}. E
is the fixed field that corresponds to the group G1 = {f1} = Aut(E/E). Now we need to find a field L
that is fixed by G2 = {f1, f4}, i.e, we need to find the largest field L between Q and E such that for every
i ∈ L, we have f1(i) = i and f4(i) = i. Note that in our case, L = Q(v) for some v ∈ E − Q. So how
to find v. Here is a technique that work, here f1(α) = α and f4(α) = α9. Take v = α + α9. Check that
v 6∈ Q. HOW can I CHECK? write α9 in terms of 1, α, α2, and α3 as I did in part iii. My calculation,
showed that α + α9 6∈ Q. OBSERVE that a3α

3 + a2α
2 + a1α + a0 ∈ Q for some a3, ..., a0 ∈ Q if and

only if a0 ∈ Q, a3 = a2 = a1 = 0. For if a3α
3 + a2α

2 + a1α + a0 = a4 ∈ Q, then consider the polynomial
f(x) = a3x

3+a2x
2+a1x+a0−a4. Then f(α) = 0. Hence we know that k(x) = x4−x3+x2−x+1 = Irr(α,Q)

must divide f(x), impossible since deg(k) = 4 and deg(f) ≤ 3. So let v = α + α9. Then f1(v) = v and
f4(v) = f4(α + α9) = f4(α) + f4(α9) = α9 + f4(α)9 = α9 + (α9)9 = α9 + α81 = α9 + α = v (since α80 = 1).
Thus G2 fixed the field Q(v). We know by Galois Theorem that |G2| = [E : Q(v)]. Since |G2| = 2, we have
[E : Q(v)] = 2. To find [Q(v) : Q]. We know [E : Q] = [E : Q(v)][Q(v) : Q]. Since [E : Q] = 4 and
[E : Q(v)] = 2, we conclude that [Q(v) : Q] = 2. Thus note that Irr(v,Q) is a monic irreducible polynomial
of degree 2 over Q.

Fact 1. Assume that E is a Galois extension of Q and L is a field between Q and E. If L is not a normal extension of Q,
then the group Aut(E/Q) is not abelian group! (waw waw !)

QUESTION 3. Let E be a splitting field of f(x) = x7 − 12, by class notes E = Q(a1, ..., a7) where a1, ..., a7 are the
roots of f(x). Show that Aut(E/Q) is a non-abelian group.

Solution: We know every splitting field of a polynomial over Q is a Galois extension of Q. By Einstein result,
let p = 3, then p| − 12 and 32 = 9 - −12. Thus f(x) is IRREDUCIBLE. Clearly a = 7

√
12 is a root of f(x). Thus

L = Q(a) is a field between Q and E and [L : Q] = 7. Clearly, B = {1, a, a2, ..., a6} is a basis of L over Q. Hence all
elements in L are real numbers and i 6∈ L. Since f(x) has roots that are not real, f(x) does not SPLIT completely
inside L. Hence L is not a normal extension of Q. Thus by the FACT, Aut(E/Q) is not abelian.

QUESTION 4. Let E = Q(
√

2, 3
√

2). Find [E : Q]. Prove that E is not a Galois extension of Q. Let a ∈ E − Q. Find
all possibilities of degree(Irr(a,Q)).
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Solution: This is how you view E. Let L = Q(
√

2), and H = Q( 3
√

2). Then E = L( 3
√

2) = H(
√

2).
Now, it is clear that Irr( 3

√
2, Q) = x3 − 2 and Irr(

√
2, Q) = x2 − 2. Now x3 − 2 has no roots in L. Thus

x3 − 2 stays irreducible over L, i.e., Irr( 3
√

2, L) = x3 − 2 (note that Irr( 3
√

2, L) = f(x) is the unique irreducible
polynomial with coefficient from L such that f( 3

√
2) = 0). Thus [E = L( 3

√
2) : L = Q(

√
2)] = 3. It is clear that

[L = Q(
√

2) : Q] = 2. Hence [E : Q] = [E = L( 3
√

2) : L][L = Q(
√

2) : Q] = (3)(2) = 6.
Also note that [E : Q] = [E : H][H : Q] = (2)(3) = 6. We show that E over Q is not a normal Extension, and

hence E is not a Galois Extension of Q. Choose a = 3
√

2. Then a ∈ E. Irr(a,Q) = x3 − 2. Since all elements of E
are real numbers and x3 − 2 has 2 non-real roots, x3 − 2 doest not SPLIT over E (i.e., x3 − 2 cannot completely
factored as product of linear factors over E, i.e, x3 − 2 does not have all its roots inside E). Hence E over Q is not
a normal Extension, and thus E is not a Galois extension of Q.

Now let a ∈ E − Q. Then we know deg(Irr(a,Q)) must be a factor of [E : Q] = 6. Thus all possibilities of
degree(Irr(a,Q)) are 2, 3, 6.

Fact 2 (NICE! ). Def: F ⊆ E (of course F and E are fields) and E = F (b) for some b ∈ E. Then we say E is a simple
extension of F . Let E = Q(a1, a2, ..., ak) such that [E : Q] < ∞. Then there exist b ∈ E such that E = Q(b). So, in
general if E is a field extension of Q and [E : Q] is finite number, then E = Q(b) for some b ∈ E, i.e., E is a simple
extension of Q.

QUESTION 5. Let E be the field in Question 4, i.e., E = Q(
√

2, 3
√

2). By the fact above find b ∈ E such that E = Q(b).
Then find Irr(b,Q).

Solution: You will like this technique!. Here is the idea, recall from basic linear algebra. If K is a subspace of
V and dim(V) = dim(K), then K = V . Claim: b =

√
2 + 3
√

2. We show E = Q(b). Since b ∈ E, Q(b) is a subspace
of E. If we show that [Q(b) : Q] = 6 = [E : Q], then E = Q(b). Here is the Technique! we find f(x) = Irr(b,Q) by
"back ward" method.

Set (*)
x =
√

2 +
3
√

2

Use minimum calculations on (∗) in order to eliminate all radical. Then we get a polynomial with coefficients
in Q. This polynomial will be Irr(b,Q). ONE WAY :

x−
√

2 =
3
√

2

(x−
√

2)3 = 2

x3 − 3
√

2x2 + 6x−
√

8 = 2

Now move all radicals to the right side

x3 + 6x− 2 = 3
√

2x2 +
√

8

.

(x3 + 6x− 2)2 = (3
√

2x2 +
√

8)2 = 18x4 + 24x2 + 8

Thus all radicals are eliminated. Now we move the right side to the left, then we get our f(x) = Irr(b,Q) of
degree 6 such that f(b) = 0.

Irr(b,Q) = f(x) = (x3 + 6x− 2)2 − 18x4 − 24x2 − 8 ∈ Q[x]
.

If you want you can simplify f(x) but here there is no need. It is clear that deg(f) = 6 and f(b) = 0. Thus
[Q(b) : Q] = 6.

Since [E : Q] = [Q(b) : Q] = 6 and Q(b) "lives" inside E, we conclude that E = Q(b).

QUESTION 6. Let a =
√

3 and b =
√

7 and E = Q(a, b). Show that Q(a, b) is a Galois extension of Q. Find all
subgroups of Aut(E/Q). For each subgroup H of Aut(E/Q), find the field that is fixed by H .

Solution: Recall from last lecture if E = Q(a1, a2, .., ak) such that for every i, 1 ≤ i ≤ k, Irr(ai, Q) has all its
roots in E (i.e., Irr(ai, Q) splits in E), then E is a Galois extension of Q. Clearly, fa(x) = Irr(a,Q) = x2 − 3 and
fb(x) = Irr(b,Q) = x2 − 7. Both polynomials split in E. Thus E is a Galois extension of Q. By similar argument
as in Question 4, [E : Q] = 4. Hence Aut(E/Q) is a group with 4 elements. We know that every group with p2

elements for some prime p is abelian. As I stated in Question 2 (vi, and vii). If d is a root of a polynomial k(x) and
f ∈ Aut(E/Q), then f(d) must be a root of k(x). Now a =

√
3, −a = −

√
3 are the roots of fa(x) = x2 − 3, b =

√
7,

-b = -
√

7 are the roots of fb(x) = x2 − 7. Hence we can now state all elements of Aut(E/Q) (note again that if
h ∈ Aut(E/Q) then h is a field-isomorphism from E ONTO E such that h(c) = c for every c ∈ Q.)

So let f1, f2, f3, f4 : E → E be field isomorphisms (note all of them determined by mapping a root of fa(x) to a
root of fa(x) and a root of fb(x) to a root of fb(x). Hence

f1(d) = d for every d ∈ E (the identity map), f2(a) = −a and f2(b) = b (note that a =
√

3 and b =
√

7),
f3(a) = a and f3(b) = −b, f4(a) = −a and f4(b) = −b. Now since |Aut(E/Q)| = 4. Hence |fi)| = 2or4, i 6= 1.
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Note |f1| = 1 (f1 is the identity map). It is clear that [fi(a)]2 = fi(fi(a)) = a and [fi(b)]2 = fi(fi(b)) = b for every
2 ≤ i ≤ 4. Thus |fi| = 2 for every 2 ≤ i ≤ 4. Hence Aut(E/Q) is isomorphic to Z2 × Z2. Thus we have exactly 5
subgroups of Aut(E/Q) (including {f1} and Aut(E/Q). The subgroups are

1)G1 = {f1} and the corresponding fixed field is E since f1(d) = d for every d ∈ E and |Aut(E/E)| = |G1| = 1.
2) G2 = {f1, f2} and the corresponding fixed field is Q(b) since b 6∈ Q and f2(b) = b and |Aut(E/Q(b))| =

|G2| = 2 = [E : Q(b)].
3) G3 = {f1, f3} and the corresponding fixed field is Q(a) since a 6∈ Q and f3(a) = a and |Aut(E/Q(a))| =

|G3| = 2 = [E : Q(a)].
4) G4 = {f1, f4} and the corresponding fixed field is Q(ab) = Q(

√
6) WHY? since f4(a) = −a and f4(b) = −b,

we have f4(ab) = f4(a)f4(b) = (−a)(−b) = ab and |Aut(E/Q(ab))| = |G4| = 2 = [E : Q(ab)].
5) G5 = Aut(E/Q) = {f1, f2, f3, f4} and the corresponding fixed field is Q and |Aut(E/Q)| = |G5| = 4 = [E :

Q].
THUS ALL fields between Q and E are Q,Q(b), Q(a), Q(ab), E = Q(a, b).

QUESTION 7. Let E = Q(
√

5,
√

6). Find b ∈ E such that Q(b) = E. Find Irr(b,Q).

Solution : By the methods as in Question 4, and 5. We conclude that [E : Q] = 4. (Note that Irr(
√

5, Q) = x2−5
and Irr(

√
6, Q) = x2 − 6).

We claim : b =
√

5 +
√

6
So let

x =
√

5 +
√

7

x2 = 12 + 2
√

5
√

7

(x2 − 12)2 = (2
√

5
√

7)2 = 140

f(x) = Irr(b,Q) = (x2 − 12)2 − 140 is an Irreducible monic polynomial of degree 4 such that f(b) = 0. Hence
[E : Q] = [Q(b) : Q] = 4 and Q(b) = E.

I end this section with the following amazing result.

QUESTION 8. (nice Question). Prove that if f(x) is a polynomial of degree n ≥ 1 in R[x] (the polynomial ring with
REAL coefficient, then f(x) = ua1(x)a2(x)...ak(x) where u is a nonzero number in R and each ai(x) is a monic
irreducible polynomial of degree 1 or 2 (not necessarily that the ai(x)’s are distinct)

Solution: Since R is a field, we know R[x] is a UFD (Unique factorization domain). Hence we know that
f(x) = ua1(x)a2(x)...ak(x) where u is a nonzero number in R and each ai(x) is a monic irreducible polynomial
(not necessarily the ai(x)’s are distinct). The only thing we need to prove that each ai(x) is of degree 1 or 2. Now
f(x) = x2 +1 is an irreducible polynomial over R and hence M = (f(x)) is a maximal ideal of R[x]. Thus R[x]/M
is a field. Note that E = R[X]/M = {a+ bx+M |a, b ∈ R} and [E : R] = 2 and E = span{1 +M,x+M} over R.
Since i is a root of the irreducible polynomial f(x), we know that E is field-isomorphic to R(i) by mapping x+M
to i. Hence R(i) is a field and [R(i) : R] = 2. Thus R(i) = span{1, i} over R. Hence R(i) = {a+ bi|a, b ∈ R} = C
( the set of all complex numbers). Since R(i) = C and [R(i) : R] = 2, we have [C : R] = 2. Let a ∈ C. Then the
degree of Irr(a,R) must be a factor of [C : R] = 2. Hence for every a ∈ C, the degree of Irr(a,R) is either 1 or 2 ,
i.e, R[x] has no IRREDUCIBLE polynomials of degree ≥ 3. Thus each ai(x) is a monic irreducible polynomial of
degree 1 or 2. Done

2 FINITE FIELDS, fields of characteristic p

Fact 3. (i) Every finite field, say F , has exactly pn elements for some prime integer p and a positive integer n and
Zp ⊆ F . Furthermore, if F1, F2 are fields with same number of elements, then F1, F2 are isomorphic as FIELD.
(Class notes)

(ii) Let F be a finite field with pn elements. Then (F ∗, .) is a cyclic group with pn − 1 elements. Hence xp
n

= x for
every x ∈ F (i.e., xp

n − x = 0 for every x ∈ F ) (class notes)

(iii) Let F be a finite field with pn elements and m|n. Then F has a UNIQUE subfield with pm elements. Furthermore
if H is a subfield of F with pm elements, then m|n (note that [F : Zp] = [F : H][H : Zp]) (class notes)

(iv) Let F be a finite field with pn elements. Let f(x) be an IRREDUCIBLE monic polynomial of degree n in Zp[x],
then F is field-isomorphic to Zp[x]/(f(x)) (class notes).

(v) Let F be a field with pn elements, a ∈ F . Then a is a root of an IRREDUCIBLE monic polynomial f(y) in Zp[y]
of degree m such that m|n. Furthermore, let H be the unique subfield of F with pm elements, then f(y) splits com-
pletely inside H (i.e., f(y) has all its roots (exactly m distinct roots)) and the roots of f(y) are a, ap, ap

2
, ..., ap

m−1
.

Also note that H = Zp(a) = span{1, a, a2, ..., am−1} over Zp.

(vi) Let f(y) be an irreducible monic polynomial over Zp of degree m. Then f(y) splits completely inside a field with
pm elements.

(vii) (in view of the above). Let f(y) be an irreducible monic polynomial over Zp of degree m. Then the splitting field
of Then f(y) splits completely inside a field with pm elements.
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(viii) Let F be a finite field with pn elements. Then F is a Galois extension of Zp. Furthermore, Aut(F/Zp) is a cyclic
group with n elements. Hence |Aut(F/Zp)| = n, Aut(F/Zp) is group-isomorphic to Zn, and |Aut(F/Zp)| = n =
[F : Zp]. [Aut(F/Zp) is cyclic, it is trivial, since F has unique subfields of particular order and each subgroup of
Aut(F/Zp) FIXED a unique subfield of F !!)

(ix) THIS RESULT is clear and true for any field F (finite or not). Assume that S1 be the set of all roots of an
IRREDUCIBLE monic polynomial f(x), and S2 be the set of all roots of an IRREDUCIBLE monic polynomial
h(x). If h(x) 6= f(x), then S1 ∩ S2 = ∅

(x) (Freshman Dream, class notes). Let F be a finite field with pn elements. Then for every integer k ≥ 1 and for every
a, b ∈ F , (a+ b)p

k

= ap
k

+ bp
k

QUESTION 9. Let P3 be the set of all distinct irreducible monic polynomial of degree 5 over Z3. Find |P3| ( i.e., HOW
MANY MONIC IRREDUCIBLE POLYNOMIALS of degree 5 in Zp[y] are there? )

Solution: Let f(y) ∈ P3. By Fact(vi), f(y) has all its roots (exactly 5 distinct roots) inside a field F with 35

elements. Let a ∈ F . Then by fact (v) a is a root of a unique monic irreducible polynomial in Z3[y] of degree m
such that m|5. Hence Each element in F is a root of an Irreducible polynomial of degree 1 or 5 in Z3[y]. But Z3[y]
has exactly 3 irreducible monic polynomials of degree 1 (namely, y, y + 1, y + 2). Thus each element in F − Z3 is
a root of an irreducible monic polynomial of degree 5 in Z3[y]. Now |F − Z3| = 35 − 3. By Fact (ix) two distinct
polynomials in P3 have no COMMON root (also note that each polynomial in P3 has exactly 5 distinct roots in
F − Z3). Hence |P3| = 35−3

5 . (nice!)

QUESTION 10. Let P6 be the set of all distinct irreducible monic polynomial of degree 6 over Z2. Find |P6|

Solution: Again, let f(y) ∈ P6. By Fact(vi), f(y) has all its roots (exactly 6 distinct roots) inside a field F
with 26 elements. Let a ∈ F . Then by fact (v) a is a root of a unique monic irreducible polynomial in Z2[y] of
degree m such that m|6. Hence Each element in F is a root of an Irreducible polynomial of degree 1 or 2 or 3
or 6 in Z2[y]. Thus let P1 be the set of all distinct irreducible monic polynomial of degree 1 over Z2, let P2 be
the set of all distinct irreducible monic polynomial of degree 2 over Z2, let P3 be the set of all distinct irreducible
monic polynomial of degree 3 over Z2, H2 be the unique subfield of F with 22 elements, and H3 is the unique
subfield of F with 23 elements. Now by fact (v) each polynomial in P2 has all its roots (exactly 2 distinct roots)
in the subfield H2 of F and each polynomial in P3 has all its roots in the subfield H3 of F . Thus each element in
D = F − (H3 ∪H2) is a root of an irreducible monic polynomial of degree 6 in Z2[y] (note that Z2 is inside every
finite finite with 2n elements, thus if a ∈ D, then d 6∈ Z2, in fact H3 ∩H2 = Z2). Now we calculate |F − (H3 ∪H2|.
First |H2 ∪H3| = |H2|+ |H3| − |H2 ∩H3| = 23 + 22 − 2 = 10. Thus |F − (H3 ∪H2)| = 26 − 10 = 54. By Fact (ix)
two distinct polynomials in P6 have no COMMON root (also note that each polynomial in P6 has exactly 6 distinct
roots in F − (H2 ∪H3)). Hence |P6| = 54/6 = 9 (nice!)

QUESTION 11. Let f(y) = y3 + y+ 1 ∈ Z2[y]. Show that f(y) is irreducible over Z2. Find a splitting field of f(y) and
write it as a product of linear factors.

Solution: Since deg(f) = 3, to show that f(y) is irreducible, it suffices to show that f(y) has no roots in
Z2. Thus since f(0) 6= 0 and f(1) 6= 0, f(y) is irreducible over Z2. We know that the splitting field of f(y)
is a field with 23 elements. Now M = (f(x)) = (x3 + x + 1) is a maximal ideal of Z2[x] and F = Z2[x]/M is
a field with 23 elements and F = span{1 + M,x + M,x2 + M} over Z2. Now we "view" f(y) inside F [y] as
f2(y) = (1+M)y3 +(1+M)y+(1+M) (class notes). We know (class notes) that x+M is a root of f2(y). Hence
by Fact (v), a1 = x+M , a2 = x2 +M , and a3 = x4 +M are all the roots of f2(y) inside F . Note that if you want
then you reduce x4 +M to a0 + a1x+ a2x

2 +M (by dividing x4 by x3 + x+ 1 and taking the remainder). Thus
f2(y) = ((1 +M)y − a1)((1 +M)y − a2)((1 +M)y − a3).

QUESTION 12. Let F be a field with 56 elements. Find all elements of Aut(F/Z5). Find all subgroups of Aut(F/Z5).
For each subgroup H of Aut(F/Z5) find the corresponding field inside F that is FIXED by H .

Solution: First |Aut(F/Z5)| = [F : Z5] = 6 and Aut(F/Z5) is cyclic with 6 elements (isomorphic to Z6) (see
Fact (viii)). We know that (F, ∗) is a cyclic group with 56 − 1. Thus (F ∗, .) =< a1 > for some a1 ∈ F such that
|a1|x = 56 − 1. Let f(y) be a monic irreducible polynomial over Z5 such that f(a1) = 0. Then it is clear that
deg(f) = 6. Then f(y) has all its roots inside F . Say a1 ∈ F is a root of f(y). Then we know that all roots
of f(y) are a1, a

52

1 , a
53

1 , a154, a155 by Fact (v). Let f ∈ Aut(F/Z5) (i.e., f is a field-isomorphism from F ONTO
F and it fixes Zp, i.e., f(a) = a for every a ∈ Zp). Also note that F = span{1, a1, a

2, a3, a4, a5} over Z5. Then
as I discussed in Question 2(vi) f can be determined by mapping a root of f(y) to a root of f(y). Hence let
f1, f2, f3, f4, f5, f6 : F → F be field-isomorphism that fixed Zp. Then the elements of Aut(F/Z5) are:

f1(b) = b for every b ∈ F (the identity map), f2(a1) = a5
1, f3(a1) = a52

1 , f4(a1) = a53

1 , f5(a1) = a54

1 and
f6(a1) = a55

1 . We know Aut(F/Z5) is cyclic. Hence we will find a generator, i.e., at least one of the fi has order 6
(under composition). Now f2 (i.e., f2(a1) = ap1) is always such generator. Note that |a1| = 56 − 1. and a56

1 = a1 and
6 is the least positive integer such that a156 = a1. Hence clearly that f2 is a generator of Aut(F/Z5). For [f2(a1)]6

(composition f2 6 times) = a56

1 = a1. Thus Aut(F/Z5) =< f2 >. Since Aut(F/Z5) is cyclic with 6 elements,
Aut(F/Z5) has exactly one cyclic subgroup of order 1, 2, 3, 6. Since |f2| = 6. Then we know |[f2]2| = |f3| =

18
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6/gcd(2, 6) = 3, |[f2]3| = |f4| = 6/gcd(3, 6) = 2, |[f2]4| = |f5| = 6/gcd(4, 6) = 3, |[f2]5| = 6/gcd(5, 6) = 6.
Let H2, H3 be the unique cyclic subgroups of Aut(F/Z5) of order 2 and 3 respectively. Then H2 = {f1, f4} and
H3 = {f1, f3, f5}. Thus here are the subgroups:

1)H1 = {f1} and the corresponding fixed field is E since f1(d) = d for every d ∈ E and |Aut(E/E)| = |G1| = 1.
2) H2 = {f1, f4}. Let K1 be the field inside F that is fixed by each function in H2. We know by Galois Theorem,

[F : K1] = |H2| = 2. Since [F : Z5] = [F : K1][K1 : Z5] , we have 6 = 2[K1 : Z5] Thus [K1 : Z5] = 3. Hence K1 is
the unique subfield of F with 53 elements.

3) H3 = {f1, f3, f5}. Let K2 be the field inside F that is fixed by each function in H3. We know by Galois
Theorem, [F : K2] = |H3| = 3. Since [F : Z5] = [F : K2][K2 : Z5] , we have 6 = 3[K2 : Z5] Thus [K1 : Z5] = 2.
Hence K2 is the unique subfield of F with 52 elements.

4) H4 = Aut(F/Z5) =< f2 >= {f1, f2, f3, f4, f5, f6} and Z5 is the fixed field by each element in H4.

Faculty information
Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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2.2.1 Solution for Exam One



Name—————————————–, ID ———————–

MTH 532 Abstract Algebra II, 2020, 1–2 © copyright Ayman Badawi 2020

EXAM I , MTH 532, Spring 2020

Ayman Badawi

QUESTION 1. Given D is a group with 48 elements. Assume that D has an element a ∈ C(D) such that |a| = 16.
Prove that D is cyclic.

Solution
By Sylow’s Theorems, we must have a subgroup H with 3 elements. Let h ∈ H − e. Then |h| = 3. Since

a ∈ C(D), a*h = h*a. Since a ∗ h = h ∗ a and gcd(|a|, |h|) = gcd(16, 3) = 1, by a HW problem we conclude that
|b = a ∗ h| = (16)(3) = 48. Then D =< b >=< a ∗ h >. So D ≈ Z48.

QUESTION 2. Does U(54) have an element of order 18? If yes, how many elements of order 18 does U(54) have?
Solution
54 = (2)(33). Hence φ(54) = (2)(9). By a HW problem U(54) ≈ Z2 ⊕ Z9 ≈ Z18 (since gcd(2, 9) = 1).
By class notes Z18 has exactly φ(18) = 6 distinct generators. Since U(54) ≈ Z18, we conclude that U(54) has

exactly 6 elements of order 18.

QUESTION 3. Let f : (Z18,+)→ (U(50), .) be a group homomorphism such that f(1) 6= 1. Find f(0). Find Ker(f).
Solution
Note that 0 is the identity of Z18 and 1 is the identity of U(50) (U(50) = {a ∈ Z50|gcd(a, 50) = 1} is group under

multiplication). Since f is a group homomorphism, we know f(0) = 1.
We know Z18/Ker(f) ≈ Range(f) < U(50). Now we know by HW problem that U(50) ≈ Z20.
Thus Z18/Ker(f) ≈ to a subgroup of Z20. Thus m = |z18/kerf | = |Z18|/|Ker(f)|must be a factor of 18 and m

must be a factor of 20. Hence m = 1 or m = 2.
If m = 1, then Ker(f) = Z18 and hence f(a) = 1 for every a ∈ Z18, a contradiction since f(1) 6= 1. Thus m =

2.
m = 2 implies 2 = |Z18|/|Ker(f)| = 18/|Ker(f)|. Thus |Ker(f)| = 9. Since Z18 is cyclic, Z18 has unique

subgroup with 9 elements. Thus Ker(f) = {0, 2, 4, 6, 8, 10, 12, 14, 16} =< 2 >.

QUESTION 4. Let D be a group with 100 elements. Assume that D has a subgroup H with 20 elements such that
H ⊆ C(D). Prove that D is an abelian group.

Solution
We know C(D) is a normal subgroup of D. Let m = |C(D)|. We know that m|100. Since C(D) is a group

(subgroup of D) and H is a subgroup of D that lives inside C(D), we conclude that H is a subgroup of C(D).
Thus 20 | m. Since 20|m and m|100, we conclude that m = 20 or m = 100. Assume m = 20. Then D/C(D) is a
cyclic group (since |D/C(D)| = 5). Hence D must be abelian by class notes, and thus C(D) = D and m = 100 a
contradiction. Hence m 6= 20. Thus m = 100, and therefore C(D) = D. Hence D is abelian.

QUESTION 5. (i) EXTRA CREDIT, but you need it to solve (ii). Let D be a finite group and H be a subgroup of
D such that [D : H] = m for some integer m (note that [D : H] = |D|/|H| = number of all distinct left cosets of
H). Prove that there is a group homomorphism , say f , from D into Sm such Ker(f) ⊆ H .

Solution
Let L = {H, a2 ∗H, ..., am ∗H} be the set of all distinct left cosets of H .

Now define f : D → Sm such that f(a) =

(
H a2 ∗H ... am ∗H

a ∗H a ∗ a2 ∗H ... a ∗ am ∗H

)
for every a ∈ D.

It is clear that f(a) is a bijective function for every a ∈ D and thus f(a) ∈ Sm for every a ∈ D.
It is trivial to check that f(a ∗ b) = f(a) o f(b) for every a, b ∈ D. Thus f is a group homomorphism.

Let w ∈ Ker(f). Then f(w) =

(
H a2 ∗H ... am ∗H

w ∗H w ∗ a2 ∗H ... w ∗ am ∗H

)
=

(
H a2 ∗H ... am ∗H
H a2 ∗H ... am ∗H

)
. Thus

w ∗H = H and hence w ∈ H . Thus Ker(f) ⊆ H . Note that ker(f) = H only if H is a normal subgroup of D.
Thus by the first isomorphism theorem , we conclude that D/Ker(f) ≈ to a subgroup of Sm.

(ii) Let D be a finite simple group. Assume that H,K are subgroups of D such that [D : H] = p1 and [D : K] = p2 for
some prime integers p1, p2. Prove that p1 = p2. (nice result!)

Solution
Let n = |D|. First note that p1, p2 are prime factors of |D| (i.e., p1|n and p2|n).
Case 1. Assume p2 > p1. By part (i), there is a group homomorphism , say f , from D into Sp1 such Ker(f) ⊆
H . Thus D/ker(f) ≈ to a subgroup of Sp1 . Since H 6= D and ker(f) ⊆ H , we conclude that Ker(f) 6= D.
Since D is simple and Ker(f) 6= D, we conclude that ker(f) = {e} and hence D ≈ to a subgroup of Sp1 .
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Note that |Sp1 | = p1!. Thus n|p1!. Since p2|n and n|p1!, we conclude that p2|p1!, which is impossible since p2 is
PRIME and p2 > p1 (i.e., p2 is not a PRIME factor of p1!). Thus p2 � p1.
Case 2. Assume p1 > p2. By similar argument as in case 1. By part (i), there is a group homomorphism , say
f , from D into Sp2 such Ker(f) ⊆ K. Thus D/ker(f) ≈ to a subgroup of Sp2 . Since K 6= D and ker(f) ⊆ K,
we conclude that Ker(f) 6= D. Since D is simple and Ker(f) 6= D, we conclude that ker(f) = {e} and hence
D ≈ to a subgroup of Sp2 . Note that |Sp2 | = p2!. Thus n|p2!. Since p1|n and n|p2!, we conclude that p1|p2!,
which is impossible since p1 is PRIME and p1 > p2 (i.e., p1 is not a PRIME factor of p2!). Thus p1 � p2.
Since p2 � p1 and p1 � p2, we conclude that p1 = p2.

QUESTION 6. Let D be a group with pm elements, where p is a prime integer and m ≥ 2. Prove that D has a normal
subgroup with pm−1 elements. [Hint : Show that D must have a subgroup H with pm−1 elements by class note result
(which result?). Then use class - lecture (result) to show that H is normal in H (which result?)].

Solution
By Sylow’s Theorems (lecture) D has a subgroup with pi elements for every 1 ≤ i ≤ m. Hence D has a

subgroup H with pm−1 elements. Since [D : H] = p is the smallest prime factor of |D|, by class notes we conclude
that H is a normal subgroup of D.

QUESTION 7. Let D be a group with (52)(72) elements. Prove that D is an abelian group. Find all non-isomorphic
groups with (52)(72) elements?

Solution
By Sylow’s Theorems, since n7 = 1, we conclude that D has a normal subgroup H with 72 elements. Also,

since n5 = 1, we conclude that D has a normal subgroup K with 52 elements. Since H ∩K = {e} and D = H ∗K,
by a HW problem we conclude that D ≈ H ⊕ K. Since |H| = 72, we know (class notes) that H is abelian and
thus H ≈ Z49 or H ≈ Z7 ⊕ Z7. Since |K| = 52, we know (class notes) that K is abelian and thus K ≈ Z25 or
K ≈ Z5 ⊕ Z5. Thus D is isomorphic to one and only one of the following groups:

Z49 ⊕ Z25 ≈ Z(49)(25) is cyclic OR
Z49 ⊕ Z5 ⊕ Z5 OR
Z7 ⊕ Z7 ⊕ Z25 OR
Z7 ⊕ Z7 ⊕ Z5 ⊕ Z5.

QUESTION 8. Let a = (1 2 3) o (1 3 4 2 5) ∈ S6. Is a ∈ A6? Find |a|.
Solution
a = (2 5) o (3 4) is a product of 2 2-cycles. Hence a ∈ A6. We know |a| = LCM [2, 2] = 2.

QUESTION 9. Let D be a group with 105 elements (105 = (3)(5)(7)).

(i) Prove that D is not simple. [Hint: Assume D is simple. How many elements of orders 7, 5, 3 does D have? is this
possible?

Solution
Assume that n7 6= 1 and n5 6= 1. Hence we conclude that n7 = 15 and n5 = 21. Thus by a HW problem, D
has exactly (15)(6) = 90 elements of order 7 and D has exactly (21)(4) = 84 elements of order 5. Thus D
must have at least 90 + 84 = 174 elements, which is impossible since |D| = 105. Hence n7 = 1 or n5 = 1. Thus
D has a normal subgroup with 7 elements or a normal subgroup with 5 elements. Thus D is not simple

(ii) Assume that n7 = 1 (i.e., D has exactly one sylow-7-subgroup). Prove that D has a normal cyclic subgroup with
35 elements [hint: Use a result from HW, use a result from class notes! and of course sylow’s theorems] .

Solution
Since n7 = 1, we conclude that D has a normal subgroup H with 7 elements. Also, we know that D has a
subgroup K with 5 elements. By a HW problem F = H ∗ K is a subgroup of D. Since H ∩ K = {e}, we
conclude that |F | = |H||K| = 35. Since [D : F ] = 3 and 3 is the smallest prime factor of |D|, by class notes
we know that F = H ∗K is a normal subgroup of D.
Now |F | = (5)(7) and F is a group (subgroup of D), so we can apply sylow’s Theorems on F . It is clear that
n7 = 1 and n5 = 1. Hence H,K are normal subgroups of F . Since H ∩K = {e}, by a HW problem we know
F ≈ H ⊕K ≈ Z7 ⊕ Z5 ≈ Z35. Hence F is cyclic. Thus F is a cyclic normal subgroup of D.

Submit your solution by 3 pm (as at most), March 28, 2020 .

Faculty information
Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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2.2.2 Solution for Exam Two
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MTH 532 Abstract Algebra II, 2020, 1–2 © copyright Ayman Badawi 2020

Solution EXAM II , MTH 532, Spring 2020

Ayman Badawi

QUESTION 1. (i) (3 points) Let A be a commutative ring with 1 and B be a commutative ring (B may not have "1").
Assume f : A → B is a ring-homomorphism. Prove that f(1) ∈ Id(B) (i.e., show that f(1) is an idempotent
element of B).

Proof. Since f is a ring-homomorphism, we have f(1) = f(1.A1) = f(1).Bf(1) = f(1)2. Thus f(1) ∈ Id(B).

(ii) (3 points) Let A be a commutative ring with 1 and B = 2Z (B is the set of all even integers). Assume f : A → B
is a ring-homomorphism. Prove that f(a) = 0 for every a ∈ A.

Proof. By part (i), f(1) must be idempotent element of B = 2Z. Now Id(B) = {0}. Thus f(1) = 0. Hence
f(a) = f(a.A1) = f(a).Bf(1) = f(a).B0 = 0 for every a ∈ A.

(iii) (3 points) Let A,B be fields and f : A → B is a ring-homomorphism such that f(a) 6= 0 for some a ∈ A. Prove
that f is injective (i.e., prove that f is one-to-one).

Proof. By part (i), f(1A) must be idempotent element of B. Since B is a field, it is clear that Id(B) = {0B , 1B}.
Hence f(1A) = 0B or f(1A) = 1B . Assume f(1A) = 0. Then f(a) = f(a.A1A) = f(a).Bf(1) = f(a).a0B = 0,
a contradiction since f(a) 6= 0B . Thus f(1A) = 1B . We know Ker(f) is an ideal of A. Since A is a field and
Ker(f) is an ideal of A, we conclude that Ker(f) = A or Ker(f) = {0A}. If Ker(f) = A, then f(b) = 0B for
every b ∈ A, which is a contradiction since f(1A) = 1B . Hence Ker(f) = {0A}. Now assume that f(b) = f(c)
for some b, c ∈ A. Thus f(b) +B −f(c) = 0B . Since f is a ring-homomorphism, f(b +A −c) = 0B . Since
Ker(f) = {0A}, we conclude that b+A −c = 0A. Thus b = c.

(iv) (3 points) Let f : Z6 → Z9 be a ring-homomorphism. Prove that f(a) = 0 for every a ∈ Z6.

Proof. Again by part (i), f(1) must be idempotent element of Z9. By investigation, Id(Z9) = {0, 1}. Hence
f(1) = 0 or f(1) = 1. Assume f(1) = 0. Then f(a) = f(a.1) = f(a).f(1) = f(a).0 = 0 for every
a ∈ Z6 and we are done. Hence assume that f(1) = 1. We know that f(0) = 0. Hence for every n ∈ Z6,
0 < n ≤ 5, we have f(n) = f(1 + ... + 1 (n times) ) = f(1) + f(1) + ... + f(1) (n times) = n (since 9 > 6).
Thus Range(f) = {0, 1, 2, 3, 4, 5} is a subring of Z9. In particular, Range(f) is a subgroup of Z9 UNDER
ADDITION. Thus |Range(f)| must be a factor of 9 (Lagrange Theorem for groups), which is impossible
since |Range(f)| = 6 and 6 is not a factor of 9. Thus f(1) 6= 1, and hence f(1) = 0. Therefore f(a) = 0 for
every a ∈ Z6.

(v) EXTRA (example where f(1) 6= 0 and f(1) 6= 1) Let f : Z6 → Z10 be a ring-homomorphism such that f(a) 6= 0
for some a ∈ Z6. Find Range f and Ker(f).

Again by part (i), f(1) must be idempotent element of Z10. By investigation, Id(Z10) = {0, 1, 6, 5}. Assume
that f(1) = 0. Hence as before, we conclude that f(b) = 0 for every b ∈ Z6, which is a contradiction since
f(a) 6= 0 for some a ∈ Z6. Also as before f(1) 6= 1. For if f(1) = 1, then Range(f) = {0, 1, 2, 3, 4, 5} , which
impossible since 6 is not a factor of 10. Assume that f(1) = 6. Then by calculation, Range(f) = {0, 6, 2, 4}.
Again, it is impossible since |Range(f)| = 4 and 4 is not a factor of 10. Now assume that f(1) = 5. Then, by
calculation , we conclude that f is a ring-homomorphism, Range(f) = {0, 5} and Ker(f) = {0, 2, 4}.

QUESTION 2. (5 points) Let A be a commutative ring with 1 and let I be a proper ideal of A that is not a maximal
ideal of A. Hence, we know that I ⊂ M for some maximal ideal M of A. Let a ∈ M − I . Prove that a + I is not an
invertible element of the ring A/I (i.e., show that a+ I 6∈ U(A/I)).

Proof First, M is not UNIQUE. Maybe there are infinitely many maximal ideals of A. All of you assumed that
M is unique (i.e., M is the only maximal ideal of A) and hence I has to be the maximal ideal M . Note that if
you prove that for every nonzero element a ∈ A − I , we have a+ I is an invertible element of A/I , then you can
conclude that I is a maximal ideal of A.

So, let a ∈ M − I (note I am not taking a ∈ A − I !) and assume that a + I is invertible in A/I . Thus
a+ I.b+ I = ab+ I = 1 + I for some b ∈ A. Hence 1− ab ∈ I . Thus 1− ab = i ∈ I , and hence 1 = ab+ i. Since
a ∈ M and M is an ideal of A and a ∈ M , we conclude that ab ∈ M . Since I ⊂ M , we have i ∈ M . Since ab ∈ M
and i ∈M , 1 = ab+ i ∈M , which is impossible since M is a proper ideal of A (M ∩U(A) = ∅) (note by definition
a maximal ideal is a proper ideal). Thus a+ I is not an invertible element of A/I .

QUESTION 3. (5 points) Let A be a finite commutative ring with 1 and a ∈ A. Suppose that a 6∈ Z(A). Prove that
a ∈ U(A).

Proof. Since A is a finite commutative ring with 1, we may assume that A = {0, 1, a3, ..., an}. Let a ∈ A−Z(A).
Since A is finite, there exist positive integers m > k such am = ak. Thus by distributive law, am = ak implies
ak(am−k−1) = 0. Since a 6∈ Z(A), it is clear that af 6∈ Z(A) for every positive integer f ≥ 1. Thus ak(am−k−1) = 0
implies am−k − 1 = 0. Thus am−k = 1. Hence a ∈ U(A). [THIS is a nice result, so now you have this FACT (add
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to your dictionary): If A be a finite commutative ring with 1 and a ∈ A, then EITHER a ∈ Z(A) OR a ∈ U(A), A
is finite is very CRUCIAL. For let A = Z (A is infinite). Let a ∈ A − {0, 1,−1}. Then NEITHER a ∈ Z(A) NOR
a ∈ U(A) ]

QUESTION 4. (5 points) Let A be a commutative ring with 1 and f(X) ∈ A[X] such that f(X) 6= 0 and f(X) ∈
Z(A[X]). For every n ≥ 1, prove that there exists a polynomial k(X) ∈ A[X] of degree n such that k(X)f(X) = 0.

Proof. By Class notes (I-Learn), there exists a nonzero element b ∈ Z(A) such that bf(X) = 0. Let n ≥ 1
and k(X) = bXn. Then deg(k(X)) = n and by normal multiplications of polynomials, we have k(X)f(X) =
bXnf(X) = 0 (since bf(X) = 0).

QUESTION 5. (5 points) Let A be a commutative ring with 1 and I be a prime ideal of A. Prove that Nil(A) ⊆ I .

Proof. Since I is prime, we know that A/I is an integral domain. Hence Z(A/I) = {0 + I}. Also note
that for any ring B, Nil(B) ⊆ Z(B). Hence let a ∈ Nil(A). Then an = 0 for some integer n ≥ 1. Hence
(a+ I)n = an + I = 0 + I . Thus a+ I ∈ Nil(A/I). Since Z(A/I) = Nil(A/I) = {0 + I} and a+ I ∈ Nil(A/I),
we conclude that a+ I = 0 + I . Hence a ∈ I . Thus Nil(A) ⊆ I .

another Proof. Let a ∈ Nil(A). Hence an = 0 ∈ I for some integer n ≥ 2. Hence an = a.an−1 = 0 ∈ I . Thus
an = a.an−1 = 0 ∈ I . Since I is prime, a ∈ I or an−1 ∈ I . If a ∈ I , then we are done. Hence assume that an−1 ∈ I
and n ≥ 3. Since I is prime and an−1 = a.an−2 ∈ I , again we conclude that a ∈ I or an−2 ∈ I . By repeating as
before, we conclude that a2 ∈ I . Since a2 = a.a ∈ I and I is prime, we conclude that a ∈ I .

QUESTION 6. (i) (3 points) Let A = Z4 ⊕ Z6. Find all prime ideals of A .

See class notes: 2Z4 ⊕ Z6, Z4 ⊕ 2Z6, Z4 ⊕ 3Z6.

(ii) (3 points). Let A = Z12 ⊕ Z8. Find Nil(A).
Note Nil(A) subset of Z12 ⊕ Z8, i.e., each element in Nil(A) has the form (a, b), where a ∈ Nil(Z12) and
b ∈ Nil(Z8). By notes, Nil(Z12) = 6Z12 = {0, 6} and Nil(Z8) = 2Z8 = {0, 2, 4, 6}. Hence |Nil(A)| = 2.4 = 8
and Nil(A) = {(0, 0), (0, 2), (0, 4), (0, 6), (6, 0), (6, 2), (6, 4), (6, 6)}.

(iii) (3 points) Let B =

[
2 4
2 2

]
. Is B invertible over Z9? If yes, then find B−1. If No, then explain.

Yes since |B| = −4 = 5 ∈ Z9 and 5 ∈ U(Z9) (gcd(5, 9) = 1). Since 1/5 in Z9 is 5−1.1 = 2.1 = 2, by class notes

B−1 = 2

[
2 −4
−2 2

]
= 2

[
2 5
7 2

]
=

[
4 1
5 4

]
.

(iv) (3 points) Let A = Z10[X] and f(X) = 2X3 + 5X + 4 ∈ A. Is f(X) ∈ Z(A)?
Z(A) = {0, 2, 4, 5, 6, 8}. By investigation, bf(X) 6= 0 for every nonzero b ∈ Z(A). Hence, the answer is NO

(v) (3 points) Give me an example of a commutative ring A with 1 such that Char(A) = 5 and Z(A) 6= {0}.
A = Z5 ⊕ Z5. Char(A) = LCM(|1|, |1|) = 5. Since (1, 0)(0, 1) = (0, 0), we conclude that Z(A) 6= {(0, 0)}.

(vi) (3 points) Let A = Z18[X] and f(X) = 6X2 + 12X + 17 ∈ A. Is there a polynomial k(X) ∈ A such that
k(X)f(X) = 1? If yes, then explain (you do not need to find k(X)). If no, then tell me why not.
Since the coefficients of X2, X in Nil(Z18) and 17 ∈ U(Z18), by class notes f(X) ∈ U(A).

Faculty information
Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab
Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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2.2.3 Solution for The Final Exam



Name—————————————–, ID ———————–

MTH 532 Abstract Algebra II, 2020, 1–3 © copyright Ayman Badawi 2020

Final Exam , MTH 532, Spring 2020

Ayman Badawi

QUESTION 1. Let F be a finite field with 212 elements.

(i) (3 points) Let a ∈ F . Then a is a root of an irreducible monic polynomial of degree m over Z2 Find all possibilities
of m.

Solution: m|12 implies m = 1, 2, 3, 4, 6, 12

(ii) (3 points) We know that (F ∗, .) is a cyclic group and hence (F ∗, .) =< a > for some a ∈ F ∗. Prove that the degree
of Irr(a, Z2) = 12? (i.e., prove that the degree of the unique irreducible monic plolynomial over Z2 that has a as a
root is 12)

Solution: Assume degree Irr(a, Z2) = m. Then we know [Z2(a) : Z2] = m. Thus Z2(a) is a subfield of F with
2m. Since |a|x = 212 − 1, we conclude that m = 12

(iii) (3 points) We know |F ∗| = 212−1 = 4095. Since 819 | 4095, then we know that F ∗ has a unique cyclic subgroup,
say H =< b > for some b ∈ F ∗ with 819 elements. What is the degree of Irr(b, Z2)? justify your answer
Solution: Assume degree Irr(b, Z2) = m. Then we know [Z2(a) : Z2] = m. Thus Z2(b) is a subfield of F with
2m. Since |a|x = 809, we conclude that m 6= 1, 2, 3, 4, 6 (since 809 > 2m, m = 1,m = 2,m = 3,m = 4,m = 6).
Thus m = 12

(iv) (4 points) Let P12 be the set of all irreducible monic polynomials of degree 12 over Z2. Find |P12|. Show the work.

Solution: Since 1 | 6, 2|6 , 3|6, and 6|6. Every monic irreducible polynomial over Z2 of degree 1 or 2 or 3 or 6
has all its roots in the subfield H of F with 26 elements. Hence for every a ∈W = F −H , degree(Irr(a, Z2))
is 4 or 12. Thus |W = F −H| = 212 − 26. Hence
Let K be the subfield of F with 24 elements and L be the subfield of F with 22 elements. Thus each element
in X = K −L is a root of an irreducible monic polynomial over Z2 of degree 4. Thus |X = K −L| = 24 − 22.
Hence each element in W −X is a root of an irreducible monic polynomial over Z2 of degree 12.
Thus |P12| = |W −X|/12 = (212 − 26 − 24 + 22)/12 = 335

(v) (8 points) Find all elements of the Galois group Aut(F/Z2). For each subgroup H of Aut(F/Z2) find the corre-
sponding subfield of F , say LH , that is fixed by H .

Solution: We know F ∗ =< a > and a, a2, a22
, ..., a211 are the roots of Irr(a, Z2) and Aut(F/Z2) = [F : Z2] =

12. Let fi : F → F such that fi(a) = a2i (note f0 is the identity map). Hence Aut(F/Z2) = {f0, f1, ..., f11} is a
cyclic group with 12 elements and it is clear that Aut(F/Z2) =< f1 >. For each m|12 Aut(F/Z2) has exactly
one subgroup (cyclic) of order m.
For m = 1, G1 = {f0} and F is the fixed field by G1

For m = 2, G2 = {f0, f6} and the unique subfield H2 with 26 elements is fixed by G2 (note that [F : Z2] = [F :
H2][H2 : Z2] and since [F : H2] = 12 and [F : H2] = |G2| = 2, we conclude [H2 : Z2] = 6)
For m = 3, G3 = {f0, f4, f8} and the unique subfield H3 with 24 elements is fixed by G3.
For m = 4, G4 = {f0, f3, f6, f9} and the unique subfield H4 with 23 elements is fixed by G4

For m = 6, G6 = {f0, f2, f4, f6, f8, f10} and the subfield H6 with 22 elements is fixed by G6.
For m = 12, G12 = Aut(F/Z2) and Z2 is the unique subfield fixed by G12.

QUESTION 2. Let E be the 5th cyclotomic extension field of Q

(i) (2 points) E = Q(a) for some a ∈ C (C is the ring (field) of all complex numbers). Find a.

a = e2iπ/5 = cos(2π/5) + sin(2π/5)i

(ii) (6 points)Let a as in (i), find Irr(a,Q), find [E : Q], and find all roots of Irr(a,Q) inside E. Is Aut(E/Q) a cyclic
group under composition? how many elements does Aut(E/Q) have?

We know [E : Q] = φ(5) = 4 = degree(Irr(a,Q)). It is clear that x5 − 1 = (x − 1)(x4 + x3 + x2 + x + 1)
and hence Irr(a,Q) = fa(x) = x4 + x3 + x2 + x+ 1. Also, we know a, a2, a3, a4 are the roots of fa(x) (since
for every i, 1 ≤ i < 5, we have gcd(i, 5) = 1 and thus |ai| = 5 for every 1 ≤ i < 5). We know Aut(E/Q)
is group-isomorphic to U(5) and since U(5) is cyclic, we conclude that Aut(E/Q) is a cyclic group with 4
elements.

(iii) (2 points) Find a basis B (in terms of a) of E over Q.

Solution: Since [Q(a) : Q] = 4, we know E = Q(a) = span{1, a, a2, a3} over Q.
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(iv) (2 points) write a6 + a5 + a4 as a linear combination of the elements in the basis B (B is as in iii).

Solution: We know a6 + a5 + a4 in E ↔ x6 + x5 + x4 + (fa(x)) in Q[x]/(fa(x)). Now dividing x6 + x5 + x4 by
fa(x) and taking the remainder, we conclude x6 + x5 + x4 + (fa(x)) = −x3 − x2 + (fa(x)) in Q[x]/(fa(x)).
Thus a6 + a5 + a4 = −a3 − a2

(v) (4 points) For each subgroup of Aut(E/Q) with 2 elements, say H , find the corresponding subfield of E, say LH ,
that is fixed by H .

Solution: Since Aut(E/Q) is a cyclic group with 4 elements Aut(E/Q) has exactly one subgroup with 2
elements, say H . Let I be the identity map on E and f4 : E → E such that f4(a) = a4. Then H = {I, f4} is
the unique subgroup of Aut(E/Q) with 2 elements. Since a+a4 6∈ Q and f4(a+a4) = f4(a)+f4(a4) = a4 +a,
we conclude that Q(a+ a4) is the subfield of E that is fixed by H .

QUESTION 3. Let E = Q(
√

5,
√

7).

(i) (3 points). We know that E = Q(a) for some a ∈ R. Find Irr(a,Q) (i.e., find the unique irreducible monic
polynomial over Q that has a as a root. What is [E : Q]?

Solution: We know a =
√

5 +
√

7.
x =
√

5 +
√

7→ x2 = 12 + 2
√

35→ (x2 − 12)2 = 140. Hence Irr(a,Q) = (x2 − 12)2 − 140 = x4 − 24x2 + 4.
Thus [Q(a) : Q] = 4.

(ii) (3 points) It is clear that L = Q(
√

35) is a subfield of E. Find the subgroup, say H , of Aut(E/Q) that fixes the
field L.

Solution: Since Let I be the identity map on E = Q(a) and f : E → E such that f(
√

5) = −
√

5 and
f(
√

7) = −
√

7. It is clear that H = {I, f} is the subgroup that fixed the field L = Q(
√

35).

(iii) (3 points) Is the field Q(
√

5) isomorphic to the field Q(
√

7)? If yes, then construct such ring-isomorphism (field-
isomorphism)? If no, then explain briefly why not?

Solution: No. Why? Assume that f : Q(
√

5) → Q(
√

7) is a ring-isomorphism. First we know that f(q) = q
for every q ∈ Q. Hence f(a root of x2 − 5) must map to a root of x2 − 5. Thus f(

√
5) must be

√
5 or −

√
5. But

neither
√

5 nor −
√

5 is in Q(
√

7). Thus such f does not exist.

QUESTION 4. (3 points) Let E be the splitting field of the polynomial f(x) = x7 − 18. We know that E is a Galois
Extension of Q. Prove that Aut(E/Q) is a non-abelian group.

Solution: We know that f(x) is irreducible over Q by Einstein’s Result. Thus [E = Q( 7
√

18) : Q] = 7. It is
clear that E ⊂ R and 7

√
18 is the only real root of f(x). Hence f(x) does not split in E. Since E is not a normal

extension of Q, we know by a class result that Aut(E/Q) must be a non-abelian group.

QUESTION 5. (i) (2 points) Give me an example of an integral domain that is not a UFD (Unique Factorization
Domain).

Let A = Z + x2Z[x]. Then x2 is an irreducible element of A (note x 6∈ A), but x2 is not a prime element of A
since x2|x3.x3 but x2 - x3 in A. Thus A can not be a UFD (in a UFD every irreducible element is prime).

(ii) (2 points) Give me an example of a Unique Factorization Domain that is not a principal ideal domain.

Solution: We know that Z[x] is a UFD, but the ideal (x, 2) of Z[x] is not a principal ideal

(iii) (4 points) Let A be a principal ideal domain. Prove that every prime ideal of A is a maximal ideal ofA.[Hint: Every
proper ideal is a principal ideal, and every proper ideal is contained in a maximal ideal].

Solution: Let I be a proper ideal of A. We know I = (a) = aA for some prime element a of A. Thus I is
contained in a maximal ideal M . Since every maximal ideal is prime, we conclude that M = (x) for some
prime element x of A. Since I ⊆M , we conclude that a = ux for some u ∈ A. Since A is a UFD, we know that
an element, say b, in A is prime if and only if b is irreducible. Hence a is a irreducible element A. Since a is
irreducible and a = ux, by definition of irreducible elements, we conclude that u ∈ U(A) or x ∈ U(A). Since
M = (x), x 6∈ U(A). Hence u ∈ U(A). Thus u−1a = x. Thus x ∈ (a), and hence (x) ⊆ (a). Since (a) ⊆ (x)
and (x) ⊆ (a), we conclude that M = (x) = (a) = I . Thus I is a maximal ideal of A.

(iv) (4 points) Let A be a commutative ring with 1. Suppose that A has exactly one maximal ideal. Prove that Id(A) =
{0, 1}. [Hint: note if x 6∈ U(A), then the ideal (x) = xA is a proper ideal of A].

Solution: Let M be the maximal ideal of A. Assume there is e ∈ Id(A) such that e 6= 0, 1. Hence we know
that 1 − e ∈ Id(A). Since (e) and (1 - e) are proper ideals of A and M is the only maximal ideal of A, we
conclude that the ideals (e) and (1− e) "live" inside M . In particular, e, 1− e ∈M . Hence e+1− e = 1 ∈M ,
which is impossible since M is a proper ideal of A. Thus id(A) = {0, 1}.

(v) (4 points) Let A be an integral domain, P be a prime ideal of A, and I be a proper ideal of A such that I ∩P = {0}.
Prove that there exists a prime ideal F of A such that I ⊆ F and F ∩ P = {0} [Hint: Let W = P − 0, note
I ∩W = ∅] Solution: Let W = P − {0}. Since A is an integral domain, W is a multiplicative subset of A (i.e.,
W is a multiplicatively closed subset of A). Since W ∩ I = ∅, we know by a class result, there is a prime ideal
F of A that contains I and F ∩W = ∅. Hence F ∩ P = {0}
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QUESTION 6. ( 4 points). Let F be a group with 12 elements. Prove that F must have a normal subgroup with 3
elements OR F must have a normal subgroup with 4 elements.

Solution : |F | = 12 = 3.22. We know to show that n3 = 1 or n2 = 1. Deny. Then n3 = 4 and n2 = 3. Now
n3 = 4 implies that F has exactly 8 elements of order 3. Since |F | = 12, there is a room for one and only one
subgroup with 4 elements, a contradiction. Thus n3 = 1 or n2 = 1. Hence F must have a normal subgroup with 3
elements OR F must have a normal subgroup with 4 elements.

Faculty information
Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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2.2.5 Solution for HW-Two
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2.2.8 Solution for HW-Five
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2.2.9 Solution for HW-Six
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3.1.1 HW-One



Name—————————————–, ID ———————–

MTH 532 Abstract Algebra II, 2020, 1–1 © copyright Ayman Badawi 2020

HW I (WARM UP), MTH 532, Spring 2020

Ayman Badawi

QUESTION 1. (i) Let D be a group and a ∈ D. Given |a| = m < ∞. Show that D = {a, a2, a3, ..., am} is a subgroup
of D with m elements [hint: Since D is finite, just show that D is closed ]

(ii) Let D be a group and a ∈ D. Given |a| = m < ∞. Assume that an = e (recall e is the identity of D). Prove that
m | n.

(iii) Let D be a group and a ∈ D. Given |a| = m < ∞. Let b ∈ D such that b = ak where gcd(k,m) = 1. Prove that
|b| = m.

(iv) Let D = (Z20,+). Given H = {0, 4, 8, 12, 16} is a subgroup of D. Find all left cosets of H .

(v) Let D = (Q,+). Then H = (Z,+) is a subgroup of (Q,+). Prove that H has infinitely many left cosets. Give me
5 distinct left cosets of H .

(vi) Let F = {6, 12, 18, 24}. Convince me that F is a group under multiplication module 30 by constructing the Caley’s
Table. What is e? What is 12−1? What is 24−1?

Submit your solution on Saturday Feb 15, 2020 at 12.

Faculty information
Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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3.1.2 HW-Two



Name—————————————–, ID ———————–

MTH 532 Abstract Algebra II, 2020, 1–1 © copyright Ayman Badawi 2020

HW II , MTH 532, Spring 2020

Ayman Badawi

QUESTION 1. (i) Let D be a group, a ∈ D such that |a| = n < ∞. Let m be a positive integer and r = gcd(m,n).
Prove that |am| = n/r. I do not want to see a proof of this, the proof exists in the solution-book that I posted,
but you need to know this fact and use it

(ii) Let D = (Z24,+). Find |9|, |14|, |18|, |11| (hint: note that Z24 =< 1 > and for example 8 = 18, then use (i)).

(iii) Let a, b ∈ D. Assume that |b| = m <∞. Prove that |a−1ba| = m.

(iv) Let D = Zn ⊕ Zm, n,m ≥ 2 (of course the binary operations are addition mod n and addition mod m). Let
(a, b) ∈ D. Prove that |(a, b)| = LCM [|a|, |b|] [hint: note that if k, w are integers, then LCM[k, w] = kw/gcd(k, w),
for example LCM[8, 12] = 8.12/4 = 24]

(v) Let D = Zn ⊕ Zm. Prove that D is cyclic if and only if gcd(n,m) = 1. [hint: use part IV]

(vi) Let D = Z6 ⊕ Z14.

a. Convince me that D is not cyclic. Find the value of the integer m such that the order of each element in D is
≤ m.

b. Find |(3, 5)| and |(4, 10)| [Hint: note 3 = 13 and 5 = 15, now use (i) and (iv)].

c. Give me two subgroups of D, say H1, H2 such that |H1| = |H2| = 2.

d. Does D have a cyclic subgroup of size (order) 21? If yes find a generator to such subgroup.

Submit your solution any time on SUNDAY before midnight, Feb 23, 2020 .

Faculty information
Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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3.1.3 HW-Three



Name—————————————–, ID ———————–

MTH 532 Abstract Algebra II, 2020, 1–1 © copyright Ayman Badawi 2020

HW III , MTH 532, Spring 2020

Ayman Badawi

QUESTION 1. (i) Fact (you may use it whenever it is needed, for a proof just see it in any Algebra TextBook, but
you must KNOW this FACT). Let H be a subset of a group D (note that H can be finite or infinite). Then H is a
subgroup of D if and only if a−1 ∗ b ∈ H for every a, b ∈ H (a, b need not be distinct).

(ii) Let F,L be subgroups of a group D. Prove that M = F ∩ L is a subgroup of D (hint: Use (i) above)

(iii) by (ii), N = 12Z ∩ 15Z is a subgroup of (Z,+). Since Z is cyclic, we know N = aZ. Find a.

(iv) Let D be an abelian group with 9 elements. Given that D has two distinct subgroups, H1, H2 such that |H1| =
|H2| = 3. Convince me that it is impossible that D = (Z9,+). What will be an example of such group D?

(v) Let f ∈ Sn such that f is m-cycle. Convince me that if m is odd integer, then f ∈ An and if m is an even integer,
then f 6∈ An.

(vi) Let f =

(
1 2 3 4 5 6 7 8
4 3 6 8 7 2 1 5

)
∈ S8.

a. Find |f |. Is F ∈ A8? explain

b. Does A8 has an abelian subgroup with 15 elements? [Hint: If you show that A5 has a cyclic subgroup with 15
elements, then you are done, since cyclic implies abelian]

(vii) Let f = (1 4 3)(1 4) ∈ S4. Find |f |. Let k = (1 4 3)(1 5) ∈ S5. Find |k|.
(viii) Given H = {(1), (1 4 3), (1 3 4)} is a subgroup of S5 (this is given, you do not need to check unless you do not

believe me). Find the left coset (1 5) o H and find the right coset H o(1 5). What do you observe? Can we say that
H is a normal subgroup of S5?

(ix) Let a, b be element of a group such that a ∗ b = b ∗ a. Assume |a| = n and |b| = m. Let k = |a ∗ b|. Prove k | nm.

(x) Give me an example of two elements a, b in a group where |a| = n, |b| = m and |a ∗ b| = k, but k - nm [hint: Stare
at the element k in vii and some how find a and b !]

(xi) Let a, b be element of a group such that a ∗ b = b ∗ a. Assume |a| = n, |b| = m and gcd(n,m) = 1. Let k = |a ∗ b|.
Prove k = nm.[Hint: you may want to use the fact from number theory that if gcd(w, d) = 1, d | c and w | c, then
wd | c, of course w, d, c are some positive integers]

(xii) Let F : (D1, ∗1) → (D2, ∗2) be a group-homomorphism and H < D1. Prove that F (H) is a subgroup of D2 (note
it is possible that H = D1)[Hint: Use part (i) above]

(xiii) Let F : (Z24,+) → (Z15,+) be a group homomorphism such that F (1) 6= 0. Find F (Z24). [Hint: Note that Zn is
cyclic, F (Z24) is a subgroup of Z15 by xii and |F (a)| must be a factor of |a| for every a ∈ Z24 by class-Theorem ].
Find F (1), F (8), F (12).

Submit your solution (by EMAIL) any time / all HWs must be submitted by Wed. before midnight, March 4,
2020 .

Faculty information
Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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3.1.4 HW-Four



Name—————————————–, ID ———————–

MTH 532 Abstract Algebra II, 2020, 1–1 © copyright Ayman Badawi 2020

HW IV , MTH 532, Spring 2020

Ayman Badawi

QUESTION 1. (i) Let D be a group with 27 elements. You just observed that C(D) has at least 4 elements. Prove
that D is abelian.

(ii) You need this fact, so you must know it and make use of it. Assume that H , K are subgroups of a group (D, ∗).
Note that H ∗K = {h ∗ k | h ∈ H, k ∈ K}. Then |H ∗K| = |H||K|

|H∩K| . (no proof is needed)

(iii) Let D be a finite group, K,H are normal subgroups of D such that H ∗K = D and H ∩K = {e}.

a. Prove that K ≈ D/H [ Hint note that |D/H| = |K|, define f : K → D/H such that f(k) = k ∗H for every
k ∈ K. Show that f is group homomorphism and then you only need to show that f is 1-1.]

b. Prove that H ≈ D/K.

c. Prove that D ≈ D
H ⊕ D

K ≈ K ⊕ H . [hint: Define f : D → D
H ⊕ D

K such that f(d) = (d ∗ H, d ∗ K) for
every d ∈ D. Show that f is a group homomorphism. Then show that f is 1-1 (note both groups have same
cardinality. Then use (a) and (b) and finish the proof.)]

(iv) Let H,K be subgroups of a group D. In general, H ∗K need not be a subgroup of D. However, if K is a normal
subgroup of D, then prove that K ∗H is a subgroup of D. [hint: Just show a−1 ∗ b ∈ K ∗H for every a, b ∈ K ∗H]

(v) Let D be a group with 38 elements, K,H are subgroups of D such that |K| = 19 and |H| = 2 such that H is a
normal subgroup of D. Prove that D ≈ Z38 [hint: note that |D/K| = 2 and hence K is a normal subgroup of D by
class notes and use (iii (c)), Show that D is cyclic and hence by class notes D ≈ Z38 )]

(vi) Let D be an infinite cyclic group. Prove that D has exactly two generators. [Hint: We know D ≈ Z. Hence how
many generators does Z have?]

(vii) Let U(n) = {a ∈ Zn|gcd(a, n) = 1}. Prove that U(n) is a group under multiplication mod n with φ(n) elements.
[Hint: Closure is clear, if x, y ∈ U(n), then gcd(x, n) = gcd(y, n) = 1 and hence gcd(xy, n) = 1. Thus xy ∈ U(n).
To prove the inverse, you need to use Fermat-Euler result: let a ∈ U(n), since gcd(a, n) we know that n|(aφ(n)− 1)
and this means that aφ(n) = 1 mod(n). Thus a−1 = a(φ(n)−1) mod(n)]. Example: U(12) = {1, 5, 7, 11} is a group
(abelian) with φ(12) = 4 elements under multiplication mod(12).

(viii) (must KNOW, no need for a proof, nice result on U(n)) . Assume n = pα1
1 pα2

2 · · · pαkk (prime factorization of n
where p1 < p2 < · · · < pk). Then we know φ(n) = (p1 − 1)p(α1−1)

1 · · · (pk − 1)p(αk−1)
k . Then (BEAUTIFUL

RESULT) If n is even then (p1 = 2) and

U(n) ≈ Z2 ⊕ Z2(α1−2) ⊕ Z(p2−1) ⊕ Zp(α2−1)
2

⊕ · · · ⊕ Z(pk−1) ⊕ Zp(αk−1)
k

. (note if α1 = 1 then remove Z2 ⊕ Z2(α1−2) ,

note U(2) = {1} ). If n is odd, then

U(n) ≈ Z(p1−1) ⊕ Zp(α1−1)
1

⊕ Z(p2−1) ⊕ Zp(α2−1)
2

⊕ · · · ⊕ Z(pk−1) ⊕ Zp(αk−1)
k

. Example Assume n = 2357113. Hence

φ(n) = 22(4)56(10)112. (n is even). Hence U(n) ≈ Z2 ⊕ Z2 ⊕ Z4 ⊕ Z56 ⊕ Z10 ⊕ Z112 . Example n = (2)78132. (n
is even). φ(n) = (6)77(12)131. Hence U(n) ≈ Z6 ⊕ Z77 ⊕ Z12 ⊕ Z13

(ix) Prove that U(n), n ≥ 3, is cyclic if and only if n = 4 or n = pk or n = 2pk for some ODD prime p and k ≥ 1.
[hint: note that if p is prime odd then gcd(p− 1, p) = 1 , also note that if p is odd, then p -1 is even. Use (viii) and
old HW!).

(x) Prove that U(64) has an element of order 16, but it has no elements of order 32. (Hint: of course you are not going
to calculate the order of each element!, use (viii) and old HW).

(xi) Prove that D = (Z5,+)⊕ U(18) is cyclic, and hence D ≈ (Zm,+). Find m.

(xii) prove that (Q∗, .) is not cyclic. [Hint: We know Q∗ is a group under normal multiplication. Note that in an infinite
cyclic group D we have |a| =∞ for each a ∈ D − {e} (class notes).

Submit your solution (by EMAIL) any time / all HWs must be submitted by Wed. before midnight, March 18,
2020 .
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3.1.5 HW-Five
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HW V , MTH 532, Spring 2020

Ayman Badawi

Observations

(i) Let p, q be two primes numbers (p, q need not be distinct) If H, K are two distinct groups with p elements and q
elements, respectively, then H ∩K = {e}. Note that if p = q, but H, K are distinct, we still have H ∩K = {e}.

(ii) If |H| = pmand|K| = qn, where q, p are distinct prime integers, then H ∩K = {e}.
(iii) If D = Z5 ⊕ Z25 ⊕ Z3, then D has many subgroups with 25 elements. For, let H be a subgroup of Z25 with 5

elements. We know that such H is unique (since Z25 is cyclic). Hence W = Z5⊕H⊕{0} and K = {0}⊕Z25⊕{0}
are subgroups with 25 elements. Also since |(a, 1, 0)| = 25 for every a ∈ Z5, we conclude that for each a ∈ Z5, the
group Fa generated by (a, 1, 0) is a cyclic subgroup of D with 25 elements. Also note that W,K,Fa (a 6= 0) are
distinct subgroups and each is with 25 elements, note if a = 0, then Fa = K.

QUESTION 1. Let D be an abelian group with 2352 elements

(i) Suppose that D has exactly one subgroup with 4 elements. Find all non-isomorphic groups with these properties.
[hint: Observations above might be useful]

(ii) Suppose that D has exactly one subgroup with 4 elements and it has exactly one subgroup with 5 elements. Find
all non-isomorphic groups with these properties.

QUESTION 2. Let D be a cyclic group with 100 elements. Convince me that (AUT (D), o) is an abelian group and find
m1, ...,mk such that AUT (D) ≈ Zm1 ⊕ · · · ⊕ Zmk

. [hint: Use my lecture! and HW 4].

QUESTION 3. Prove that every group with n = 17.32 is abelian. Find all non-isomprphic groups with n elements.
[Hint: See my first lecture on Sylow !]

QUESTION 4. Let D be a group with 5.11.29. Prove that D has exactly one subgroup with 29 elements, say H , and
H ⊆ C(D). [hint: see my part 2 lecture on sylows].

QUESTION 5. Let D be a group with 216 elements. Prove that D is not simple. [hint: note that 216 = 23.33 and it is
possible that n3 = 4. Use the technique as in my part 2 lecture on Sylow’s Theorem to construct a group homomorphism
with non-trivial kernel.]

QUESTION 6. Let D be a group with 5.7.17 elements. Prove that D is not simple. Assume that n17 6= 1. How many
elements in D have order 17? [hint: Find n5...so you may discover that D is not simple. see OBSERVATION (i) above...,
then it should be clear how many elements in D have order 17]

Submit your solution (by EMAIL) any time by Wed. before midnight, March 25, 2020 .

Faculty information
Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

108



TABLE OF CONTENTS 109

3.1.6 HW-Six
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HW six , MTH 532, Spring 2020

Ayman Badawi

(1) you need to know this fact: Fix n ≥ 2 and A be a commutative ring with 1. Then B ∈ U(An×n) if and only
if |A| ∈ U(A), i.e. using street language , an n× n matrix B is invertible over A if and only if determinant of B is
a unit of A (an element in a ring A is called unit, if it has inverse under multiplication)

For example A matrix B ∈ U(Zn×n
m ) if and only if |B| ∈ U(Zm) = U(m). A matrix B ∈ U(Zn×n) if and only

if |B| ∈ U(Z) = {1,−1}
(2) You need to know the meaning of FRACTIONS in a ring: Let A be a commutative ring with 1 and a, b ∈ A.

Then a
b has a meaning in A if and only if b ∈ U(A). If b ∈ U(A), then a

b means b−1a.
For example 4

5 has a meaning in the ring Z6 since 5 ∈ U(Z6) = U(6) and 4
5 means the element 5−14 = 2 ∈ Z6.

Since 4 6∈ U(Z14) = U(14), 5
4 is undefined in the ring Z14.

QUESTION 1. Let F = {1, 2, 3, 4} and A = P (F ) (P (F ) is the power set of F , note |P (F )| = 16). We know (A, +, .)
is a commutative ring with identity 1 = F (see class notes, a+ b = (a− b) ∪ (b− a) and ab = a ∩ b for every a, b ∈ A).
Also, we know that U(A) = {F} and hence a matrix B ∈ U(An×n) if and only if |B| = F . Also, from class notes, we
know −a = a and a2 = a for every a ∈ A

For example B =

[
{1, 3} {2, 4}
{1, 2, 4} {1, 2, 3}

]
∈ U(F 2×2). You only need to know what + means and what . means in the

ring A. Then all techniques you learned from basic linear algebra can be applied on A. In a basic linear algebra course
your ring is R, but here your ring is A.

For example we know that if B =

[
a b

c d

]
is invertible over R then B−1 = 1

|B|

[
d −b
−c a

]
. We can use this fact for

any 2× 2 matrix over a commutative ring with identity.

So |B| = {1, 3}{1, 2, 3} + −{2, 4}{1, 2, 4} = {1, 3} ∩ {1, 2, 3} + {2, 4} ∩ {1, 2, 4} = {1, 3} + {2, 4} = ({1, 3} −

{2, 4}) ∪ ({2, 4} − {1, 3}) = {1, 2, 3, 4} = F ∈ U(A). Hence B is invertible. Thus B−1 = F
F

[
{1, 2, 3} {2, 4}
{1, 2, 4} {1, 3}

]
=

F

[
{1, 2, 3} {2, 4}
{1, 2, 4} {1, 3}

]
=

[
{1, 2, 3} {2, 4}
{1, 2, 4} {1, 3}

]

Note that BB−1 = B−1B =

[
F φ

φ F

]
= I2 since in our A, 1 = F and 0 = φ.

(i) Let B =

[
{1, 2} {2, 4}
{3, 4} {1, 3}

]
. Does B−1 exist? if yes, then find it. If no, then explain.

(ii) Let B =

[
{2, 3} {1, 3, 4}
{1, 3, 4} {2, 4}

]
. Does B−1 exist? if yes, then find it. If no, then explain.

(iii) Let B =




F {2, 4} {1}
{1, 3} F {3}
{2} {2} F


. If possible find B−1 [Hint: Use the techniques you learned from linear Algebra.

Use row operations and try to change the matrix [B|



F φ φ

φ F φ

φ φ F


 into [



F φ φ

φ F φ

φ φ F


 |C]. If you succeed then

C = B−1, if you did not succeed, then B is not invertible over A.

QUESTION 2. Convince me that B =




2 5 4
1 1 2
3 3 5


 is invertible over Z8. Again use the techniques you learned in

linear algebra but here addition means addition mod 8 and multiplication means multiplication mod 8 and in view of the
comments in (2) observe that 1/2, 1/4 have no meaning in Z8 but 1/3, 1/5 have meaning!.

QUESTION 3. If our ring is R, we know that -4 = -1 times 4. Let A be a ring with identity. Prove that −a = −1.a for
every a ∈ A (i.e., prove that the additive inverse of a equals the additive inverse of the identity "1" times a). (Hint: use
that fact that a.0 = 0 = 0.a = 0 for every a ∈ A)

Submit your solution (by EMAIL) any time by Friday midnight, April 17, 2020 .
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3.1.7 HW-Seven
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HW SEVEN , MTH 532, Spring 2020

Ayman Badawi

QUESTION 1. Let A be the ring Z12. Find Z(A), Nil(A), U(A) and Id(A).

QUESTION 2. Let A be the ring Zn ⊕Zm. How many units (invertible elements) does A have? i.e., Find |U(A)| [Hint:
it is trivial to see that (a, b) is invertible in A iff a is invertible in Zn and b is invertible in Zm, some how the question is
related to φ(k)]

QUESTION 3. Let A be the ring Z6 ⊕ Z14. Find Char(A). Find U(A).

QUESTION 4. Let A be a ring such that A = R1 ⊕ R2 , where R1 and R2 are rings such that |R1| ≥ 2 and |R2| ≥ 2.
Prove that A is never an integral domain.

QUESTION 5. Let A be a commutative ring with 1, u ∈ U(A) and w ∈ Nil(A). Prove that u+ w ∈ U(A). (hint: Note
that u+w = u(1+u−1w) and u−1w ∈ Nil(A). Also note that if m is an odd integer, then high school math tells us that
xm + 1 = (x+ 1)[(xm−1 − xm−2 + .....+−x+ 1])

QUESTION 6. Let A be a commutative ring with 1 and e ∈ Id(A). Prove that 1− e ∈ Id(A) and 1− 2e ∈ U(A).

QUESTION 7. Let B = {0, 3, 6, 9, 12}. Show that (B,+, .) is a subring of the ring (Z15,+, .). Is B an ideal of Z15?
note that B is a ring too!. What is "1" of the ring B? Is the "1" of B the same "1" of Z15? What is Char(B)? Is Char(B)
different from Char(Z15)? Is B a field? [hint: Just do the Caley’s table of (B, +) and the Caley’s table of (B, .), stare
really well, then start answering the questions!, remember + means addition mod 15 and . means multiplication mod 15]

Submit your solution (by EMAIL) any time by Monday midnight, April 27, 2020 .
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3.2 Exams
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3.2.1 Exam One



Name—————————————–, ID ———————–

MTH 532 Abstract Algebra , 2020, 1–1 © copyright Ayman Badawi 2020

EXAM I , MTH 532, Spring 2020

Ayman Badawi

QUESTION 1. Given D is a group with 48 elements. Assume that D has an element a ∈ C(D) such that |a| = 16.
Prove that D is cyclic.

QUESTION 2. Does U(54) have an element of order 18? If yes, how many elements of order 18 does U(54) have?

QUESTION 3. Let f : (Z18,+)→ (U(50), .) be a group homomorphism such that f(1) 6= 1. Find f(0). Find Ker(f).

QUESTION 4. Let D be a group with 100 elements. Assume that D has a subgroup H with 20 elements such that
H ⊆ C(D). Prove that D is an abelian group.

QUESTION 5. (i) EXTRA CREDIT, but you need it to solve (ii). Let D be a finite group and H be a subgroup of
D such that [D : H] = m for some integer m (note that [D : H] = |D|/|H| = number of all distinct left cosets of
H). Prove that there is a group homomorphism , say f , from D into Sm such Ker(f) ⊆ H .

(ii) Let D be a finite simple group. Assume that H,K are subgroups of D such that [D : H] = p1 and [D : K] = p2 for
some prime integers p1, p2. Prove that p1 = p2. (nice result!)

QUESTION 6. Let D be a group with pm elements, where p is a prime integer and m ≥ 2. Prove that D has a normal
subgroup with pm−1 elements. [Hint : Show that D must have a subgroup H with pm−1 elements by class note result
(which result?). Then use class - lecture (result) to show that H is normal in H (which result?)].

QUESTION 7. Let D be a group with (52)(72) elements. Prove that D is an abelian group. Find all non-isomorphic
groups with (52)(72) elements?

QUESTION 8. Let a = (1 2 3) o (1 3 4 2 5) ∈ S6. Is a ∈ A6? Find |a|.

QUESTION 9. Let D be a group with 105 elements (105 = (3)(5)(7)).

(i) Prove that D is not simple. [Hint: Assume D is simple. How many elements of orders 7, 5, 3 does D have? is this
possible?

(ii) Assume that n7 = 1 (i.e., D has exactly one sylow-7-subgroup). Prove that D has a normal cyclic subgroup with
35 elements [hint: Use a result from HW, use a result from class notes! and of course sylow’s theorems] .

Submit your solution by 3 pm (as at most), March 28, 2020 .
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3.2.2 Exam Two



Name—————————————–, ID ———————–

MTH 532 Abstract Algebra II, 2020, 1–1 © copyright Ayman Badawi 2020

EXAM II , MTH 532, Spring 2020

Ayman Badawi

Submit your solution any time before 00: 15, (I will deduct points after 00 : 17) .

QUESTION 1. (i) Let A be a commutative ring with 1 and B be a commutative ring (B may not have "1"). Assume
f : A→ B is a ring-homomorphism. Prove that f(1) ∈ Id(B) (i.e., show that f(1) is an idempotent element of B).

(ii) Let A be a commutative ring with 1 and B = 2Z (B is the set of all even integers). Assume f : A → B is a
ring-homomorphism. Prove that f(a) = 0 for every a ∈ A.

(iii) Let A,B be fields and f : A → B is a ring-homomorphism such that f(a) 6= 0 for some a ∈ A. Prove that f is
injective (i.e., prove that f is one-to-one).

(iv) Let f : Z6 → Z9 be a ring-homomorphism. Prove that f(a) = 0 for every a ∈ Z6.

QUESTION 2. Let A be a commutative ring with 1 and let I be a proper ideal of A that is not a maximal ideal of A.
Hence, we know that I ⊂ M for some maximal ideal M of A. Let a ∈ M − I . Prove that a + I is not an invertible
element of the ring A/I (i.e., show that a+ I 6∈ U(A/I)).

QUESTION 3. Let A be a finite commutative ring with 1 and a ∈ A. Suppose that a 6∈ Z(A). Prove that a ∈ U(A).

QUESTION 4. Let A be a commutative ring with 1 and f(X) ∈ A[X] such that f(X) 6= 0 and f(X) ∈ Z(A[X]). For
every n ≥ 1, prove that there exists a polynomial k(X) ∈ A[X] of degree n such that k(X)f(X) = 0.

QUESTION 5. Let A be a commutative ring with 1 and I be a prime ideal of A. Prove that Nil(A) ⊆ I .

QUESTION 6. (i) Let A = Z4 ⊕ Z6. Find all prime ideals of A.

(ii) Let A = Z12 ⊕ Z8. Find Nil(A).

(iii) Let B =

[
2 4
2 2

]
. Is B invertible over Z9? If yes, then find B−1. If No, then explain.

(iv) Let A = Z10[X] and f(X) = 2X3 + 5X + 4 ∈ A. Is f(X) ∈ Z(A)?

(v) Give me an example of a commutative ring A with 1 such that Char(A) = 5 and Z(A) 6= {0}.
(vi) Let A = Z18[X] and f(X) = 6X2 + 12X + 17 ∈ A. Is there a polynomial k(X) ∈ A such that k(X)f(X) = 1? If

yes, then explain (you do not need to find k(X)). If no, then tell me why not.

Faculty information
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E-mail: abadawi@aus.edu, www.ayman-badawi.com
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3.2.3 Final Exam
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Final Exam , MTH 532, Spring 2020

Ayman Badawi

QUESTION 1. Let F be a finite field with 212 elements.

(i) (3 points) Let a ∈ F . Then a is a root of an irreducible monic polynomial of degree m over Z2 Find all possibilities
of m.

(ii) (3 points) We know that (F ∗, .) is a cyclic group and hence (F ∗, .) =< a > for some a ∈ F ∗. Prove that the degree
of Irr(a, Z2) = 12? (i.e., prove that the degree of the unique irreducible monic plolynomial over Z2 that has a as a
root is 12)

(iii) (3 points) We know |F ∗| = 212−1 = 4095. Since 819 | 4095, then we know that F ∗ has a unique cyclic subgroup,
say H =< b > for some b ∈ F ∗ with 819 elements. What is the degree of Irr(b, Z2)? justify your answer

(iv) (4 points) Let P12 be the set of all irreducible monic polynomials of degree 12 over Z2. Find |P12|. Show the work.

(v) (8 points) Find all elements of the Galois group Aut(F/Z2). For each subgroup H of Aut(F/Z2) find the corre-
sponding subfield of F , say LH , that is fixed by H .

QUESTION 2. Let E be the 5th cyclotomic extension field of Q

(i) (2 points) E = Q(a) for some a ∈ C (C is the ring (field) of all complex numbers). Find a.

(ii) (6 points)Let a as in (i), find Irr(a,Q), find [E : Q], and find all roots of Irr(a,Q) inside E. Is Aut(E/Q) a cyclic
group under composition? how many elements does Aut(E/Q) have?

(iii) (2 points) Find a basis B (in terms of a) of E over Q.

(iv) (2 points) write a6 + a5 + a4 as a linear combination of the elements in the basis B (B is as in iii).

(v) (4 points) For each subgroup of Aut(E/Q) with 2 elements, say H , find the corresponding subfield of E, say LH ,
that is fixed by H .

QUESTION 3. Let E = Q(
√

5,
√

7).

(i) (3 points). We know that E = Q(a) for some a ∈ R. Find Irr(a,Q) (i.e., find the unique irreducible monic
polynomial over Q that has a as a root. What is [E : Q]?

(ii) (3 points) It is clear that L = Q(
√

35) is a subfield of E. Find the subgroup, say H , of Aut(E/Q) that fixes the
field L.

(iii) (3 points) Is the field Q(
√

5) isomorphic to the field Q(
√

7)? If yes, then construct such ring-isomorphism (field-
isomorphism)? If no, then explain briefly why not?

QUESTION 4. (3 points) Let E be the splitting field of the polynomial f(x) = x7 − 18. We know that E is a Galois
Extension of Q. Prove that Aut(E/Q) is a non-abelian group.

QUESTION 5. (i) (2 points) Give me an example of an integral domain that is not a UFD (Unique Factorization
Domain).

(ii) (2 points) Give me an example of a Unique Factorization Domain that is not a principal ideal domain

(iii) (4 points) Let A be a principal ideal domain. Prove that every prime ideal of A is a maximal ideal of A.[Hint: Every
proper ideal is a principal ideal, and every proper ideal is contained in a maximal ideal].

(iv) (4 points) Let A be a commutative ring with 1. Suppose that A has exactly one maximal ideal. Prove that Id(A) =
{0, 1}. [Hint: note if x 6∈ U(A), then the ideal (x) = xA is a proper ideal of A].

(v) (4 points) Let A be an integral domain, P be a prime ideal of A, and I be a proper ideal of A such that I ∩P = {0}.
Prove that there exists a prime ideal F of A such that I ⊆ F and F ∩ P = {0} [Hint: Let W = P − 0, note
I ∩W = ∅]

QUESTION 6. ( 4 points). Let F be a group with 12 elements. Prove that F must have a normal subgroup with 3
elements OR F must have a normal subgroup with 4 elements.

Faculty information
Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

120



TABLE OF CONTENTS 121

Faculty information
Ayman Badawi, American University of Sharjah, UAE.
E-mail: abadawi@aus.edu


	Table of contents
	Section 1: (No change )Course Syllabus
	Section 2: Instructor Teaching Material
	HANDOUTS
	Handout on the Unit-Group of Zn
	Handout on Rings
	Handout on Fields

	Worked out Solutions for all Assessment Tools
	Solution for Exam One 
	Solution for Exam Two 
	Solution for The Final Exam 
	Solution for HW-ONE
	Solution for HW-Two
	Solution for HW-Three
	Solution for HW-Four
	Solution for HW-Five
	Solution for HW-Six
	Solution for HW-Seven


	Section 3: Assessment Tools (unanswered)
	Homework 
	HW-One
	HW-Two
	HW-Three
	HW-Four
	HW-Five
	HW-Six
	HW-Seven

	Exams
	Exam One
	Exam Two
	Final Exam



