63/ ## Department of Mathematics and Statistics American University of Sharjah Final Exam – Spring 2022 MTH 205 – Diff. Equations Date: Thursday March 19, 2022 Time: 5:00-7:00 pm. | Student Name | Student ID Number | |---|-------------------| | Fahad Alzara | 88243 | | , | | | | | | | | | This exam has 6 page plus this cover page. No communication of any kind! Do not open this exam until you are told to begin. No Questions are allowed during the examination. Do not separate the pages of the exam. Scientific calculators are allowed but cannot be shared. | | | Graphing Calculators are not allowed. 7. Turn off all cell phones and remove all headphones. | | | Failing to abide by any of the above exam rules may result in a disciplinary action taken against you Student signature: | | ## Final Exam, MTH 205, Spring 2022 Ayman Badawi Score = $\frac{-64}{}$ ## QUESTION 1. (6 points) (SHOW THE WORK) (i) (2 points) Sketch the direction field of $y' = x - \sqrt{y}$, where $y \ge 0$. (ii) (3 points) Assume that y(x) is passing through (1, 2) and it is the solution to the autonomous differential equation $y' = y^2 - 6y + 5$. Roughly, sketch y(x). QUESTION 2. (6 points) (SHOW THE WORK) Solve the following differential equation. $$\frac{dy}{dx} = \frac{1}{2x + x^{2}y^{2}e^{(-y)}}$$ $$= \frac{1}{2x + x^{2}y^{2}e^{(-y)}}$$ $$flip \rightarrow \frac{dx}{dy} = 2x + x^{2}y^{2}e^{-y}$$ $$= QUESTION 3. (6 points) (SHOW THE WORK) Consider the differential equation (x+1)y'+y=0. It is clear that 0 is an ordinary value. Imagine we need to solve for y(x) by a power series around 0, i.e., $y(x) = \sum_{i=0}^{\infty} a_i x^i$. (i) (1 point) Which of the values x = 1, -1, 2 are ordinary? $$(1+x)y'+y=0 = y'+\frac{1}{1+x}y=0$$ x=2 and x=1 are ordinary but x=-1 is not ordinary because it is not continuous and hence its derivatives are not differentiable X (ii) (5 points) Assume that y(0) = 4, find the recurrence formula for the series $y(x) = \sum_{i=0}^{\infty} a_i x^i$, and calculate the exact values of a_0, a_1, a_2, a_3 . $$\sum_{i=0}^{\infty} a_i x^i = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots = y$$ $$y' = a_1 + 2a_2 x^2 + \dots + n a_n x^{n-1} + (n+1)a_{n+1} x^n + \dots$$ $$(x+1)y' + y = 0 = xy' + y' + y' = 0$$ A COM SHEET MAN $$\times (\dots + na_n \times^{n-1} + \dots) + (\dots + (n+1)a_{n+1} \times^{n} + \dots) + (\dots + a_n \times^{n} + \dots)$$: $$x^{n}(na_{n} + (n+1)a_{n+1} + a_{n}) = 0 x^{n}$$ (i) (4 points) Find the general solution for $$y(t)$$, where $(3t^2 + 1)y'' - 6ty' = 0$. $$(3\xi^2 + 1)y'' - 6\xi y' = 0$$ & Let w=4', w'=y" The recurrence Formula $$w' - \frac{6t}{3t^2+1}w = 0$$ $$I = e^{\int \frac{6t}{3t^2+1}} dt = e^{-\ln|3t^2+1|} = \frac{1}{3t^2+1}$$ (ii) (2 points) Find the largest interval I around the x-axis so that the differential equation $\sqrt{x-1}y'' + \frac{3}{x-3}y' + \frac{2}{x-4}y = 0$, where y(2) = 4 and y'(2) = 6, has unique solution. QUESTION 5. (12 points, this question is about Laplace) (SHOW THE WORK) (i) (2 points) Find $\ell^{-1} \left\{ \frac{s-1}{(s-2)^3} \right\}$ $$L^{-1}\left\{\frac{5-1-1+1}{(5-2)^3}\right\} = L^{-1}\left\{\frac{5-2}{(5-2)^3} + \frac{1}{(5-2)^3}\right\} = e^{2b}L + \frac{e^{2b}}{2}L^2$$ (ii) (4 points) solve for y(t), where $y' + 5y = e^{-t} - 6 \int_0^t y(r) dr$, where y(0) = 0. (iii) (3 points) Solve for x(t) only, where x(t) + y'(t) = 15 and x'(t) + y(t) = 5t, x(0) = 10 and y(0) = 0. $$X(t) + Y'(t) = 15$$ $X'(t) + Y(t) = 5t$ $Apply laplace to both$ $X(s) + SY(s) = \frac{15}{5} - 10$ $SX(s) - 10 + Y(s) = \frac{5}{5^2}$ $SX(s) + Y(s) = \frac{5}{5^2} + 16 - 2$ $$\frac{\chi(s)}{\sqrt[3]{3}} = \begin{bmatrix} \frac{15}{5} & 5\\ \frac{5}{5} & 10 & 1 \end{bmatrix}$$ $$= \begin{bmatrix} 1 & 5\\ 5 & 1 \end{bmatrix}$$ $$\frac{15-5(\frac{5}{5^2}+16)}{1-5^2}$$ $$\frac{15-5(\frac{5}{5^2}+16)}{1-5^2}$$ $$\frac{1}{5}-\frac{5}{5}-\frac{1}{5}$$ (iv) (3 points) Use the undetermined method with Laplace as explained in the class to find the general form of y_p , but do not find the exact y_p . $$y^{(3)} - y'' = xe^a$$ Let $$y^{(3)} - y'' = 0$$ and Let $y = e^{mt}$ =) Char $(H.D.E) \Rightarrow m^3 - m^2 = 0 \Rightarrow m^2 (m-1) = 0$ $m = 0 \rightarrow 31 = e^{0t} = 1$ $m = 0 \rightarrow 32 = te^{0t} = t \Rightarrow y_1 = c_1 + c_2 t + c_3 e^{t}$ $m = 1 \rightarrow 33 = e^{t}$ $y(5) = \frac{c_1}{5^2(5-1)} \cdot L_{2} \times e^{x_3} = \frac{c_2}{(5-1)^2} \cdot \frac{c_3}{(5-1)^2} \cdot \frac{c_3}{(5-1)^2} + \frac{c_3}{(5-1)^2} \cdot \frac{c_3}{(5-1)^3}$ $y(5) = \frac{c_1}{5} + \frac{c_2}{5^2} + \frac{c_3}{(5-1)} + \frac{c_4}{(5-1)^2} + \frac{c_5}{(5-1)^3}$ Continued back of the QUESTION 6. (6 points) (SHOW THE WORK) Use the variation method to find the general solution $(y_g(t))$ to Page $$t^2y'' - 2y = \frac{3}{t^2}$$, where $t > 0$ Let $$\frac{1}{2}y'' - 2y = 0$$ and let $y = \frac{1}{2}n, y' = n\frac{1}{2}n^{-1}, y'' = (n^2 n)^{\frac{1}{2}}$ =) $\frac{1}{2}(n^2 n) + n - 2 + n = 0$ $\frac{1}{2}(n^2 - n - 2) = 0$ $$(n-2)(n+1) = 0$$ => $n=2$ -> $y_1 = \xi^2$ $y_1 = y_2 = \xi^2 = \xi$ $y_2 = y_1 = \xi^2$ $y_3 = y_1 = \xi^2$ $y_4 = y_1 = \xi^2$ $y_5 = y_1 = \xi^2$ two conditions: $$0 \frac{1}{3} + \frac{1}{2} \frac{1}{3} = 0 \Rightarrow (\frac{1}{2} \frac{1}{3} + \frac{1}{2} \frac{1}{3} = 0) - \frac{2}{1} = 0$$ $$0 \frac{1}{3} \frac{1}{3} + \frac{1}{2} \frac{1}{3} = 0 \Rightarrow (\frac{1}{2} \frac{1}{3} + \frac{1}{2} \frac{1}{3} = 0) - \frac{2}{1} = 0$$ $$0 \frac{1}{3} \frac{1}{3} + \frac{1}{3} \frac{1}{3} = 0 \Rightarrow (\frac{1}{2} \frac{1}{3} + \frac{1}{3} \frac{1}{3} = 0) - \frac{2}{1} \frac{1}{3} = 0$$ $$0 \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} = 0 \Rightarrow (\frac{1}{2} \frac{1}{3} \frac{1}{3} + \frac{1}{3} \frac{1}{3} = 0) + \frac{2}{1} \frac{1}{3} \frac{1}{3} = 0$$ $$0 \frac{1}{3} \frac{1}$$ QUESTION 7. (6 points) (SHOW THE WORK) Imagine a steal ball weighing 128 lb (note that mass, m = w/g =128/32) is suspended from a spring, the spring is stretched 2 ft. The ball started in motion with no initial velocity by displacing it 6 ft above the equilibrium position. Assume no air resistance and no external force. weight= 128 lb (i) (5 points) Find an expression, x(t), for the position of the ball at any time t. m= 4 k9 mx"(t) + a+x(t) + kx(t) = E(t) K = weight = 128 =) 4x'' + 64x = 6K= 64 N/m x(0) = -6 4m2+64=0 x(0)=0 =7 m = ± 4i : 1 x(t) = C1 (05 (4t) + C25in (4t) X(6)=-6= C1 (05(0)+(25in(0) =) C1=-6 XXX (L)= -4 (15in (4b) + 4 (2605 (4b) $x'(0) = 0 \neq 4C_2 = C_2 = 0$ (/ (x (b) = -6(05(4b) at t=二 -> x(元)=-6(os(Y·元) (ii) (1 point) The position of the ball at $t = \pi/12$. **QUESTION 8.** (6 points) Solve the differential equation $(1 + \frac{y}{x})dx + \frac{x}{y}dy = 0$ $\left(1+\frac{\lambda}{2}\right)9x+\frac{\lambda}{2}9\lambda=0$ $\frac{1}{A(U+2)} = \frac{A}{A} + \frac{B}{B}$ O-homo geneous Let y= xu, dy= udx + xd4 => fx(1,u) dx+ Fy(1,u) [udx+xdu] =0 $=) \left(1+n\right)qx+\left(\frac{n}{r}\right)\left[nqx+xqn\right] = 0$ $(1+u+1)\partial_X + (\frac{x}{2})\partial_u = 0 \Rightarrow (2+u)\partial_X = -\frac{x}{2}\partial_u$ $= \int \left(\frac{1}{x} dx \right) = \int \frac{1}{(2+u)} du = \int |n|x| = \int \frac{1}{2} \cdot \frac{1}{u} du - \frac{1}{2} \int \frac{1}{u+2} du$ =) $|n|X| = \frac{1}{2}|n|u| - \frac{1}{2}|n|u+2|+c = ||n|x| - \frac{1}{2}|n|\frac{1}{x}|+\frac{1}{2}|n|\frac{1}{x}+2|=c$ QUESTION 9. (6 points) (SHOW THE WORK) imagine the following electrical circuit. Stare at it. $$i = \frac{dq}{dt} = q'$$ Given that R = 10 ohms, C = 0.001 farad, L = 0.5 henry, and E is constant, where E=12 volts. Assume no initial current and no initial charge at t=0 when the voltage is first applied. Find the amount of charge q(t) on the capacitor at any time t. L2"+R2"+= E Let \frac{1}{29" + 109' + 10009 = 0 and let y = emt 9(4) = = e10 = [C1 (05 (10) 19 E) + C2 Sin (10) [E)] **QUESTION 10.** (4 points) solve the differential equation $\frac{dy}{dx} = \frac{1}{\cos(2x+y)e^{(\sin(2x+y))}} - 2$ $$\frac{dy}{dx} = \frac{1}{\cos(2x+y)e^{\sin(2x+y)}} - 2$$ Let $$u = 2x + y$$, $\frac{\partial u}{\partial x} = 2 + \frac{\partial y}{\partial x} =) \frac{\partial y}{\partial x} = \frac{\partial u}{\partial x} - 2$ SA STORES $$\frac{du}{dx} = \int \cos(u) e^{\sin(u)} du = \int dx = \int dx$$