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QUESTION 1. (6 points) (SHOW THE WORK)
(1) (2 points) Sketch the direction field of y' = z — ,/y, wherey > 0.
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(ii) (3 points) Assume that y(z) is passing through (1, 2) and it is the solution to the autonomous differential equation
y' =y? — 6y + 5. Roughly, sketch y(z).
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(iii) (1 point)Let y(z) as in (ii), find Lim,_,c0 y(Z) \\
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QUESTION 2. (6 points) (SHOW THE WORK) Solve the following differential equation.
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QUESTION 3. (6 points) (SHOW THE WORK) Consider the differential equation (z + 1)y’ +y = 0. It is clear
that 0 is an ordinary value. Imagine we need to solve for y(x) by a power series around 0, i.e., y(z) = 2 i s

(1) (1 point) Which of the values z = 1, —1,2 are ordinary ?
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% (ii) (5 points) Assume that y(0) = 4, find the recurrence formula for the series y(z) = 3 7o a;z*, and calculate the
exact values of ag, a;, az, as.
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QUESTION 4. (6 points) (SHOW THE WORK) )
//

(i) (4 points) Find the general solution for y(t), where (3t> 4+ 1)y” — 6ty’ = 0.
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(i) (2 points) Find the largest interval I around the x-axis so that the differential equation /z — 1y” + == 3y +
= 4y 0, where y(2) = 4 and y/(2) = 6, has unique solution. L/v—f [y
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QUESTION 5. (12 pomts this questlon is about Laplace) (SHOW THE WORK)
(i) (2 points) Find £7!
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(ii) (4 points) solve for y( ), where 3/ +5y=e"t -6 fo y(r) dr, where y(0) = 0.
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(iii) (3 points) Solve for z(t) only, where z(t) +4'(t) = 15 and 2’(t) + y(t) = 5¢, (0) = 10 and y(0) =
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(iv) (3 points) Use the undetermined method with Laplace as explained in the class to find the general form of Yps
but do not find the exact y,,. ¢
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QUESTION 6. (6 points) (SHOW THE WORK) Use the variation method to find the general solution (yq(2)) to f J
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QUESTION 7. (6 points) (SHOW THE WORK) Imagine a steal ball weighing 128 Ib (note that mass, m = w/g =
128/32) is suspended from a spring, the spring is stretched 2 ft. The ball started in motion with no initial velocity by
displacing it 6 ft above the equilibrium position. Assume no air resistance and no external force. X =12 F 5

(i) (5 points) Find an expression, z(t), for the position of the ball at any time t. we) 5\‘): - |Z ‘5 \\3
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QUESTION 8. (6 points) Solve the differential equation(1+¥)d:r+§dy:O X = = 3 FL
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QUESTION 9. (6 points) (SHOW THE WORK) imagine the following electrical circuit. Stare at it.

Given that R = 10 ohms, C = 0.001 farad, L = 0.5 henry,
and E is constant, where E = 12 volts. Assume no initial current and no initial charge at ¢t = 0 when the voltage is
first applied. Find the amount of charge ¢(t) on the capacitor at any time t.
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QUESTION 10. (4 points) solve the differential equation 5 —1 Tm 2
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