MTH 532, Fall 2022, 1-2

MTH 532, Exam Two, December 3, 2022, 2:30–4:30 pm

Ayman Badawi

ALL RINGS ARE COMMUTATIVE with $1 \neq 0$

QUESTION 1. (i) (5 points) Let $f(x) = x^{40} + 1 \in Z_2[x]$. Then all roots of f(x) "live" inside $F = GF(2^m)$ for some positive integer $m \ge 2$. Find the smallest m, explain briefly. [Hint: Make use of the Freshman Dream Result, note that -1 = 1 in Z_2 and $(F^*, .)$ is cyclic.]

Solution: Assume that the smallest field, $F = GF(2^m)$, contains all of the roots of f(x). First, note that $40 = (8)(5) = 2^3(5)$. Hence by the Freshman dream result, $f(x) = x^{40} + 1 = (x^5 + 1)^{2^3}$. Hence, we need to find the roots of $k(x) = x^5 + 1$. Let a be a root of k(x) inside F. Then $a^5 + 1 = 0$. Thus $a^5 = -1 = 1$ in F. Thus the roots of k(x) is the subgroup $D = \{b \in F^* \mid b^5 = 1\}$ of (F^*) . Note that |D| = 5. Since $(F^*, .)$ is cyclic with $2^m - 1$ elements, we conclude that D is the ONLY subgroup of F^* with 5 element. Hence, by Lagrange Theorem, $5 \mid (2^m - 1)$. Now, by trial and error, find the smallest m such that $5 \mid (2^m - 1)$. It is clear that m = 4. Hence $F = GF(2^4)$.

(ii) (5 points) Write down all monic irreducible polynomials of degree 2 in $Z_2[x]$.

Solution: By class notes, there is only one such polynomial, $f(x) = x^2 + x + 1$. You may use the formula I gave in class to show that there is only one such polynomials. Since degree(f) = 2 and it has no roots in Z_2 , f(x) is irreducible by a HW-problem.

(iii) (5 points) Convince me that $f(x) = x^4 + x + 1 \in \mathbb{Z}_2[x]$ is irreducible in $\mathbb{Z}_2[x]$. [Hint: Maybe (ii) is useful]

Solution: First observe that $Z_2[x]$ is a UFD (in fact, we know that if F is any field, then F[x] is a PID, and hence a UFD). Deny. Hence f(x) = k(x)h(x). There are two cases. Case one: assume deg(h) = 1 and deg(k) = 3. Since $f(a) \neq 0$ for every $a \in Z_2$, $deg(h) \neq 1$. Case 2: assume deg(k) = deg(h) = 2. Since f(x) has no roots in Z_2 , we conclude that neither k(x) nor h(x) has roots in Z_2 . Thus k(x) and h(x) are irreducible in $Z_2[x]$ by a HW-problem. By (ii), $x^2 + x + 1$ is the only irreducible polynomial of degree 2 in $Z_2[x]$. Thus $k(x) = h(x) = x^2 + x + 1$. Now, $(x^2 + x + 1)^2$ =(by freshman dream) $x^4 + x^2 + 1 \neq f(x)$. Thus our denial is invalid. Hence $f(x) = x^4 + x + 1$ is irreducible in $Z_2[x]$.

(iv) (5 points) Given $a \in F = GF(3^{12})$ such that |a| = 13 (under multiplication) (i., $a^{13} = 1$ in F). Hence a is a root of a monic irreducible polynomial f(x) in $Z_3[x]$. What is the degree of f(x)? explain briefly. [Hint: We know $(F^*, .)$ is cyclic, and hence F^* has exactly once subgroup of order 13.]

Solution: Let f(x) be the monic irreducible polynomial in $Z_3[x]$ of degree m such that f(a) = 0. Hence, as explained in the class, m is the smallest degree of such polynomial and f(x) is unique. Thus, by class notes, $Z_3[x]/(f(x)) = GF(3^m)$. Since $a \in GF(3^{12})$, we conclude that $GF(3^m)$ is a subfield of $GF(3^{12})$. Hence $m \mid 12$. Thus m = 1, or m = 2, or m = 3, or m = 4, or m = 6 or m = 12. Since |a| = 13, m = the smallest factor of 12 such that $13 \mid (3^m - 1$. By trial and error, m = 3. Thus degree(f) = 3)

(v) (5 points) How many monic irreducible polynomial of degree 8 are there in $Z_2[x]$? Show the work

Solution: No comments. ALL OF YOU GOT IT RIGHT

(vi) (5 points) Write $f(x) = x^9 + x^3 + 2$ as product of monic irreducible polynomials in $Z_3[x]$.

Solution: Since $Z_3[x]$ is a UFD, f(x) can be written uniquely as product of irreducible polynomials in $Z_3[x]$. By staring and the Freshman dream result, $f(x) = (x^3 + x + 2)^3$. If $k(x) = x^3 + x + 2$ is irreducible in $Z_3[x]$, then we are done. Since k(2) = 0 in Z_3 , we conclude that k(x) is not irreducible in $Z_3[x]$ by a HW-problem. Thus (x - 2)|k(x), note that (x - 2) = (x + 1) in $Z_3[x]$ because -2 = 1 in Z_3 . Thus k(x) = (x + 1)h(x), where deg(h) = 2. By the long division algorithm (i.e., divide k(x) by (x + 1)), we conclude that $h(x) = x^2 + 2x + 2$. Since $h(a) \neq 0$ for every $a \in Z_3$, we conclude that h(x)is irreducible. Hence $f(x) = x^9 + x^3 + 2 = ((x + 1)(x^2 + 2x + 2))^3 = (x + 1)^3(x^2 + 2x + 2)^3$.

(vii) (5 points) How many monic irreducible polynomial of degree 6 are there in $Z_2[x]$? Show the work

Solution : No comments, All of you got it right.

QUESTION 2. (10 points) Let $F = GF(2^{12})$. Find $[F : Z_2]$. Find $|Aut_{Z_2}(F)|$. We know that each subgroup of $Aut_{Z_2}(F)$ fixes a unique subfield of F. For each subgroup of $Aut_{Z_2}(F)$, find a generator and the subfield of F that it fixes. Draw a chart that illustrates the relationship between the subgroups of $Aut_{Z_2}(F)$ and the subfields of F.

Solution : No comments, All of you got it right.

QUESTION 3. (i) (5 points) Let $Q \subset E$ such that [E : Q] = 21. Given f(x) is monic irreducible polynomial in Q[x] of degree ≥ 4 . If f(a) = 0 for some $a \in E$, what are the possibilities of degree(f)? explain briefly

Solution: By class notes, $Q \subset Q(a) \subset E$, where [Q(a) : Q] = m = the degree of f(x). Since [E : Q] = 21 = [E : Q(a)][Q(a) : Q] = [E : Q(a)]m, we conclude that m|21. Since $m \ge 4$, we conclude that m = 7 or m = 21.

(ii) (5 points) Let $I = \{f(x) \in Z[x] \mid f(1) \in 3Z\}$. We know that Z[x] is a UFD, but not a PID. Convince me that *I* is a prime ideal of Z[x] and Z[x]/I is a principal ideal domain and hence a UFD [Hint: You can answer this question in ONE step: Construct a ring homomorphism $L : Z[x] \to Z_3$. Then by staring and using some results, you are done.]

Solution: Let $L : Z[x] \to Z_3$ such that L(f(x)) = f(1). We show that L is a ring homomorphism and it is ONTO. L(k(x) + h(x)) = (k(x) + h(x)(1) = k(1) + h(1) = L(k(x)) + L(h(x)). L(k(x)h(x)) = (k(x)h(x))(1) = k(1)h(1) = L(k(x))L(h(x)) Thus L is a ring homomorphism. Since L(f(x) = x - 1) = f(1) = 0, L(f(x) = x) = f(1) = 1, and L(f(x) = x + 1) = f(1) = 2. L is onto. Now $Ker(L) = \{h(x) \in Z[x] | L(h(x)) = h(1) = 0 \in Z_3\}$. It is clear that $L(h(x)) = h(1) = 0 \in Z_3$ if and only if $h(1) \in 3Z$ Thus Ker(L) = I. Hence $Z[x]/I \cong Z_3$. Since Z_3 is a field, I is a maximal ideal of Z[x], and hence it is a prime ideal of Z[x]. Since $Z_3 = span\{1\}$ and $\{0\}$ are the only ideals of Z_3 , Z_3 is a PID and hence a UFD. Thus Z[x]/I is a PID and a UFD.

(iii) (5 points) Let R be a commutative ring with $1 \neq 0$, I be a proper ideal of R, and P be a prime ideal of R such that $I \cap P = \{0\}$. Assume that $ab \neq 0$ for every nonzero elements $a, b \in P$. Convince me that there is a prime ideal W of R such that $I \subseteq W$ and $W \cap P = \{0\}$.

Solution: Let $D = P - \{0\}$. Since P is an ideal of R, $ab \in P$ for every $a, b \in P$. Since $ab \neq 0$ for every nonzero $a, b \in P$, we conclude that $xy \in D$ for every $x, y \in D$. Thus D is a multiplicatively closed set in R. Since $I \cap P = \{0\}$, we conclude that $D \cap I = \emptyset$. Hence, by class-result, there is a prime ideal W of R such that $I \subseteq W$ and $W \cap D = \emptyset$. Since $P = D \cup \{0\}$, we conclude that $W \cap P = \{0\}$.

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.

E-mail: abadawi@aus.edu, www.ayman-badawi.com