MTH 532, Exam Two, December 3, 2022, 2:30-4:30 pm

Ayman Badawi

ALL RINGS ARE COMMUTATIVE with $1 \neq 0$

QUESTION 1. (i) (5 points) Let $f(x)=x^{40}+1 \in Z_{2}[x]$. Then all roots of $f(x)$ "live" inside $F=G F\left(2^{m}\right)$ for some positive integer $m \geq 2$. Find the smallest m, explain briefly. [Hint: Make use of the Freshman Dream Result, note that $-1=1$ in Z_{2} and $\left(F^{*},.\right)$ is cyclic.]

Solution: Assume that the smallest field, $F=G F\left(2^{m}\right)$, contains all of the roots of $f(x)$. First, note that $40=(8)(5)=2^{3}(5)$. Hence by the Freshman dream result, $f(x)=x^{40}+1=\left(x^{5}+1\right)^{2^{3}}$. Hence, we need to find the roots of $k(x)=x^{5}+1$. Let a be a root of $k(x)$ inside F. Then $a^{5}+1=0$. Thus $a^{5}=-1=1$ in F. Thus the roots of $k(x)$ is the subgroup $D=\left\{b \in F^{*} \mid b^{5}=1\right\}$ of (F.). Note that $|D|=5$. Since $\left(F^{*},.\right)$ is cyclic with $2^{m}-1$ elements, we conclude that D is the ONLY subgroup of F^{*} with 5 element. Hence, by Lagrange Theorem, $5 \mid\left(2^{m}-1\right)$. Now, by trial and error, find the smallest m such that $5 \mid\left(2^{m}-1\right)$. It is clear that $m=4$. Hence $F=G F\left(2^{4}\right)$.
(ii) (5 points) Write down all monic irreducible polynomials of degree 2 in $Z_{2}[x]$.

Solution: By class notes, there is only one such polynomial, $f(x)=x^{2}+x+1$. You may use the formula I gave in class to show that there is only one such polynomials. Since $\operatorname{degree}(f)=2$ and it has no roots in $Z_{2}, f(x)$ is irreducible by a HW -problem .
(iii) (5 points) Convince me that $f(x)=x^{4}+x+1 \in Z_{2}[x]$ is irreducible in $Z_{2}[x]$. [Hint: Maybe (ii) is useful]

Solution: First observe that $Z_{2}[x]$ is a UFD (in fact, we know that if F is any field, then $F[x]$ is a PID, and hence a UFD). Deny. Hence $f(x)=k(x) h(x)$. There are two cases. Case one: assume deg(h) $=\mathbf{1}$ and $\operatorname{deg}(\mathbf{k})=3$. Since $f(a) \neq 0$ for every $a \in Z_{2}$, $\operatorname{deg}(h) \neq 1$. Case 2: assume $\operatorname{deg}(k)=\operatorname{deg}(h)=2$. Since $f(x)$ has no roots in Z_{2}, we conclude that neither $k(x)$ nor $h(x)$ has roots in Z_{2}. Thus $k(x)$ and $h(x)$ are irreducible in $Z_{2}[x]$ by a HW-problem. By (ii), $x^{2}+x+1$ is the only irreducible polynomial of degree 2 in $Z_{2}[x]$. Thus $k(x)=h(x)=x^{2}+x+1$. Now, $\left(x^{2}+x+1\right)^{2}=(\mathbf{b y}$ freshman dream) $x^{4}+x^{2}+1 \neq f(x)$. Thus our denial is invalid. Hence $f(x)=x^{4}+x+1$ is irreducible in $Z_{2}[x]$.
(iv) (5 points) Given $a \in F=G F\left(3^{12}\right)$ such that $|a|=13$ (under multiplication) (i., $a^{13}=1$ in F). Hence a is a root of a monic irreducible polynomial $f(x)$ in $Z_{3}[x]$. What is the degree of $f(x)$? explain briefly. [Hint: We know ($F^{*},$.) is cyclic, and hence F^{*} has exactly once subgroup of order 13.]

Solution: Let $f(x)$ be the monic irreducible polynomial in $Z_{3}[x]$ of degree \mathbf{m} such that $f(a)=0$. Hence, as explained in the class, m is the smallest degree of such polynomial and $f(x)$ is unique. Thus, by class notes, $Z_{3}[x] /(f(x))=G F\left(3^{m}\right)$. Since $a \in G F\left(3^{12}\right)$, we conclude that $G F\left(3^{m}\right)$ is a subfield of $G F\left(3^{12}\right)$. Hence $m \mid$ 12. Thus $m=1$, or $m=2$, or $m=3$, or $m=4$, or $m=6$ or $m=12$. Since $|a|=13, \mathbf{m}=$ the smallest factor of $\mathbf{1 2}$ such that $13 \mid\left(3^{m}-1\right.$. By trial and error, $m=3$. Thus degree($\left.\left.\mathbf{f}\right)=\mathbf{3}\right)$
(v) ($\mathbf{5}$ points) How many monic irreducible polynomial of degree 8 are there in $Z_{2}[x]$? Show the work

Solution: No comments. ALL OF YOU GOT IT RIGHT

(vi) (5 points) Write $f(x)=x^{9}+x^{3}+2$ as product of monic irreducible polynomials in $Z_{3}[x]$.

Solution: Since $Z_{3}[x]$ is a UFD, $f(x)$ can be written uniquely as product of irreducible polynomials in $Z_{3}[x]$. By staring and the Freshman dream result, $f(x)=\left(x^{3}+x+2\right)^{3}$. If $k(x)=x^{3}+x+2$ is irreducible in $Z_{3}[x]$, then we are done. Since $k(2)=0$ in Z_{3}, we conclude that $k(x)$ is not irreducible in $Z_{3}[x]$ by a HW-problem. Thus $(x-2) \mid k(x)$, note that $(x-2)=(x+1)$ in $Z_{3}[x]$ because $-2=1$ in Z_{3}. Thus $k(x)=(x+1) h(x)$, where $\operatorname{deg}(h)=2$. By the long division algorithm (i.e., divide $k(x)$ by $(x+1)$), we conclude that $h(x)=x^{2}+2 x+2$. Since $h(a) \neq 0$ for every $a \in Z_{3}$, we conclude that $h(x)$ is irreducible. Hence $f(x)=x^{9}+x^{3}+2=\left((x+1)\left(x^{2}+2 x+2\right)\right)^{3}=(x+1)^{3}\left(x^{2}+2 x+2\right)^{3}$.
(vii) (5 points) How many monic irreducible polynomial of degree 6 are there in $Z_{2}[x]$? Show the work

Solution : No comments, All of you got it right.

QUESTION 2. (10 points) Let $F=G F\left(2^{12}\right)$. Find $\left[F: Z_{2}\right]$. Find $\left|A u t_{Z_{2}}(F)\right|$. We know that each subgroup of $A u t_{Z_{2}}(F)$ fixes a unique subfield of F. For each subgroup of $A u t_{Z_{2}}(F)$, find a generator and the subfield of F that it fixes. Draw a chart that illustrates the relationship between the subgroups of $A u t_{z_{2}}(F)$ and the subfields of F.

Solution : No comments, All of you got it right.

QUESTION 3. (i) (5 points) Let $Q \subset E$ such that $[E: Q]=21$. Given $f(x)$ is monic irreducible polynomial in $Q[x]$ of degree ≥ 4. If $f(a)=0$ for some $a \in E$, what are the possibilities of degree(f)? explain briefly

Solution: By class notes, $Q \subset Q(a) \subset E$, where $[Q(a): Q]=m=$ the degree of $f(x)$. Since $[E: Q]=$ $21=[E: Q(a)][Q(a): Q]=[E: Q(a)] m$, we conclude that $m \mid 21$. Since $m \geq 4$, we conclude that $m=7$ or $m=21$.
(ii) (5 points) Let $I=\{f(x) \in Z[x] \mid f(1) \in 3 Z\}$. We know that $Z[x]$ is a UFD, but not a PID. Convince me that I is a prime ideal of $Z[x]$ and $Z[x] / I$ is a principal ideal domain and hence a UFD [Hint: You can answer this question in ONE step: Construct a ring homomorphism $L: Z[x] \rightarrow Z_{3}$. Then by staring and using some results, you are done.]

Solution: Let $L: Z[x] \rightarrow Z_{3}$ such that $L(f(x))=f(1)$. We show that L is a ring homomorphism and it is ONTO. $L(k(x)+h(x))=(k(x)+h(x)(1)=k(1)+h(1)=L(k(x))+L(h(x))$. L(k(x)h(x))= $(k(x) h(x))(1)=k(1) h(1)=L(k(x)) L(h(x))$ Thus L is a ring homomorphism. Since $L(f(x)=x-1)=$ $f(1)=0, L(f(x)=x)=f(1)=1$, and $L(f(x)=x+1)=f(1)=2$. L is onto. Now $\operatorname{Ker}(L)=\{h(x) \in$ $\left.Z[x] \mid L(h(x))=h(1)=0 \in Z_{3}\right\}$. It is clear that $L(h(x))=h(1)=0 \in Z_{3}$ if and only if $h(1) \in 3 Z$ Thus $\operatorname{Ker}(L)=I$. Hence $Z[x] / I \cong Z_{3}$. Since Z_{3} is a field, I is a maximal ideal of $Z[x]$, and hence it is a prime ideal of $Z[x]$. Since $Z_{3}=\operatorname{span}\{1\}$ and $\{0\}$ are the only ideals of Z_{3}, Z_{3} is a PID and hence a UFD. Thus $Z[x] / I$ is a PID and a UFD.
(iii) (5 points) Let R be a commutative ring with $1 \neq 0, I$ be a proper ideal of R, and P be a prime ideal of R such that $I \cap P=\{0\}$. Assume that $a b \neq 0$ for every nonzero elements $a, b \in P$. Convince me that there is a prime ideal W of R such that $I \subseteq W$ and $W \cap P=\{0\}$.

Solution: Let $D=P-\{0\}$. Since P is an ideal of R, $a b \in P$ for every $a, b \in P$. Since $a b \neq 0$ for every nonzero $a, b \in P$, we conclude that $x y \in D$ for every $x, y \in D$. Thus D is a multiplicatively closed set in R. Since $I \cap P=\{0\}$, we conclude that $D \cap I=\emptyset$. Hence, by class-result, there is a prime ideal W of R such that $I \subseteq W$ and $W \cap D=\emptyset$. Since $P=D \cup\{0\}$, we conclude that $W \cap P=\{0\}$.

Faculty information

[^0]
[^0]: Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
 E-mail: abadawi@aus.edu, www.ayman-badawi.com

