MTH 532, Fall 2022, 1-2

MTH 532, Exam One

Ayman Badawi

ALL RINGS ARE COMMUTATIVE with $1 \neq 0$

QUESTION 1. 1) Let *I* be a prime ideal of *R* and suppose that $I_1I_2 \subseteq I$ for some proper ideals I_1, I_2 of *R*. Prove that $I_1 \subseteq I$ or $I_2 \subseteq I$. [Note if $i_1 \in I_1$ and $i_2 \in I_2$, then $i_1i_2 \in I_1I_2$].

Solution: Assume that neither $I_1 \subseteq I$ nor $I_2 \subseteq I$. Then there exist $a \in I_1 \setminus I$ and $b \in I_2 \setminus I$. Since $I_1I_2 \subseteq I$, we conclude that $ab \in I$. Since I is prime and $ab \in I$, we conclude that $a \in I$ or $b \in I$, a contradiction. Thus $I_1 \subseteq I$ or $I_2 \subseteq I$.

2) Let I be a proper ideal of R such that whenever $xy \in I$ for some $x, y \in R$, then $x^n \in I$ or $y^n \in I$ for some integer $n \ge 1$. Prove \sqrt{I} is a prime ideal of R.

Solution: Assume $ab \in \sqrt{I}$. Hence $(ab)^m = a^m b^m \in I$ for some positive integer $m \ge 1$. Thus, by hypothesis, there is an integer n such that $(a^m)^n = a^{mn} \in I$ or $(b^m)^n = b^{mn} \in I$. Hence, by the definition of the \sqrt{I} , we conclude that $a \in \sqrt{I}$ or $b \in \sqrt{I}$. Thus \sqrt{I} is a prime ideal of R.

QUESTION 2. 1) Let *e* be an idempotent of *R*. Prove that 1 - e is an idempotent of *R*.

Solution: Since $(1-e)^2 = 1 - 2e + e^2 = 1 - 2e + e = 1 - e$, we conclude that (1-e) is an idempotent of R.

2) Let e be an idempotent of R such that $e \notin \{0, 1\}$. Prove that $\frac{R}{(1-e)R}$ is ring-isomorphic to eR [note that e(1-e) = 0 and x - ex = (1-e)x; also we conclude that $\frac{R}{eR}$ is ring-isomorphic to (1-e)R, do not prove this, it is clear]

Solution: Let $f : R \to eR$ such that f(a) = ea for every $a \in R$. We show f is a ring homomorphism i)Let $a, b \in R$. Then f(a + b) = e(a + b) = ea + eb = f(a) + f(b); also $f(ab) = e(ab) = e^2(ab) = (ea)(eb) = f(a)f(b)$. Thus f is a ring homomorphism.

ii) We show f is onto. Let $y \in eR$. Then y = ed for some $d \in R$. Thus f(d) = ed = y. Hence f is ONTO. iii) We show Ker(f) = (1 - e)R. Let $k \in Ker(f)$. Then f(k) = ek = 0. Since ek = 0, we conclude that k = k - ek = (1 - e)k. Thus $k \in (1 - e)R$. Hence $Ker(f) \subseteq (1 - e)R$. Now, let $w \in (1 - e)T$. Then w = (1 - e)g for some $g \in R$. Thus f(w) = f((1 - e)g) = e((1 - e)g) = 0. Hence $w \in Ker(f)$. Thus Ker(f) = (1 - e)R. By the 1st isomorphism Theorem, we conclude that $\frac{R}{(1 - e)R}$ is ring-isomorphic to eR.

3) Prove that R is ring-isomorphic to $eR \times (1-e)R$. [Maybe the concept of co-prime and the CRT are helpful here.]

Solution: Since $e + (1 - e) = 1 \in R$, we conclude that eR and (1 - e)R are coprime. It is clear that $eR \cap (1 - e)R = \{0\}$. Hence, by the CRT, $R = R/(eR \cap (1 - e)R) \cong R/eR \times R/(1 - e)R \cong (1 - e)R \times eR$ (by ii).

4) Assume that R has exactly one maximal ideal of R. Prove that 0, 1 are the only idempotent of R.

Solution: Some of you used (iii) to prove it, which is a correct proof. Here is another proof. Let M be the maximal ideal of R. Assume there is an idempotent e of R such that $e \notin \{0, 1\}\}$. Since every proper ideal of R is contained in a maximal ideal of R, we conclude that $eR \subseteq M$ and $(1-e)R \subseteq M$. Thus $e+1-e = 1 \in M$, a contradiction. Hence 0 and 1 are the only idempotents of R.

QUESTION 3. Given $T: Z_5 \to Z_{10}$ be a ring-homomorphism such that $T(1) \neq 0$.

a) Find the range of T and the Kernel of T

Solution: By staring, since $T(1) \neq 0$, we conclude that $Ker(T) \neq Z_5$. Since Z_5 is a field, $\{0\}$ is the only proper ideal of R. Hence $Ker(T) = \{0\}$. Since $Z_5 = Z_5/Ker(T) \cong Range(T)$, we conclude that Range(T) is a subring of Z_{10} with 5 elements. Since T(1) is an idempotent of Z_{10} and $T(1) \neq 0$, we conclude that $T(1) \in \{1, 5, 6\}$

i) Assume T(1) = 1. Then $0 = T(0) = T(1+1+\dots+1)(5 \text{ times}) = T(1)+\dots+T(1) = 5 \in Z_{10}$, impossible since $0 \neq 5$ in Z_{10} .

ii) Assume T(1) = 5. Then $T(2) = T(1+1) = T(1) + T(1) = 0 \in Z_{10}$, impossible since $Ker(T) = \{0\}$.

iii) Assume T(1) = 6. Then Range(T) = $\{6, 2, 8, 4, 0\}$ is a subring of Z_{10} with 5 element. NOTE, since $Z_5 \cong Range(T)$ and Z_5 is a field, we conclude that $Range(T) = \{6, 2, 8, 4, 0\}$ is a field with 6 as the multiplicative identity.

b) I claim that Z_{10} has a subring, say D, that is a field. If I am wrong, then explain. If I am right, then find D, and find the multiplicative inverse of each nonzero element of D.

Solution: From a(iii), $D = Range(T) = \{6, 2, 8, 4, 0\}$ is is a field with 6 as the multiplicative identity. Now 2^{-1} (in D) = 8 and hence 8^{-1} (in D) = 2; 4^{-1} (in D) = 4; 6^{-1} (in D) = 6

c) Let $T : Z_3 \to Z_9$ be a ring-homomorphism. Find the range of T and the Kernel of T. [May be (4) in Question 2 is helpful]

Solution: Since Z_9 has one maximal ideal $M = \{0, 3, 6\} = 3Z_9$, by question 2(4) we conclude that 0, 1 are the only idempotent of Z_9 .

i) Assume T(1) = 1. Then 0 = T(0) = T(1 + 1 + 1) = T(1) + T(1) + T(1) = 3, impossible since $3 \neq 0$ in Z_9 .

ii) Assume T(1) = 0. Then $Ker(T) = Z_3$ and $Range(T) = \{0\}$, so T(1) = 0 is the correct answer.

QUESTION 4. a) Let $f(x) = 15x^7 + 10x^4 + 12x^2 + 18x + 22 \in Z[x]$. Is f(x) irreducible in Z[x]? explain.

Solution: Since $2 \nmid 15, 2 \mid 10, 2 \mid 12, 2 \mid 18, 2 \mid 22$, but $4 \nmid 22$, we conclude that f(x) is irreducible by Eisenstein's result.

b) Let $R = Z_{24}$ and $D = \{f(x) \in R[x] \mid f(x) \in U(R[x]) \text{ and degree of } f(x) = 2\}$. Find |D|(i.e., find the size of D, but do not write down all elements of D)

Solution: From a HW problem, $ax^2 + bx + c$ is a unit in Z_{24} if and only if $a, b \in Nil(Z_{24})$ and $c \in U(Z_{24})$. Since $ax^2 + bx + c$ must be of degree 2, $a \neq 0$. By a HW problem $Nil(Z_{24}) = 6Z_{24} = \{0, 6, 12, 18\}$. Thus $|Nil(Z_{24})| = 4$. We know $|U(Z_{24})| = \phi(24) = (2^3 - 2^2)(3^1 - 3^0) = 8$. Hence *a* has 3 choices, *b* has 4 choices, and *c* has 8 choices. Thus $|D| = 3 \times 4 = 96$.

c) Let $R = Z_{10}$. Is $f(x) = 4x^7 + 6x^2 + 8 \in Z(R[x])$? explain

Solution: Since $5 \in Z(Z_{10})$ and 5(f(x)) = 0, we conclude that $f(x) \in Z(Z_{10}[x])$.

d) We know if R is an integral domain, then char(R) = 0 or char(R) = p for some positive prime integer p. Give me an example of a ring R such that R is not an integral domain, but char(R) = p for some positive prime integer p.

Solution: Let $R = Z_5 \times Z_5$. Since the order of (1, 1) under addition is 5, we conclude that Char(R) = 5. Since (1,0)(0,1) = (0,0), R is not an integral domain.

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.