MTH 532, Exam One

Ayman Badawi

ALL RINGS ARE COMMUTATIVE with $1 \neq 0$

QUESTION 1. 1) Let I be a prime ideal of R and suppose that $I_{1} I_{2} \subseteq I$ for some proper ideals I_{1}, I_{2} of R. Prove that $I_{1} \subseteq I$ or $I_{2} \subseteq I$. [Note if $i_{1} \in I_{1}$ and $i_{2} \in I_{2}$, then $i_{1} i_{2} \in I_{1} I_{2}$].

Solution: Assume that neither $I_{1} \subseteq I$ nor $I_{2} \subseteq I$. Then there exist $a \in I_{1} \backslash I$ and $b \in I_{2} \backslash I$. Since $I_{1} I_{2} \subseteq I$, we conclude that $a b \in I$. Since I is prime and $a b \in I$, we conclude that $a \in I$ or $b \in I$, a contradiction. Thus $I_{1} \subseteq I$ or $I_{2} \subseteq I$.
2) Let I be a proper ideal of R such that whenever $x y \in I$ for some $x, y \in R$, then $x^{n} \in I$ or $y^{n} \in I$ for some integer $n \geq 1$. Prove \sqrt{I} is a prime ideal of R.

Solution: Assume $a b \in \sqrt{I}$. Hence $(a b)^{m}=a^{m} b^{m} \in I$ for some positive integer $m \geq 1$. Thus, by hypothesis, there is an integer n such that $\left(a^{m}\right)^{n}=a^{m n} \in I$ or $\left(b^{m}\right)^{n}=b^{m n} \in I$. Hence, by the definition of the \sqrt{I}, we conclude that $a \in \sqrt{I}$ or $b \in \sqrt{I}$. Thus \sqrt{I} is a prime ideal of R.

QUESTION 2. 1) Let e be an idempotent of R. Prove that $1-e$ is an idempotent of R.

Solution: Since $(1-e)^{2}=1-2 e+e^{2}=1-2 e+e=1-e$, we conclude that $(1-e)$ is an idempotent of R.
2) Let e be an idempotent of R such that $e \notin\{0,1\}$. Prove that $\frac{R}{(1-e) R}$ is ring-isomorphic to $e R$ [note that $e(1-e)=0$ and $x-e x=(1-e) x$; also we conclude that $\frac{R}{e R}$ is ring-isomorphic to $(1-e) R$, do not prove this, it is clear]

Solution: Let $f: R \rightarrow e R$ such that $f(a)=e a$ for every $a \in R$. We show f is a ring homomorphism
i)Let $a, b \in R$. Then $\mathbf{f}(\mathbf{a}+\mathbf{b})=\mathbf{e}(\mathbf{a}+\mathbf{b})=\mathbf{e a}+\mathbf{e b}=\mathbf{f}(\mathbf{a})+\mathbf{f}(\mathbf{b})$; also $f(a b)=e(a b)=e^{2}(a b)=(e a)(e b)=$ $f(a) f(b)$. Thus f is a ring homomorphism.
ii) We show f is onto. Let $y \in e R$. Then $y=e d$ for some $d \in R$. Thus $f(d)=e d=y$. Hence f is ONTO.
iii) We show $\operatorname{Ker}(f)=(1-e) R$. Let $k \in \operatorname{Ker}(f)$. Then $f(k)=e k=0$. Since $e k=0$, we conclude that $k=k-e k=(1-e) k$. Thus $k \in(1-e) R$. Hence $\operatorname{Ker}(f) \subseteq(1-e) R$. Now, let $w \in(1-e) T$. Then $w=(1-e) g$ for some $g \in R$. Thus $f(w)=f((1-e) g)=e((1-e) g)=0$. Hence $w \in \operatorname{Ker}(f)$. Thus $\operatorname{Ker}(f)=(1-e) R$. By the 1st isomorphism Theorem, we conclude that $\frac{R}{(1-e) R}$ is ring-isomorphic to $e R$.
3) Prove that R is ring-isomorphic to $e R \times(1-e) R$. [Maybe the concept of co-prime and the CRT are helpful here.]

Solution: Since $e+(1-e)=1 \in R$, we conclude that $e R$ and $(1-e) R$ are coprime. It is clear that $e R \cap(1-e) R=\{0\}$. Hence, by the CRT, $R=R /(e R \cap(1-e) R) \cong R / e R \times R /(1-e) R \cong(1-e) R \times e R$ (by ii).
4) Assume that R has exactly one maximal ideal of R. Prove that 0,1 are the only idempotent of R.

Solution: Some of you used (iii) to prove it, which is a correct proof. Here is another proof. Let M be the maximal ideal of R. Assume there is an idempotent e of R such that $e \notin\{0,1\}\}$. Since every proper ideal of R is contained in a maximal ideal of R, we conclude that $e R \subseteq M$ and $(1-e) R \subseteq M$. Thus $e+1-e=1 \in M$, a contradiction. Hence 0 and 1 are the only idempotents of R.

QUESTION 3. Given $T: Z_{5} \rightarrow Z_{10}$ be a ring-homomorphism such that $T(1) \neq 0$.
a) Find the range of T and the Kernel of T

Solution: By staring, since $T(1) \neq 0$, we conclude that $\operatorname{Ker}(T) \neq Z_{5}$. Since Z_{5} is a field, $\{0\}$ is the only proper ideal of R. Hence $\operatorname{Ker}(T)=\{0\}$. Since $Z_{5}=Z_{5} / \operatorname{Ker}(T) \cong \operatorname{Range}(T)$, we conclude that Range (T) is a subring of Z_{10} with 5 elements. Since $T(1)$ is an idempotent of Z_{10} and $T(1) \neq 0$, we conclude that $T(1) \in\{1,5,6\}$
i) Assume $T(1)=1$. Then $0=T(0)=T(1+1+\cdots+1)(5$ times $)=T(1)+\cdots T(1)=5 \in Z_{10}$, impossible since $0 \neq 5$ in Z_{10}.
ii) Assume $T(1)=5$. Then $T(2)=T(1+1)=T(1)+T(1)=0 \in Z_{10}$, impossible since $\operatorname{Ker}(T)=\{0\}$.
iii) Assume $T(1)=6$. Then $\operatorname{Range}(T)=\{6,2,8,4,0\}$ is a subring of Z_{10} with 5 element. NOTE, since $Z_{5} \cong \operatorname{Range}(T)$ and Z_{5} is a field, we conclude that $\operatorname{Range}(T)=\{6,2,8,4,0\}$ is a field with 6 as the multiplicative identity.
b) I claim that Z_{10} has a a subring, say D , that is a field. If I am wrong, then explain. If I am right, then find D, and find the multiplicative inverse of each nonzero element of D.

Solution: From a(iii), $D=\operatorname{Range}(T)=\{6,2,8,4,0\}$ is is a field with $\mathbf{6}$ as the multiplicative identity. Now $2^{-1}($ in $\mathbf{D})=8$ and hence $8^{-1}($ in $\mathbf{D})=2 ; 4^{-1}($ in $\mathbf{D})=4 ; 6^{-1}($ in $\mathbf{D})=6$
c) Let $T: Z_{3} \rightarrow Z_{9}$ be a ring-homomorphism. Find the range of T and the Kernel of T. [May be (4) in Question 2 is helpful]

Solution: Since Z_{9} has one maximal ideal $M=\{0,3,6\}=3 Z_{9}$, by question 2(4) we conclude that 0,1 are the only idempotent of Z_{9}.
i) Assume $T(1)=1$. Then $0=T(0)=T(1+1+1)=T(1)+T(1)+T(1)=3$, impossible since $3 \neq 0$ in Z_{9}.
ii) Assume $T(1)=0$. Then $\operatorname{Ker}(T)=Z_{3}$ and $\operatorname{Range}(T)=\{0\}$, so $T(1)=0$ is the correct answer.

QUESTION 4. a) Let $f(x)=15 x^{7}+10 x^{4}+12 x^{2}+18 x+22 \in Z[x]$. Is $f(x)$ irreducible in $\mathrm{Z}[\mathrm{x}]$? explain.
Solution: Since $2 \nmid 15,2|10,2| 12,2|18,2| 22$, but $4 \nmid 22$, we conclude that $f(x)$ is irreducible by Eisenstein's result.
b) Let $R=Z_{24}$ and $D=\{f(x) \in R[x] \mid f(x) \in U(R[x])$ and degree of $f(x)=2\}$. Find $|D|$ (i.e., find the size of D, but do not write down all elements of D)

Solution: From a HW problem, $a x^{2}+b x+c$ is a unit in Z_{24} if and only if $a, b \in \operatorname{Nil}\left(Z_{24}\right)$ and $c \in U\left(Z_{24}\right)$. Since $a x^{2}+b x+c$ must be of degree $\mathbf{2 , a} a \mathbf{0}$. By a HW problem $\operatorname{Nil}\left(Z_{24}\right)=6 Z_{24}=\{0,6,12,18\}$. Thus $\left|\operatorname{Nil}\left(Z_{24}\right)\right|=4$. We know $\left|U\left(Z_{24}\right)\right|=\phi(24)=\left(2^{3}-2^{2}\right)\left(3^{1}-3^{0}\right)=8$. Hence a has $\mathbf{3}$ choices, b has $\mathbf{4}$ choices, and c has 8 choices. Thus $|D|=3 \times 4=96$.
c) Let $R=Z_{10}$. Is $f(x)=4 x^{7}+6 x^{2}+8 \in Z(R[x])$? explain

Solution: Since $5 \in Z\left(Z_{10}\right)$ and $5(f(x))=0$, we conclude that $f(x) \in Z\left(Z_{10}[x]\right)$.
d) We know if R is an integral domain, then $\operatorname{char}(R)=0$ or $\operatorname{char}(R)=p$ for some positive prime integer p. Give me an example of a ring R such that R is not an integral domain, but $\operatorname{char}(R)=p$ for some positive prime integer p.

Solution: Let $R=Z_{5} \times Z_{5}$. Since the order of $(1,1)$ under addition is $\mathbf{5}$, we conclude that $\operatorname{Char}(R)=5$. Since $(1,0)(0,1)=(0,0), R$ is not an integral domain.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

