Math 205, Differential Equations Second Exam

1. (12 points) Find the inverse Laplace transform of the given function.
a. $\frac{5 s-6}{s^{2}-3 s}$
b. $\frac{2 s-3}{s^{2}+2 s+10}$
2. (16 points) Solve the following Initial Value Problem using undetermined coefficients:

$$
y^{\prime \prime}-10 y^{\prime}+25 y=50 x+6 e^{5 x}, \quad y(0)=0, \quad y^{\prime}(0)=1
$$

3. (20 points) Determine a suitable form for y_{p} if the method of undetermined coefficients is used. Do not evaluate the constants.
a. $y^{\prime \prime \prime}-8 y=-2 e^{2 x}+x^{3}$.
b. $y^{(4)}+9 y^{\prime \prime}=5 \cos 3 x+6$.
c. $y^{\prime \prime \prime}-6 y^{\prime \prime}+12 y^{\prime}-8 y=2 x e^{2 x}$. 4. (15 points) Given that $y_{1}=x^{4}$ is a solution of the homogeneous equation

$$
x^{2} y^{\prime \prime}-7 x y^{\prime}+16 y=0
$$

Use reduction of order to find a second linearly independent solution.
5. (18 points) A mass weighing 256 lb stretches a spring $\frac{32}{9}$ ft. A downward force given by $f(t)=144 \sin 3 t$ is applied to the weight. Assume that initially the weight is released from equilibrium position and that damping is neglected. Find the position x at any time t. Determine when does the mass first return to its equilibrium position. 6. (20 points)
$6 A$. Without the aid of the Wronskian, determine whether the given set of function is linearly dependent or linearly independent. Explain.
a. $f_{1}(x)=\ln x, \quad f_{2}(x)=\ln x^{5}$ on the interval $(0, \infty)$.
b. $f_{1}(x)=e^{x+2}, \quad f_{2}(x)=e^{x-3}$ on the interval $(-\infty, \infty)$.
c. $f_{1}(x)=x, \quad f_{2}(x)=3 x-5 x^{2}, \quad f_{3}(x)=x^{2}$ on the interval $(-\infty, \infty)$.

6B. Assume that y_{1} and y_{2} are solutions for

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0
$$

and $W\left(y_{1}, y_{2}\right)=5$, what does this imply about $P(x)$ and $Q(x)$?

6C. Fill in the blank with the letter corresponding to the best description. Use

SHM $=$ simple harmonic motion
$O D=$ overdamped
$C D=$ critically damped
$U D=$ underdamped
TSS $=$ transient plus steady-state
a. \qquad

$$
x^{\prime \prime}+x=0
$$

b. \qquad $x^{\prime \prime}+2 x^{\prime}+x=0$
c. \qquad $x^{\prime \prime}+2 x^{\prime}+x=\cos 2 t$
d. $x^{\prime \prime}-6 x^{\prime}+9 x=0$
e. $2 x^{\prime \prime}+3 x^{\prime}+5 x=0$
f. \qquad

