1. (15 Points) Find a particular solution using the method of undetermined coefficients.

$$
y^{\prime \prime}+4 y=6 \sin 2 x+3 x
$$

2. (15 Points) Set up the appropriate form of the particular solution y_{p}, but do not determine the values of the coefficients.
a. $y^{\prime \prime \prime}-2 y^{\prime \prime}+2 y^{\prime}=5 x^{2}+e^{x}+\cos 3 x$
b. $y^{(4)}-y^{\prime \prime}=4 x+2 x e^{-x}$
3. (15 Points) Show that $y_{1}=x$ is a solution of the differential equation

$$
\left(x^{2}+1\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0
$$

Use reduction of order to find a second linearly independent solution of the differential equation.
4. (15 Points) Find the general solution of the given differential equation.

$$
x^{2} y^{\prime \prime}+9 x y^{\prime}-20 y=\frac{5}{x^{3}}
$$

5. (15 Points) A mass weighing 4 lb stretches a spring 2 ft . The mass is attached to a viscous damper with a damping force numerically equals to the instantaneous velocity. If the mass is set in motion 1 ft above the equilibrium position with a downward velocity of $8 \mathrm{ft} / \mathrm{sec}$.
a. Find the equation of motion.
b. Is the system critically damped, under-damped or over-damped?
c. Determine when the mass first returns to its equilibrium position.
6. (15 Points) Use the power series method to solve the given initial-value problem. Determine the recurrence relation and the first six terms.

$$
\left(1+x^{2}\right) y^{\prime \prime}+y=0, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

7. (10 points)

A. For what parameters a and b will the differential equation

$$
y^{\prime \prime}+a y^{\prime}+b y=0
$$

have the function $y=3 e^{-7 x} \cos (10 x)$ as a solution?
B. Assume that y_{1} and y_{2} are solutions of the differential equation

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

where $p(x) \neq 0$ and $q(x) \neq 0$. Prove that if y_{1} and y_{2} have a common point of inflection a in some interval I, then the two solutions are linearly dependent.

