MATH 221, FIRST EXAM, SPRING 006

AYMAN BADAWI

TIME-Name - Id. Num. \quad Score $\overline{100}$
QUESTION 1. (16 points) Let $A=\left[\begin{array}{cccc}2 & 4 & 2 & 0 \\ 2 & 5 & -2 & 0 \\ -1 & -2 & 0 & -1 \\ -4 & -8 & -4 & 1\end{array}\right]$
a) Find A^{-1}
b) Find $\left(A^{T}\right)^{-1}$

QUESTION 2. (14 points) a) Let $A=\left[\begin{array}{ccc}2 & 4 & -2 \\ 1 & 3 & -2 \\ -1 & 0 & 6\end{array}\right]$ Find the (3, 2)-entry of
A^{-1} without finding A^{-1}.
b) Consider the system $A X=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$ Use Cramer's rule to find the value of x_{3}.

QUESTION 3. (20 points) Consider the following system
$x_{1}-2 x_{2}+2 x_{3}+2 x_{4}=-4$
$-x_{1}+3 x_{2}+x_{3}+2 x_{4}=-2$
$x_{1}-2 x_{2}+2 x_{3}+3 x_{4}=2$
a) Write the above system in the form $A X=B$.
b) Find the solution for $A X=B$.
C) USE part (b) to Find the solution for $A X=0$

QUESTION 4. (9 points) Given A, B are 3×3 matrices such that $\operatorname{det}(A)=-3$ and $\operatorname{det}(B)=2$
a) Find $\operatorname{det}\left(-3 A^{-1} B\right)$
b) Find $\operatorname{det}\left(A^{T}\left(B^{-1}\right)^{T}\right)$
c) $\operatorname{Find} \operatorname{det}\left(A^{-1}+2 a d j(A)\right)$.

QUESTION 5. (9 points) Given that $\left(5 A^{-1}+3 I_{2}\right)^{T}=\left[\begin{array}{cc}-2 & 3 \\ 0 & -4\end{array}\right]$. Find the matrix A.

QUESTION 6. (20 points) a) Given $A \quad \widetilde{3 R_{2}} \quad A_{1} \widetilde{-2 R_{2}} \quad C \quad \widetilde{\leftrightarrow} \quad B=$ $\left[\begin{array}{ccc}2 & 1 & 1 \\ -2 & -2 & 0 \\ -6 & -3 & 1\end{array}\right]$
a) Find $\operatorname{det}(A)$.
b)Find Elementary matrices E_{1}, E_{2}, E_{3} such that $A=E_{1} E_{2} E_{3} B$.
c) FIND the matrix A

QUESTION 7. (12 points) Let $A=\left[\begin{array}{ccccc}2 & 2 & 2 & a & -6 \\ -2 & -1 & 5 & b & 8 \\ -4 & -4 & -4 & 10 & c\end{array}\right]$ be an augmented matrix of a system of linear equations:
a) For what values of a, b, c will the system have UNIQUE SOLUTION?
b) For what values of a, b, c will the system have have INFINITELY many solutions?
c) For what values of a, b, c will the system have NO SOLUTION?

