MATH 221, FIRST EXAM, SPRING 006

AYMAN BADAWI

TIME Name, Id. Num. Score
$$\frac{100}{100}$$

QUESTION 1. (16 points) Let $A = \begin{bmatrix} 2 & 4 & 2 & 0 \\ 2 & 5 & -2 & 0 \\ -1 & -2 & 0 & -1 \\ -4 & -8 & -4 & 1 \end{bmatrix}$
a) Find A^{-1}
b) Find $(A^T)^{-1}$

QUESTION 2. (14 points) a) Let $A = \begin{bmatrix} 2 & 4 & -2 \\ 1 & 3 & -2 \\ -1 & 0 & 6 \end{bmatrix}$ Find the (3, 2)-entry of A^{-1} without finding A^{-1} . b) Consider the system $AX = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$ Use Cramer's rule to find the value of x_3 . QUESTION 3. (20 points) Consider the following system $x_1 - 2x_2 + 2x_3 + 2x_4 = -4$ $-x_1 + 3x_2 + x_3 + 2x_4 = -2$ $x_1 - 2x_2 + 2x_3 + 3x_4 = 2$ a) Write the above system in the form AX = B.

- b) Find the solution for AX = B.
- C) USE part (b) to Find the solution for AX = 0

QUESTION 4. (9 points) Given A, B are 3×3 matrices such that det(A) = -3and det(B) = 2

a) Find $det(-3A^{-1}B)$

b) Find $det(A^T(B^{-1})^T)$

c) Find $det(A^{-1} + 2adj(A))$.

QUESTION 5. (9 points) Given that $(5A^{-1} + 3I_2)^T = \begin{bmatrix} -2 & 3 \\ 0 & -4 \end{bmatrix}$. Find the matrix A.

QUESTION 6. (20 points) a) Given $A \quad \widetilde{3R_2} \quad A_1 \quad \widetilde{-2R_2} \quad C \quad \widetilde{\leftrightarrow} \quad B = \begin{bmatrix} 2 & 1 & 1 \\ -2 & -2 & 0 \\ -6 & -3 & 1 \end{bmatrix}$. a)Find det(A). b)Find Elementary matrices E_1, E_2, E_3 such that $A = E_1 E_2 E_3 B$. c) FIND the matrix A QUESTION 7. (12 points) Let $A = \begin{bmatrix} 2 & 2 & 2 & a & -6 \\ -2 & -1 & 5 & b & 8 \\ -4 & -4 & -4 & 10 & c \end{bmatrix}$ be an aug-

mented matrix of a system of linear equations:

a) For what values of a, b, c will the system have UNIQUE SOLUTION?

b) For what values of a, b, c will the system have have INFINITELY many solutions?

c) For what values of a, b, c will the system have NO SOLUTION?

DEPARTMENT OF MATHEMATICS & STATISTICS, AMERICAN UNIVERSITY OF SHARJAH, P.O. BOX 26666, SHARJAH, UNITED ARAB EMIRATES *E-mail address:* abadawi@aus.edu, www.ayman-badawi.com