FIRST EXAM FOR MTH 221

Name—____, Id. Num.—____, Score $\frac{1}{100}$ QUESTION 1. Let $D = \begin{bmatrix} 1 & -2 & 0 & 1 \\ -3 & 6 & 1 & 6 \\ 4 & -8 & -2 & 4 \end{bmatrix}$ $a)(7 \text{ points}) Solve <math>DX = \begin{bmatrix} -3 \\ 2 \\ -16 \end{bmatrix}$.

b) (5 points) Use part (a) to solve $DX = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

QUESTION 2. Let $A = \begin{bmatrix} 3 & 6 & -6 \\ 2 & 5 & 1 \\ 1 & 2 & -1 \end{bmatrix}$ a)(8 points) Find the LU-factorization of A.

b)(8 points) Find A^{-1} .

c) (Continue Question 2) (6 points) Solve
$$A^T X = \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}$$

d) (6 points) Write A as a product of elementary Matrices.

 $e)(6 \text{ points}) Find (A^2)^{-1}.$

QUESTION 3. (9 points) Let N be a 2×2 matrix such that $\begin{pmatrix} 4 & -7 \\ -3 & 5 \end{pmatrix} N^T + 3I_2)^T = 2N$. Find N.

QUESTION 4. Let
$$A = \begin{bmatrix} 3 & a & 6 \\ -3 & -4 & -2 \\ -3 & -a & b \end{bmatrix}$$

1) (6 points) For what values of a, b, A is nonsingular.

2) (6 points) Consider the system
$$AX = \begin{bmatrix} 6\\4\\c \end{bmatrix}$$
 For what values of a, b, c will the system have infinitely many solutions?

QUESTION 5. (4 points) Given A is a 2×2 matrix such that $\begin{bmatrix} 1 & 0 \\ -5 & 1 \end{bmatrix} A = \begin{bmatrix} 6 & 2 \\ -1 & 4 \end{bmatrix}$. Find A $\begin{bmatrix} 1 & 0 \\ -5 & 1 \end{bmatrix}$

QUESTION 6. (9 points) Given A, B are 3×3 matrices such that det(A) = -2, det(B) = 4. Find 1) $det(2A^{-1}B^{T})$

2) $det(A^{-1} + adj(A))$

3) $det(adj(B^{-1})A)$

QUESTION 7. Let
$$A = \begin{bmatrix} 1 & 1 & -4 & 2 \\ -1 & 0 & 3 & 4 \\ 4 & 4 & 14 & -2 \\ -1 & -1 & 4 & -4 \end{bmatrix}$$

1) (6 points) Use Cramer rule to solve for x_3 in the system $AX = \begin{bmatrix} 2 \\ -4 \\ 1 \\ -1 \end{bmatrix}$

2) (4 points) Without finding A^{-1} find the (2, 4)-entry of A^{-1} .

QUESTION 8. a) (5 points) Explain in few words why an $n \times n$ matrix with two identical rows is singular.

b) (5 points) Let A, B be NONZERO $n \times n$ matrices such that AB is a zero matrix. Show that A AND B are both singular matrices.

Department of Mathematics & Statistics, American University Of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates