FIRST EXAM FOR MTH 221

Name \quad, Id. Num. \longrightarrow, Score $\overline{100}$
QUESTION 1. Let $D=\left[\begin{array}{cccc}1 & -2 & 0 & 1 \\ -3 & 6 & 1 & 6 \\ 4 & -8 & -2 & 4\end{array}\right]$
a) $(7$ points $)$ Solve $D X=\left[\begin{array}{c}-3 \\ 2 \\ -16\end{array}\right]$.
b) (5 points) Use part (a) to solve $D X=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$

QUESTION 2. Let $A=\left[\begin{array}{ccc}3 & 6 & -6 \\ 2 & 5 & 1 \\ 1 & 2 & -1\end{array}\right]$
a)(8 points) Find the $L U$-factorization of A.
b) (8 points) Find A^{-1}.
c) (Continue Question 2) (6 points) Solve $A^{T} X=\left[\begin{array}{c}2 \\ 0 \\ -1\end{array}\right]$
d) (6 points) Write A as a product of elementary Matrices.
e) (6 points) Find $\left(A^{2}\right)^{-1}$.

QUESTION 3. (9 points) Let N be a 2×2 matrix such that ($\left[\begin{array}{cc}4 & -7 \\ -3 & 5\end{array}\right] N^{T}+$ $\left.3 I_{2}\right)^{T}=2 N$. Find N.

QUESTION 4. Let $A=\left[\begin{array}{ccc}3 & a & 6 \\ -3 & -4 & -2 \\ -3 & -a & b\end{array}\right]$

1) (6 points) For what values of a, b, A is nonsingular.
2) (6 points) Consider the system $A X=\left[\begin{array}{l}6 \\ 4 \\ c\end{array}\right]$ For what values of a, b, c will the system have infinitely many solutions?

QUESTION 5. (4 points) Given A is a 2×2 matrix such that $\left[\begin{array}{cc}1 & 0 \\ -5 & 1\end{array}\right] A=$ $\left[\begin{array}{cc}6 & 2 \\ -1 & 4\end{array}\right]$. Find $A\left[\begin{array}{cc}1 & 0 \\ -5 & 1\end{array}\right]$

QUESTION 6. (9 points) Given A, B are 3×3 matrices such that $\operatorname{det}(A)=-2$, $\operatorname{det}(B)=4$. Find

1) $\operatorname{det}\left(2 A^{-1} B^{T}\right)$
2) $\operatorname{det}\left(A^{-1}+\operatorname{adj}(A)\right)$
3) $\operatorname{det}\left(\operatorname{adj}\left(B^{-1}\right) A\right)$

QUESTION 7. Let $A=\left[\begin{array}{cccc}1 & 1 & -4 & 2 \\ -1 & 0 & 3 & 4 \\ 4 & 4 & 14 & -2 \\ -1 & -1 & 4 & -4\end{array}\right]$

1) (6 points) Use Cramer rule to solve for x_{3} in the system $A X=\left[\begin{array}{c}2 \\ -4 \\ 1 \\ -1\end{array}\right]$
2) (4 points) Without finding A^{-1} find the (2, 4)-entry of A^{-1}.

QUESTION 8. a) (5 points) Explain in few words why an $n \times n$ matrix with two identical rows is singular.
b) (5 points) Let A, B be NONZERO $n \times n$ matrices such that $A B$ is a zero matrix. Show that A AND B are both singular matrices .

Department of Mathematics \& Statistics, American University Of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates

