MATH 221, SECOND EXAM, SPRING 004

AYMAN BADAWI AND ISMAIL KUCUCK

QUESTION 1. (8 points) Write Down True Or False
(1) If A is 4×4 matrix and invertible, then the image of A equals to R^{4}. ()
(2) If 0 is an eigenvalue of an $n \times$ matrix A, then it is possible that the system $A X=0$ has only the trivial solution. (
(3) If A, B are $n \times n$ matrices and A is row-equivalent to B, then $\operatorname{Char}(A)=$ Char(B).
(4) $S=\{(x, 3 x) \mid x \in R\} \quad$ is a subspace of R^{2}.

QUESTION 2. (a), (10 points) Given $S=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in R^{4} \mid x_{1}+x_{3}=0\right\}$ is a subspace of R^{4}. Find a basis for S. What is the dimension of S.
(b), (10 points). Find a basis for R^{4} that contains the two elements : (1, -1, 0, 8) and (0, -2, 1, 1). Explain your work

QUESTION 3. Let $A=\left[\begin{array}{cccc}1 & -1 & 0 & 1 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2\end{array}\right]$
(a), (20 points) It is easy to see that Char $(A)=(x-1)(x-2)^{3}$ (do not show that). Find E_{2} (the eigenspace of A that corresponds to the eigenvalue 2). Find a basis for E_{2}, what is the dimension of E_{2}.
(b), (6 points) Is A diagnolizable? Explain.
$\mathbf{c},(10$ points). Find a basis for the image of A. What is the dimension of the image of A.

QUESTION 4. (a), (20 points) Let $A=\left[\begin{array}{ll}0 & 4 \\ 1 & 3\end{array}\right]$. Show that A is diagnolizable by finding an invertible matrix P and a diagonal matrix D such that $P^{-1} A P=$ D.

QUESTION 5. (10 points) a) Let A be an $n \times n$ matrix. Prove that A and
A^{T} must have the same eigenvalues.
b) (6 points) Let V be an eigenvector of an invertible $n \times n$ matrix A. Show that V is an eigenvector of A^{-1}.

