MATH 221, SECOND EXAM, SPRING 004

AYMAN BADAWI AND ISMAIL KUCUCK

QUESTION 1. (8 points) Write Down True Or False

- (1) If A is 4×4 matrix and invertible, then the image of A equals to \mathbb{R}^4 . ()
- (2) If 0 is an eigenvalue of an $n \times matrix A$, then it is possible that the system AX = 0 has only the trivial solution. (
- (3) If A, B are $n \times n$ matrices and A is row-equivalent to B, then Char(A) = Char(B).
- (4) $S = \{(x, 3x) \mid x \in R\}$ is a subspace of R^2 .

QUESTION 2. (a), (10 points) Given $S = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 + x_3 = 0\}$ is a subspace of \mathbb{R}^4 . Find a basis for S. What is the dimension of S.

(b), (10 points). Find a basis for R^4 that contains the two elements : (1, -1, 0, 8) and (0, -2, 1, 1). Explain your work

QUESTION 3. Let $A =$	1	-1	0	1]
	0	2	0	0
	0	0	2	1
	0	0	0	2

(a), (20 points) It is easy to see that $Char(A) = (x-1)(x-2)^3$ (do not show that). Find E_2 (the eigenspace of A that corresponds to the eigenvalue 2). Find a basis for E_2 , what is the dimension of E_2 .

(b), (6 points) Is A diagnolizable? Explain.

c, (10 points). Find a basis for the image of A. What is the dimension of the image of A.

QUESTION 4. (a), (20 points) Let $A = \begin{bmatrix} 0 & 4 \\ 1 & 3 \end{bmatrix}$. Show that A is diagnolizable by finding an invertible matrix P and a diagonal matrix D such that $P^{-1}AP = D$.

QUESTION 5. (10 points) a) Let A be an $n \times n$ matrix. Prove that A and A^T must have the same eigenvalues.

b) (6 points) Let V be an eigenvector of an invertible $n \times n$ matrix A. Show that V is an eigenvector of A^{-1} .