TEST NUMBER TWO FOR MATH 221, FALL 2004

AYMAN BADAWI

Name
Id. Num.
Score
$\overline{100}$
QUESTION 1. (20 POINTS) (True or False)
(1) Let A be a 4×5 such that $\operatorname{Rank}(A)=3$. Then any three columns of A are independent.
(2) Let A be a 3×6 such that $\operatorname{Rank}(A)=3$. Then $A X=b$ has a solution for every $b, 3 \times 1$.
(3) $\operatorname{Span}\left\{1+x, 2 x+x^{2},-3 x^{2}\right\}=P_{3}$.
(4) $S=\left\{(x, y) \in R^{2} \mid y=3 x+1\right\}$ is a subspace of R^{2}.
(5) The span of any 5 elements in R^{5} is equal to R^{5}.
(6) It is possible that the span of 6 elements in $R^{2 \times 2}$ is equal to $R^{2 \times 2}$.
(7) If A is 6×8 and $A X=b$ has no solution for some $b, 6 \times 1$, then the column space of A is NOT equal to R^{6}.
(8) The interval $(-\infty, 300)$ is a subspace of R.
(9) It is possible to construct a 6×5 matrix with rank equals to 6 .
(10) $\operatorname{span}\{(1,0,2),(0,4,10)\}=R^{3}$.

QUESTION 2. (9 POINTS) Let $S\left\{f(x) \in P_{4} \mid f(x)=a+(a+b) x+b x^{2}+\right.$ $\left.(2 a-3 b) x^{3}\right\}$ be a subspace of P_{4}. What is the dimension of S ? Find a basis for S.

QUESTION 3. (8 POINTS) Let $S=\{f(x) \in C[-2,2] \mid f(1)=0$ OR $f(-1)=$ $0\}$. Is S a subspace of C[-2, 2]? EXPLAIN

QUESTION 4. (13 POINTS) Let $S=\left\{A \in R^{2 \times} \mid a_{11}+a_{22}=0\right.$ and $\left.a_{12}+a_{21}=0\right\}$. Show that S is a subspace of $R^{2 \times 2}$, and then find a basis for S.

QUESTION 5. (8 POINTS) Find a basis for P_{4} that contains the two independent elements: $1+x+x^{2}$ and $-1-x+x^{3}$. Show the steps.

QUESTION 6. (9 POINTS) Given that $(-2,0,2) \in \operatorname{Span}\{(-1,1,1),(3,1,-3)\}$.
Find α_{1} and α_{2} such that $(-2,0,2)=\alpha_{1}(-1,1,1)+\alpha_{2}(3,1,-1)$.

QUESTION 7. (8 POINTS) Is Span $\{(1,-1,2),(-1,1,0),(-1,-1,-2),(-1,1,2)\}=$ R^{3} ? EXPLAIN

QUESTION 8. Let $A=\left[\begin{array}{ccccc}-1 & 0 & 1 & -1 & -1 \\ 1 & 0 & -1 & 1 & -1 \\ 0 & 0 & 1 & 1 & 1\end{array}\right]$
(1) (15 POINTS)Find the $N(A)$, Nullity of (A), and a basis for $N(A)$.
(2) (5 POINTS)Find a basis for the column space of (A)
(3) (5 POINTS)Find a basis for the row space of A.

Department of Mathematics \& Statistics, American University Of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates

