TEST NUMBER TWO FOR MATH 221, FALL 2004

AYMAN BADAWI

Name-—, Id. Num.– -, Score $\frac{100}{100}$

QUESTION 1. (20 POINTS) (True or False)

- (1) Let A be a 4×5 such that Rank(A) = 3. Then any three columns of A are independent.
- (2) Let A be a 3×6 such that Rank(A) = 3. Then AX = b has a solution for every b, 3×1 .
- (3) $Span\{1+x, 2x+x^2, -3x^2\} = P_3.$ (4) $S = \{(x, y) \in R^2 \mid y = 3x + 1\}$ is a subspace of R^2 .
- (5) The span of any 5 elements in \mathbb{R}^5 is equal to \mathbb{R}^5 .
- (6) It is possible that the span of 6 elements in $\mathbb{R}^{2\times 2}$ is equal to $\mathbb{R}^{2\times 2}$.
- (7) If A is 6×8 and AX = b has no solution for some b, 6×1 , then the column space of A is NOT equal to R^6 .
- (8) The interval $(-\infty, 300)$ is a subspace of R.
- (9) It is possible to construct a 6×5 matrix with rank equals to 6.
- (10) $span\{(1,0,2), (0,4,10)\} = R^3$.

QUESTION 2. (9 **POINTS**) Let $S\{f(x) \in P_4 \mid f(x) = a + (a+b)x + bx^2 + bx^2$ $(2a-3b)x^3$ be a subspace of P_4 . What is the dimension of S? Find a basis for S.

QUESTION 3. (8 POINTS) Let $S = \{f(x) \in C[-2,2] \mid f(1) = 0 \text{ } OR \ f(-1) = 0\}$. Is S a subspace of C[-2, 2]? EXPLAIN

QUESTION 4. (13 **POINTS**) Let $S = \{A \in R^{2\times} | a_{11} + a_{22} = 0 \text{ and } a_{12} + a_{21} = 0\}$. Show that S is a subspace of $R^{2\times 2}$, and then find a basis for S.

QUESTION 5. (8 **POINTS**) Find a basis for P_4 that contains the two independent elements: $1 + x + x^2$ and $-1 - x + x^3$. Show the steps.

QUESTION 6. (9 **POINTS**) Given that $(-2, 0, 2) \in Span\{(-1, 1, 1), (3, 1, -3)\}$. Find α_1 and α_2 such that $(-2, 0, 2) = \alpha_1(-1, 1, 1) + \alpha_2(3, 1, -1)$.

QUESTION 7. (8 **POINTS**) Is $Span\{(1, -1, 2), (-1, 1, 0), (-1, -1, -2), (-1, 1, 2)\} = R^3$? EXPLAIN

AYMAN BADAWI

QUESTION 8. Let $A = \begin{bmatrix} -1 & 0 & 1 & -1 & -1 \\ 1 & 0 & -1 & 1 & -1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$ (1) (15 POINTS)Find the N(A), Nullity of (A), and a basis for N(A).

(2) (5 **POINTS**)Find a basis for the column space of (A)

(3) (5 **POINTS**)Find a basis for the row space of A.

Department of Mathematics & Statistics, American University Of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates