MATH 221, FIRST EXAM, SPRING 2004

QUESTION 1. Write down true or false. If false, then give a counter example: (10 points)
(1) If A is an $n \times n$ matrix and not invertible, then the reduced echelon form of A has at least one row consists of zeros (
(2) If A is a 3×3 matrix and $\operatorname{det}\left(A^{-1}\right)=2$, then $\operatorname{det}\left(A^{T}\right)=1 / 2(\quad)$
(3) If A, B are a 4×4 matrices and A is row-equivalent to B, then $\operatorname{det}(A)=$ $\operatorname{det}(B)$.
(4) If a homogeneous system has infinitely many solutions, then the system has more variables than equations.
(5) If A is 3×3 and $A X=\left[\begin{array}{c}2 \\ 3 \\ -2\end{array}\right]$ has no solution, then $\operatorname{det}(A)=0$ ()

QUESTION 2. (15 points)
Given A is a 5×5 matrix and $\operatorname{det}(\operatorname{adj}(A))=16$
a) Find $\operatorname{det}\left(3 A^{-1}\right)$
b) Find $\operatorname{det}\left(2 A^{T}\right)$
c) Find $\operatorname{det}\left(I_{3}+\operatorname{Aadj}(A)\right)$.

QUESTION 3. Consider the following system
$2 x_{1}-2 x_{2}+4 x_{3}-2 x_{4}=-2$
$-x_{1}+2 x_{2}+x_{3}+2 x_{4}=2$
$x_{1}+x_{2}+4 x_{3}+3 x_{4}=3$
a) Write the above system in the form $A X=B$.(5 points)
b) Find the general solution for $A X=B$. (10 points)
C) Find the general solution for $A X=0$ (5 points)

QUESTION 4. (24 points)
a) Given A
$A_{1} \quad A_{2}$

$$
\left[\begin{array}{ccc}
2 & 1 & 1 \\
-2 & -2 & 0 \\
-3 & 5 & 6
\end{array}\right] . \quad \text { Find }
$$

$\operatorname{det}(A)$.
b) Let $A=\left[\begin{array}{cccc}2 & 3 & -1 & 0 \\ 1 & -3 & -2 & 3 \\ -1 & 0 & -1 & -1 \\ -1 & 0 & 0 & 4\end{array}\right]$ Find the (3,2)-entry of A^{-1}.
c) Let A, B be 3×3 matrices such that

A $\quad A_{1} \quad B$. Find two elementary matrices E_{1}, E_{2} such
that $A=E_{1} E_{2} B$.
d) Let $A=\left[\begin{array}{ccc}2 & -3 & 5 \\ 0 & 0 & 3 \\ 0 & x & -2\end{array}\right]$. Find the value of x that will make A invertible.

QUESTION 5. Let A, B be nonzero $n \times n$ matrices such $A B=0$. Prove that neither A nor B is invertible.

