MATH 221, THIRD EXAM, SUMMER 008

AYMAN BADAWI

QUESTION 1. (20 points) Let A be a 3×3 matrix such that
$A\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{c}-1 \\ 0 \\ 0\end{array}\right]$
$A\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]=2\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]$
$A\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]=-2\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$
a) Explain why A is nonsingular.
b) Find A^{-1}.

QUESTION 2. 20 points Let $A=\left[\begin{array}{ccc}1 & 2 & 4 \\ 1 & 0 & 2 \\ 0 & 0 & -1\end{array}\right]$
a) Find all eigenvalues of A.
b) If A is diagnolizable, then find a diagonal matrix D and a nonsingular matrix Q such that $Q^{-1} A Q=D$.

QUESTION 3. 20 points a) Show that $D=\left\{f(x) \in P_{3} \mid \int_{0}^{1} f(x) d x=0\right\}$ is a subspace of P_{3}.
b)Find a basis for D then Rewrite D as span.
c) Is $L=\left\{f(x) \in P_{2} \mid f(1)=0\right.$ OR $\left.f(-1)=0\right\}$ a subspace of P_{2} ? Explain. If Yes, then find a basis.

QUESTION 4. 20 points 1)Find the $L U$-factorization of $A=\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ -1 & 0 & 2 & 1 \\ -2 & -2 & 3 & 4 \\ -1 & -1 & -1 & 6\end{array}\right]$
2) Given A is 3×3 matrix and $A \quad \overrightarrow{2 R_{1}} \quad A_{1} \overrightarrow{-3 R_{1}+R_{2} \rightarrow R_{2}} A_{2} \overrightarrow{R_{2} \leftrightarrow R_{3}} I_{3}$.
a) Find A.
b) Explain WHY A is nonsingular.
c) Write A^{-1} as product of elementary matrices.

QUESTION 5. 20 points Let A be a 3×3 a nonsingular matrix with -2 , -1 , 2 as eigenvalues.
a) Is $A+4 I_{3}$ nonsingular? EXPLAIN
b) Find the eigenvalues of $\operatorname{adj}(A)$
(c) Find $\operatorname{det}\left(A^{-1}+2 I_{3}\right)$

QUESTION 6. a) If $2,9,28$ are the eigenvalues of the matrix $\left(A^{3}+I_{3}\right)$. Find $\operatorname{det}(A)$ (observe that A is 3×3)

Department of Mathematics \& Statistics, American University Of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates, www.ayman-badawi.com

E-mail address: abadawi@aus.edu

