MATH 221, THIRD EXAM, SUMMER 008

AYMAN BADAWI

QUESTION 1. (20 points) Let A be a
$$3 \times 3$$
 matrix such that

$$A \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$$

$$A \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} = 2 \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$$

$$A \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = -2 \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

a) Explain why A is nonsingular.

b) Find A^{-1} .

Date: July 16, 008.

QUESTION 2. 20 points Let $A = \begin{bmatrix} 1 & 2 & 4 \\ 1 & 0 & 2 \\ 0 & 0 & -1 \end{bmatrix}$ a) Find all eigenvalues of A.

b) If A is diagnolizable, then find a diagonal matrix D and a nonsingular matrix Q such that $Q^{-1}AQ = D$.

QUESTION 3. 20 points a) Show that $D = \{f(x) \in P_3 \mid \int_0^1 f(x) \, dx = 0\}$ is a subspace of P_3 .

b)Find a basis for D then Rewrite D as span.

c) Is $L = \{f(x) \in P_2 \mid f(1) = 0 \text{ OR } f(-1) = 0\}$ a subspace of P_2 ? Explain. If Yes, then find a basis.

QUESTION 4. 20 points 1)Find the LU-factorization of
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & 0 & 2 & 1 \\ -2 & -2 & 3 & 4 \\ -1 & -1 & -1 & 6 \end{bmatrix}$$

2) Given A is 3×3 matrix and A $\overrightarrow{2R_1}$ A₁ $\overrightarrow{-3R_1 + R_2 \rightarrow R_2}$ A₂ $\overrightarrow{R_2 \leftrightarrow R_3}$ I₃. a) Find A.

b) Explain WHY A is nonsingular.

c) Write A^{-1} as product of elementary matrices.

QUESTION 5. 20 points Let A be a 3 × 3 a nonsingular matrix with -2, -1, 2 as eigenvalues. a) Is A + 4I₃ nonsingular? EXPLAIN

b) Find the eigenvalues of adj(A)

(c) Find $det(A^{-1} + 2I_3)$

QUESTION 6. a) If 2,9,28 are the eigenvalues of the matrix $(A^3 + I_3)$. Find det(A) (observe that A is 3×3)

DEPARTMENT OF MATHEMATICS & STATISTICS, AMERICAN UNIVERSITY OF SHARJAH, P.O. BOX 26666, SHARJAH, UNITED ARAB EMIRATES, WWW.AYMAN-BADAWI.COM *E-mail address:* abadawi@aus.edu