MATH 221, SECOND EXAM, SUMMER 008

AYMAN BADAWI

QUESTION 1. (20 points) Write DOWN T OR F

- (1) If A is a 2×2 matrix and $Char(A) = x^2 + 8x + 6$, then V = 0 (the zero-vector in R^2) is the only solution for AV = 4V.
- (2) If A is 5×5 and singular, then the system AX = 0 has infinitely many solution.
- (3) If $A (n \times n)$ is singular, then it is possible that A^T is nonsingular.
- (4) The span of every 3 vectors in \mathbb{R}^3 is equal to \mathbb{R}^3 .
- (5) dim(Span{(2,2,5), (-2,-2,6), (2,2,16)}) = 2
- (6) If A is 23×23 matrix and $A \times adj(A)$ is the zero-matrix, then det(A) = 0 = det(adj(A)) = 0.
- (7) Suppose A is 5×3 and the system AX = 0 has a unique solution. Then if b in R^5 (b written as a column) and AX = b is consistent, then AX = b has a unique solution.
- (8) If A is singular and B is nonsingular, then AB is singular.
- (9) If A, B are nonsingular $n \times n$ matrices, then AB is nonsingular and $(AB)^{-1} = A^{-1}B^{-1}$.
- (10) If A is a 3×6 matrix and $A \begin{bmatrix} 2 \\ -5 \\ 7 \end{bmatrix} = \begin{bmatrix} 0 \\ 6 \\ 7 \end{bmatrix}$, then the system $AX = \begin{bmatrix} 0 \\ 6 \\ 7 \end{bmatrix}$ has infinitely many solutions.

Date: July 8, 008.

QUESTION 2. (6points) Let A be a 2×2 matrix such $adj(A) = \begin{bmatrix} 4 & 7 \\ 2 & 6 \end{bmatrix}$. Find A, then find det(A).

QUESTION 3. (8 points) Let A be a 6×8 matrix and b be the fourth column of A. Show that the system AX = b has infinitely many solutions. Give me one particular solutions.

QUESTION 4. (6 points) Let $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$. Assume A is nonsingular. Show that the (2, 3)-entry of A^{-1} is equal to det(B)/det(A) where $B = \begin{bmatrix} a_{11} & 0 & a_{13} \\ a_{21} & 0 & a_{23} \\ a_{31} & 1 & a_{33} \end{bmatrix}$.

 $\mathbf{2}$

		[1	1	1	1	2]	
QUESTION 5. (20 points) Let	A =	-1	-1	2	-1	4	.
		2	2	2	2	5	
		1	1	1	1	2	
		-1	-1	-1	-1	-2	

a) Find Rank (A), find basis for Row(A), then write ROW(A) as a span.

b)Find a basis for Col(A).

c) Find N(A), basis for N(A), then write N(A) as a span.

AYMAN BADAWI

QUESTION 6. (6 points) Find a basis for R^4 containing the two independent vectors, $v_1 = (6, -4, 6, 6)$, and $v_2 = (-12, 8, -12, -11)$

QUESTION 7. (6 points) For what values of x will the following matrix be nonsingular:

be nonsingular: $A = \begin{bmatrix} x+5 & 0 & 3\\ 2 & 0 & x\\ 12 & x-2 & 300 \end{bmatrix}$

QUESTION 8. (8 points) Find
$$A^{-1}$$
 if $A = \begin{bmatrix} 1 & -2 & 4 \\ -1 & 2 & -3 \\ -2 & 5 & -8 \end{bmatrix}$

QUESTION 9. (20 points) Let
$$A = \begin{bmatrix} 2 & 2 & 2 & 2 \\ -2 & -2 & -2 & 6 \\ -1 & 2 & 7 & 9 \\ -4 & -4 & 4 & 4 \end{bmatrix}$$

a)Use row operations to find $det(A)$.

b) Find the (2,3)-entry of A^{-1} .

c) Let V be the third column of A^{-1} . Calculate AV.

DEPARTMENT OF MATHEMATICS & STATISTICS, AMERICAN UNIVERSITY OF SHARJAH, P.O. BOX 26666, SHARJAH, UNITED ARAB EMIRATES, WWW.AYMAN-BADAWI.COM *E-mail address:* abadawi@aus.edu