MATH 221, REVIEW SHEET FOR TEST \#2, SPRING 005

QUESTION 1. $T O R F$
(1) If T is a linear transformation from R^{4} into P_{3} such that $\operatorname{Ker}(T)=$ $\operatorname{Span}(1,-1,-1,1)$, then Range $(T)=P_{3}$
(2) It is possible to construct a nonzero linear transformation from R^{6} into R such that $\operatorname{dim}(\operatorname{Ker}(T))=4$
(3) It is possible to construct a linear transformation T from R^{6} into $R_{2 \times 3}$ such that $\operatorname{Ker}(T)=(0,0,0,0,0,0)$ and Range $(T)=R_{2 \times 3}$.
(4) $\operatorname{Span}\{3+x,-6+4 x\}=P_{2}$
(5) If A is a nonzero matrix 3×6, then $N u l l i t y ~(A) \leq 5$.
(6) $\operatorname{dim}\left(\operatorname{Span}\left\{1+x^{2},-2+x^{2},-5+4 x^{2}\right\}\right)=2$
(7) It is possible to have 4 independent elements in R^{3}.
(8) It is possible that the span of 6 element in R^{5} is equal to R^{5}.
(9) $(-2 \quad \infty)$ is a subspace of R
(10) $\operatorname{dim}(\operatorname{span}\{(2,0,1),(-2,0,1),(0,0,2)\})=2$.
(11) if A is 7×7 and $A X=0$ has a nontrivial solution, then the columns of A are dependent
(12) If A is 10×7 and $A X=0$ has only the trivial solution, then the $\operatorname{rank}(A)$ $=7$
(13) if A is a 3×5 matrix and $A X=\left[\begin{array}{c}2 \\ 3 \\ -4\end{array}\right]$ has no solution, then $\operatorname{dim}(\operatorname{row}(A)) \leq$ 2.
(14) If X, Y are independent, then $X, Y, X+Y$ are independent
(15) Every set of 4 elements of R^{4} form a basis for R^{4}.
(16) R^{3} has a basis of the form $\{X, X+Y, Y\}$ where X, Y are some elements in R^{3}.

QUESTION 2. (1) Let $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ -1 & -1 & -1\end{array}\right]$ and $T: R^{3} \longrightarrow P_{2}$ be a linear transformation such that $T(v)=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right] v^{T}+\left[\begin{array}{lll}-1 & -1 & -1\end{array}\right] v^{T} x$. Find the standard matrix representation of T. Find $\operatorname{Ker}(T)$. Find Range (T). Find $T(-1,2,-1)$.
(2) Let $A=\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ -1 & 1 & -1 & 1 \\ 1 & 3 & 1 & 3\end{array}\right]$, and let $T: R^{4} \longrightarrow R^{3}$ be a linear transformation such that $T(w)=A w^{T}$. Find $T(-1,-1,-1,-1)$. Find basis for $\operatorname{Ker}(T)$, find a basis for the Range (T).
(3) Let $T: R^{2} \longrightarrow R^{2}$ be a linear transformation such that $T(2,1)=(1,1)$ and $(-4,1) \in \operatorname{Ker}(T)$. Find $T(-8,5)$. Find the standard matrix representation of T.
(4) Let $T: P_{3} \longrightarrow R$ be a linear transformation such that $T(f(x))=\int_{0}^{1} f(x) d x$. Find the standard matrix representation of T, then find a basis for $\operatorname{Ker}(T)$.
(5) Let $T: P_{4} \longrightarrow P_{2}$ such that $T(f(x))=f^{\prime}(-1)+f(1) x$. Show that T is a linear transformation. Find the standard matrix representation of T. Find basis for $\operatorname{Ker}(T)$, and Range (T).
QUESTION 3. (1) Let $S=\left\{(x, y, z) \in R^{3} \mid 2 x-5 y+6 z=0\right\}$. Show that S is a subspace of R^{3}. Find a basis for S. What is the dimension of S.
(2) Let $U_{1}=\left\{A \in R_{3 \times 2} \mid a_{11}+a_{21}+a_{31}=0\right\} \quad$ and let $U_{2}=\left\{A \in R_{3 \times 2} \mid\right.$ $\left.a_{11}+a_{22}=0\right\}$. Given that U_{1} and U_{2} are subspaces of $R_{3 \times 2}$, and hence $U_{1} \cap U_{2}$ is a subspace of $R_{3 \times 2}$. Find a basis for U_{1}, a basis for U_{2}, and a basis for $U_{1} \cap U_{2}$.
(3) Let $S=\left\{f(x) \in P_{4} \mid f^{\prime}(-2)=0\right\}$. Show that S is a subspace of P_{4}, then find $\operatorname{dim}(S)$.
(4) let $S=\left\{f(x) \in P_{3} \mid f(-1)=0\right.$ and $\left.f \prime(-1)=0\right\}$. Show that S is a subspace of P_{3}, then find a basis for S.
(5) Let $A=\left[\begin{array}{ccccc}1 & -2 & 1 & 1 & 2 \\ -1 & 3 & 0 & 2 & -2 \\ 0 & 1 & 1 & 3 & 4 \\ 1 & 2 & 5 & 13 & 5\end{array}\right]$. Find a basis for the column space of A, Find a basis for the row space of A. Find a basis for NulL(A).
(6) Let $U=\operatorname{span}\{(-2,3,-4),(0,2,-3),(-4,8,-11)\}$. Find the dimension of U. Find a basis for U.
(7) let $S=\operatorname{Span}\left\{2, \cos 6 x, \sin ^{2}(3 x)\right\}$. Find a basis for S. What is the dimension of S.
(8) Let $f_{1}(x)=\left|2 x^{5}\right|$ and $f_{2}=3 x^{5}$. Are f_{1}, f_{2} independent in $C\left[\begin{array}{ll}-2 & 2\end{array}\right]$? are f_{1}, f_{2} independent in $C\left[\begin{array}{ll}0 & 3\end{array}\right]$?
(9) Is span $\left\{1+x, 3+x,-1+x^{2}, 2+x+x^{2}\right\}=P_{3}$? Explain
(10) Given A is 3×4 and $\operatorname{Null}(A)=\left\{\left.\left[\begin{array}{c}x_{3}+2 x_{2} \\ x_{2} \\ x_{3} \\ -5 x_{3}+6 x_{2}\end{array}\right] \right\rvert\, x_{3}, x_{2} \in R\right\}$. Let B be a matrix such that $A B=0$. Prove that the columns of B "live" in the $\operatorname{Null}(A)$. Find a matrix $B 4 \times 4$ such that $\operatorname{Rank}(B)=2$ and $A B=0$. Find a matrix $C 4 \times 6$ such that $\operatorname{Rank}(C)=1$ and $A C=0$. Is it possible to find a matrix D of rank 3 such that $A D=0$? Explain
(11) Find a basis, say B, for R^{4} such that B contains $v_{1}=(2,-3,1,0), v_{2}=$ $(0,3,6,6)$. Given than $v_{3}=(2,-6,-5,-6)$ "lives" in $\operatorname{span}\left\{v_{1}, v_{2}\right\}$. Find α_{1}, α_{2} such that $v_{3}=\alpha_{1} v_{1}+\alpha_{2} v_{2}$.

