MATH 221, REVIEW SHEET FOR TEST #2, SPRING 005

QUESTION 1. T OR F

- (1) If T is a linear transformation from R^4 into P_3 such that Ker(T) = Span(1, -1, -1, 1), then $Range(T) = P_3$
- (2) It is possible to construct a nonzero linear transformation from R^6 into R such that $\dim(Ker(T)) = 4$
- (3) It is possible to construct a linear transformation T from R^6 into $R_{2\times 3}$ such that Ker(T) = (0, 0, 0, 0, 0, 0) and $Range(T) = R_{2\times 3}$.
- (4) $Span\{3+x, -6+4x\} = P_2$
- (5) If A is a nonzero matrix 3×6 , then $Nullity(A) \leq 5$.
- (6) $dim(Span\{1+x^2, -2+x^2, -5+4x^2\}) = 2$
- (7) It is possible to have 4 independent elements in \mathbb{R}^3 .
- (8) It is possible that the span of 6 element in \mathbb{R}^5 is equal to \mathbb{R}^5 .
- (9) $(-2 \quad \infty)$ is a subspace of R
- (10) $dim(span\{(2,0,1), (-2,0,1), (0,0,2)\}) = 2.$
- (11) if A is 7×7 and AX = 0 has a nontrivial solution, then the columns of A are dependent
- (12) If A is 10×7 and AX = 0 has only the trivial solution, then the rank(A) = 7

(13) if A is a
$$3 \times 5$$
 matrix and $AX = \begin{bmatrix} 2\\ 3\\ -4 \end{bmatrix}$ has no solution, then $\dim(row(A)) \leq 2$

- (14) If X, Y are independent, then X, Y, X + Y are independent
- (15) Every set of 4 elements of R^4 form a basis for R^4 .
- (16) R^3 has a basis of the form $\{X, X + Y, Y\}$ where X, Y are some elements in R^3 .

QUESTION 2. (1) Let $A = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \end{bmatrix}$ and $T : R^3 \longrightarrow P_2$ be a linear transformation such that $T(v) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} v^T + \begin{bmatrix} -1 & -1 & -1 \end{bmatrix} v^T x$. Find the standard matrix representation of T. Find Ker(T). Find Range(T). Find T(-1, 2, -1).

(2) Let $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & 1 & -1 & 1 \\ 1 & 3 & 1 & 3 \end{bmatrix}$, and let $T : \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ be a linear transfor-

mation such that $T(w) = Aw^T$. Find T(-1, -1, -1, -1). Find basis for Ker(T), find a basis for the Range(T).

- (3) Let $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be a linear transformation such that T(2,1) = (1,1) and $(-4,1) \in Ker(T)$. Find T(-8,5). Find the standard matrix representation of T.
- (4) Let $T: P_3 \longrightarrow R$ be a linear transformation such that $T(f(x)) = \int_0^1 f(x) dx$. Find the standard matrix representation of T, then find a basis for Ker(T).

- (5) Let $T: P_4 \longrightarrow P_2$ such that T(f(x)) = f'(-1) + f(1)x. Show that T is a linear transformation. Find the standard matrix representation of T. Find basis for Ker(T), and Range(T).
- **QUESTION 3.** (1) Let $S = \{(x, y, z) \in \mathbb{R}^3 | 2x - 5y + 6z = 0\}$. Show that S is a subspace of \mathbb{R}^3 . Find a basis for S. What is the dimension of S.
 - (2) Let $U_1 = \{A \in R_{3 \times 2} \mid a_{11} + a_{21} + a_{31} = 0\}$ and let $U_2 = \{A \in R_{3 \times 2} \mid a_{11} + a_{21} + a_{31} = 0\}$ $a_{11} + a_{22} = 0$. Given that U_1 and U_2 are subspaces of $R_{3\times 2}$, and hence $U_1 \cap U_2$ is a subspace of $R_{3 \times 2}$. Find a basis for U_1 , a basis for U_2 , and a basis for $U_1 \cap U_2$.
 - (3) Let $S = \{f(x) \in P_4 \mid f'(-2) = 0\}$. Show that S is a subspace of P_4 , then find dim(S).
 - (4) let $S = \{f(x) \in P_3 \mid f(-1) = 0 \text{ and } f'(-1) = 0\}$. Show that S is a subspace of P_3 , then find a basis for S.
 - (5) Let $A = \begin{bmatrix} 1 & -2 & 1 & 1 & 2 \\ -1 & 3 & 0 & 2 & -2 \\ 0 & 1 & 1 & 3 & 4 \\ 1 & 2 & 5 & 13 & 5 \end{bmatrix}$. Find a basis for the column space of

A, Find a basis for the row space of A. Find a basis for NulL(A).

- (6) Let $U = span\{(-2, 3, -4), (0, 2, -3), (-4, 8, -11)\}$. Find the dimension of U. Find a basis for U.
- (7) let $S = Span\{2, cos6x, sin^2(3x)\}$. Find a basis for S. What is the dimension of S.
- (8) Let $f_1(x) = |2x^5|$ and $f_2 = 3x^5$. Are f_1, f_2 independent in $C[-2 \ 2]$? are f_1, f_2 independent in $C[0 \ 3]$?
- (9) Is $span\{1+x, 3+x, -1+x^2, 2+x+x^2\} = P_3$? Explain

be a matrix such that AB = 0. Prove that the columns of B "live" in the Null(A). Find a matrix $B = 4 \times 4$ such that Rank(B) = 2 and AB = 0. Find a matrix $C = 4 \times 6$ such that Rank(C) = 1 and AC = 0. Is it possible to find a matrix D of rank 3 such that AD = 0? Explain

(11) Find a basis, say B, for \mathbb{R}^4 such that B contains $v_1 = (2, -3, 1, 0), v_2 =$ (0,3,6,6). Given than $v_3 = (2,-6,-5,-6)$ "lives" in span $\{v_1,v_2\}$. Find α_1, α_2 such that $v_3 = \alpha_1 v_1 + \alpha_2 v_2$.

 $\mathbf{2}$