MATH 221, REVIEW FOR THE FIRST EXAM, FALL 2005, THIS IS NOT THE TEST BUT TO TEST A TEST

AYMAN BADAWI

QUESTION 1. 1. MAKE SURE that you know how to handle GRAPH-Questions (see the book page 61, questions 32 and 33.
2. Make SURE that you know how to handle Questions on Circuits (see Page 29, Question number 20).
3. Make Sure that you know how to handle Questions on page 27, number 8, 9, 10.

QUESTION 2. Write down true or false. If false, then give a counter example:
(1) If A is an $n \times n$ matrix and singular, then the reduced echelon form of A has at least one row consists of zeros.
(2) If A is a 3×3 matrix and $\operatorname{det}\left(A^{-1}\right)=2$, then $\operatorname{det}\left(A^{T}\right)=1 / 2$
(3) If A, B are a 4×4 matrices and A is row-equivalent to B, then $\operatorname{det}(A)=$ $\operatorname{det}(B)$.
(4) If a homogeneous system has infinitely many solutions, then the system has more variables than equations.
(5) If A is 3×3 and $A X=\left[\begin{array}{c}2 \\ 3 \\ -2\end{array}\right]$ has no solution, then $\operatorname{det}(A)=0$

QUESTION 3. Given A, B are 5×5 matrices such that $\operatorname{det}(\operatorname{adj}(A))=16$ and $\operatorname{det}(B)=-2$
a) Find $\operatorname{det}\left(3 A^{-1} B\right)$
b) Find $\operatorname{det}\left(2 A^{T}\left(B^{-1}\right)^{T}\right)$
c) Find $\operatorname{det}\left(I_{5}+\operatorname{Aadj}(A)\right)$.

QUESTION 4. Consider the following system
$2 x_{1}-2 x_{2}+4 x_{3}-2 x_{4}=-2$
$-x_{1}+2 x_{2}+x_{3}+2 x_{4}=2$
$x_{1}+x_{2}+4 x_{3}+3 x_{4}=3$
a) Write the above system in the form $A X=B$.
b) Find the general solution for $A X=B$.
C) USE part (b) to Find the general solution for $A X=0$

QUESTION 5. a) Given $A \quad 2 R_{2} \widetilde{+R_{3}} \rightarrow R_{3} \quad A_{1} \widetilde{3 R_{3}} \quad A_{2} \quad \widetilde{R_{2} \leftrightarrow R_{1}} \quad B=$ $\left[\begin{array}{ccc}2 & 1 & 1 \\ -2 & -2 & 0 \\ -3 & 5 & 6\end{array}\right]$.

Find $\operatorname{det}(A)$.
Find Elementary matrices E_{1}, E_{2}, E_{3} such that $E_{1} E_{2} E_{3} A=B$. Then FIND the matrix A

QUESTION 6. Let $A=\left[\begin{array}{cccc}2 & 3 & -1 & 0 \\ 1 & -3 & -2 & 3 \\ -1 & 0 & -1 & -1 \\ -1 & 0 & 0 & 4\end{array}\right]$ Find the third column of A^{-1} without finding A^{-1}.
b) Consider the system $A X=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$ Use Cramer's rule to find the value of x_{3}.

QUESTION 7. Let $A=\left[\begin{array}{cccc}2 & 3 & -1 & 0 \\ 1 & -3 & -2 & 3 \\ -1 & 0 & -1 & -1 \\ -1 & 0 & 0 & 4\end{array}\right]$
Find A^{-1}
Write A as a product of elementary matrices.
Find $\left(A^{T}\right)^{-1}$ and $\left(A^{2}\right)^{-1}$.
QUESTION 8. Let $A=\left[\begin{array}{ccc}2 & a & b \\ 0 & 0 & 3 \\ 0 & x & -2\end{array}\right]$. Find the values of a, b, x that will make A nonsingular.

QUESTION 9. Given that $\left(2 A^{T}-3 I_{2}\right)^{-1}=\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]$. Find the matrix A.
QUESTION 10. Let $A=\left[\begin{array}{ccc}1 & 0 & 2 \\ 0 & 2 & -1 \\ 0 & 0 & 2\end{array}\right]$. Find A^{-1} using the adjoint method.
QUESTION 11. Let A, B be nonzero $n \times n$ matrices such $A B=0$. Prove that neither A nor B is nonsingular.

Department of Mathematics \& Statistics, American University Of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates

E-mail address: abadawi@aus.edu, www.ayman-badawi.com

