MATH 221, REVIEW SHEET FOR TEST #1, SPRING 005

AYMAN BADAWI

QUESTION 1. T OR F, if False then give a counter example

- (1) If E is an elementary matrix of type I, then $E^T = E$.
- (2) Let A be 3×3 such that det(A) = 0, and let R be the reduced echelon

- form of A. Then $RX = \begin{bmatrix} 4\\0\\2 \end{bmatrix}$ has no solution. (3) If $A \begin{bmatrix} 2\\5\\3 \end{bmatrix} = 0$, then AX = 0 has infinitely many solutions
- (4) If A, B are $n \times n$ and they have the same reduced echelon matrix, then A = B.
- (5) If A is row equivalent to B, then the reduced echelon form of A = thereduced echelon form of B.
- (6) if A, B are invertible, then A is row equivalent to B.
- (7) If UA = B and U is an invertible matrix, then A is row equivalent to Β.
- (8) If A is 3×3 and det(A) = -2, then det(3A) = -6.
- (9) If A, B are 4×4 and $E_1E_2A = B$, where E_1, E_2 are elementary of type III, then det(A) = det(B).
- (10) If AB = 0, then either A = 0 or B = 0.
- (11) If A is 3×3 and AX = 0 has no nontrivial solution, then the reduced echelon form of A has at least one row of zeros.
- (12) If A is 6×6 and AX = B has a solution for every B, 6×1 , then A is invertible.
- (13) If AX = 0 has infinitely many solutions, then the system has more variables than equations.

QUESTION 2. (1) Let
$$A = \begin{bmatrix} 0 & 1 & -3 \\ 1 & -1 & 5 \\ 3 & -2 & 8 \end{bmatrix}$$
. Given that A is invertible.
Write A as product of elementary Matrices. What is the (3.1)-entry

is the (3,1)-entry Write A as product of elementary Matrices. What of A^{-1} . Find the entries of the second column of A^{-1}

(2) Let $A = \begin{bmatrix} 0 & 0 & -1 \\ 1 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, and R be the reduced echelon form of A. Find

an invertible matrix U such that UA = R.

QUESTION 3. Consider the following system:

 $x_1 - 2x_2 + x_3 - x_4 = 6$ $x_2 + 2x_3 + 2x_4 = 4$ $2x_1 - 3x_2 + 4x_3 = 16$

AYMAN BADAWI

1) Write the above system in the form AX = B (where A is the coefficient MATRIX of the system, X is the Variable-Column, and B is the constant-Column)

- 2) Find the augmented matrix of the system
- 3) Find the general solution of the system
- 4) From (3) find the general solution to AX = 0.

QUESTION 4. Let A, B be 3×3 matrices such that

 $A \quad \underbrace{3R_2 + R_2 \rightarrow R_2}_{3R_2} \quad A_1 \quad \underbrace{-6R_2}_{2} \quad B. \ Find \ two \ elementary \ matrices \ E_1, E_2 \ such$ that $A = E_1 E_2 B$.

QUESTION 5. Let $A = \begin{bmatrix} 0 & 3 & -1 & 0 \\ 0 & 0 & -2 & 3 \\ 2 & 2 & -2 & -1 \\ -4 & -7 & 5 & -6 \end{bmatrix}$ transform A to an upper trian-

gular matrix, then find $det(\overline{A})$

QUESTION 6. Given $A \xrightarrow{R_2 \leftrightarrow R_3} A_1 \xrightarrow{2R_3 + R_3 \to R_3} A_2 \xrightarrow{6R_1} A_3 = \begin{bmatrix} 3 & 0 & 0 \\ -2 & -2 & 0 \\ 3 & 5 & 6 \end{bmatrix}$. Find det(A).

QUESTION 7. Given A, B are 3×3 matrices such that det(A) = -2 and det(B) = 3. Find $det(2AB^{T}), det(A^{-1} + adj(A)).$

QUESTION 8. Consider the following system:

 $x_1 + x_2 - x_3 = 2$ $-x_1 + 2x_2 + 3x_3 = 6$ $2x_1 + 2x_2 + x_3 = 4$

USE CRAMER's RULE TO FIND the value of x_2 .

QUESTION 9. Let $A = \begin{bmatrix} 1 & 2 & 4 \\ -1 & -1 & 6 \\ -1 & -1 & 4 \end{bmatrix}$. Find A^{-1} using the adjoint-method.

QUESTION 10. 1)Let A be an $n \times n$ invertible matrix. Prove that $det(A^{-1}) =$ 1/det(A).

2) Let A, B be $n \times n$ matrices. Prove that $det(A + B^T) = det(A^T + B)$.

3)Let A, B be NON-ZERO $n \times n$ matrices such that AB is not invertible. Prove that neither A nor B is invertible.

4) Let A be an $n \times n$ invertible matrix. Prove that $det(adj(A)) = (det(A))^{n-1}$

5) Let A, B be $n \times n$ matrices such A is invertible and AB = BA. Prove that $A^{-1}B = BA^{-1}.$

6) Let A be a 7×7 matrix. Prove that $A - A^T$ is singular.

7) Let A be a 8×8 matrix. Prove that $a_{31}A_{51} + a_{32}A_{52} + ... + a_{38}A_{58} = 0$.

8) If A is singular, then show that Adj(A) is singular.