MATH 221, REVIEW SHEET FOR TEST \#1, SPRING 005

AYMAN BADAWI

QUESTION 1. T OR F, if False then give a counter example
(1) If E is an elementary matrix of type I, then $E^{T}=E$.
(2) Let A be 3×3 such that $\operatorname{det}(A)=0$, and let R be the reduced echelon form of A. Then $R X=\left[\begin{array}{l}4 \\ 0 \\ 2\end{array}\right]$ has no solution.
(3) If $A\left[\begin{array}{l}2 \\ 5 \\ 3\end{array}\right]=0$, then $A X=0$ has infinitely many solutions
(4) If A, B are $n \times n$ and they have the same reduced echelon matrix, then $A=B$.
(5) If A is row equivalent to B, then the reduced echelon form of $A=$ the reduced echelon form of B.
(6) if A, B are invertible, then A is row equivalent to B.
(7) If $U A=B$ and U is an invertible matrix, then A is row equivalent to B.
(8) If A is 3×3 and $\operatorname{det}(A)=-2$, then $\operatorname{det}(3 A)=-6$.
(9) If A, B are 4×4 and $E_{1} E_{2} A=B$, where E_{1}, E_{2} are elementary of type III, then $\operatorname{det}(A)=\operatorname{det}(B)$.
(10) If $A B=0$, then either $A=0$ or $B=0$.
(11) If A is 3×3 and $A X=0$ has no nontrivial solution, then the reduced echelon form of A has at least one row of zeros.
(12) If A is 6×6 and $A X=B$ has a solution for every $B, 6 \times 1$, then A is invertible.
(13) If $A X=0$ has infinitely many solutions, then the system has more variables than equations.
QUESTION 2. (1) Let $A=\left[\begin{array}{ccc}0 & 1 & -3 \\ 1 & -1 & 5 \\ 3 & -2 & 8\end{array}\right]$. Given that A is invertible.
Write A as product of elementary Matrices. What is the (3,1)-entry of A^{-1}. Find the entries of the second column of A^{-1}
(2) Let $A=\left[\begin{array}{ccc}0 & 0 & -1 \\ 1 & -3 & 0 \\ 0 & 0 & 1\end{array}\right]$, and R be the reduced echelon form of A. Find an invertible matrix U such that $U A=R$.
QUESTION 3. Consider the following system:

$$
\begin{aligned}
& x_{1}-2 x_{2}+x_{3}-x_{4}=6 \\
& x_{2}+2 x_{3}+2 x_{4}=4 \\
& 2 x_{1}-3 x_{2}+4 x_{3}=16
\end{aligned}
$$

1) Write the above system in the form $A X=B$ (where A is the coefficient MATRIX of the system, X is the Variable-Column, and B is the constant-Column)
2) Find the augmented matrix of the system
3) Find the general solution of the system
4) From (3) find the general solution to $A X=0$.

QUESTION 4. Let A, B be 3×3 matrices such that
A $\underbrace{3 R_{2}+R_{2} \rightarrow R_{2}} A_{1} \underbrace{-6 R_{2}} B$. Find two elementary matrices E_{1}, E_{2} such that $A=E_{1} E_{2} B$.
QUESTION 5. Let $A=\left[\begin{array}{cccc}0 & 3 & -1 & 0 \\ 0 & 0 & -2 & 3 \\ 2 & 2 & -2 & -1 \\ -4 & -7 & 5 & -6\end{array}\right]$ transform A to an upper triangular matrix, then find $\operatorname{det}(A)$.
QUESTION 6. Given $A \underbrace{R_{2} \leftrightarrow R_{3}} A_{1} \underbrace{2 R_{3}+R_{3} \rightarrow R_{3}} A_{2} \underbrace{6 R_{1}} A_{3}=$ $\left[\begin{array}{ccc}3 & 0 & 0 \\ -2 & -2 & 0 \\ 3 & 5 & 6\end{array}\right]$. Find $\operatorname{det}(A)$.
QUESTION 7. Given A, B are 3×3 matrices such that $\operatorname{det}(A)=-2$ and $\operatorname{det}(B)=3$. Find $\operatorname{det}\left(2 A B^{T}\right), \operatorname{det}\left(A^{-1}+\operatorname{adj}(A)\right)$.
QUESTION 8. Consider the following system:
$x_{1}+x_{2}-x_{3}=2$
$-x_{1}+2 x_{2}+3 x_{3}=6$
$2 x_{1}+2 x_{2}+x_{3}=4$
USE CRAMER's RULE TO FIND the value of x_{2}.
QUESTION 9. Let $A=\left[\begin{array}{ccc}1 & 2 & 4 \\ -1 & -1 & 6 \\ -1 & -1 & 4\end{array}\right]$. Find A^{-1} using the adjoint-method.
QUESTION 10. 1) Let A be an $n \times n$ invertible matrix. Prove that $\operatorname{det}\left(A^{-1}\right)=$ $1 / \operatorname{det}(A)$.
2) Let A, B be $n \times n$ matrices. Prove that $\operatorname{det}\left(A+B^{T}\right)=\operatorname{det}\left(A^{T}+B\right)$.
3)Let A, B be NON-ZERO $n \times n$ matrices such that $A B$ is not invertible. Prove that neither A nor B is invertible.
4) Let A be an $n \times n$ invertible matrix. Prove that $\operatorname{det}(\operatorname{adj}(A))=(\operatorname{det}(A))^{n-1}$
5) Let A, B be $n \times n$ matrices such A is invertible and $A B=B A$. Prove that $A^{-1} B=B A^{-1}$.
6) Let A be a 7×7 matrix. Prove that $A-A^{T}$ is singular.
7) Let A be a 8×8 matrix. Prove that $a_{31} A_{51}+a_{32} A_{52}+\ldots+a_{38} A_{58}=0$.
8) If A is singular, then show that $\operatorname{Adj}(A)$ is singular.

