FINAL EXAM FOR MATH 221, FALL 2004

TAHER ABUALRUB AND AYMAN BADAWI

Name , Id. Num. , Score $\frac{100}{100}$

QUESTION 1. (10 POINTS) (True or False)

- (1) If A is a 4×4 nonsingular matrix, then Rank(A) = 4.
- (2) If A is a 4×4 matrix, then det(A) = det(-A).
- (3) $\{(x,y) \in \mathbb{R}^2 \mid x \ge 0\}$ is a subspace of \mathbb{R}^2 .
- (4) If A is a 3×4 matrix, then there is a b, 3×1 , such that AX = b has a unique solution.
- (5) $Span\{(1+x^2, x^2)\} = P_3$
- **QUESTION 2.** (1) (10 points) Let $T: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ be a linear transformation such that $T(x_1, x_2, x_3, x_4) = (x_1 + x_2, -x_1 - x_2 + x_3, -x_1 + 2x_3)$. Find a basis for the Kernel of T and a basis for the Range (Image) of T.

(2) (4 points) Let $T : R^2 \longrightarrow R$ such that T(2, -4) = -1 and T(-2, 1) = 2. Find T(6, -9).

(3) (6 points) If dim($S = span\{(-1, -1, 0, -1), (-1, -1, 1, -1), (0, -1, 0, 1)\}) = 3$. Find an orthonormal basis for S using Gram-Schmidt-Process.

 $\mathbf{2}$

QUESTION 3. (15 points) Find the eigenvalues and the corresponding eigenspaces of the matrix $A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$. Given that A is similar to a diagonal matrix D. Find D and find a matrix Q such that $Q^{-1}AQ = D$. **QUESTION 4.** (6 points) Given that A, B are 4×4 matrix such that det(A) = -2 and det(B) = 1/2. Find (1) $det(2AB^T)$

(2) $det(A^{-1}B)$

(3) $det(B^{-1} + adj(B))$

QUESTION 5. (6 points) Let $A = \begin{bmatrix} a & -2 & -2 \\ b & 4 & -1 \\ 5 & 0 & 0 \end{bmatrix}$. Show that $det(A) \neq 0$. Then find the (1,3)-entry of A^{-1} .

QUESTION 6. (1) (6 points) Given that $S = \{(x_1, x_2, x_3, x_4) \in R^4 | x_1 = x_2 - 3x_3 \text{ and } x_4 = 2x_2 - x_3\}$ is a subspace of R^4 . Find the dimension of S, then find a basis for S.

(2) (8 points) Let $S = \{A \in \mathbb{R}^{2 \times 2} \mid A \text{ is an upper triangular matrix}\}$. Show that A is a subspace of A. Then find a basis for S.

(3) (4 points) Let $S = span\{1+2x+x^2, -1+x+x^2, 3x+2x^2\}$. Find a basis for S.

(4) (4 points) Is $S = \{A \in \mathbb{R}^{2 \times 2} \mid det(A) = 0\}$ a subspace of $\mathbb{R}^{2 \times 2}$? Explain

QUESTION 7. (6 points) Given A, B are 3×3 matrices such that B is obtained from A by performing the following two row-operations on A: $A \xrightarrow{2R_1 + R_3 \to R_3} A_1 \xrightarrow{3R_3} B$. Find two elementary matrices E_1, E_2 such that $A = E_1E_2B$.

QUESTION 8. (6 points) Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & 0 \\ -2 & 2 & 1 \end{bmatrix}$$
 Find A^{-1} .

QUESTION 9. (9 points) Given the augmented matrix of a system of linear equations:

1	2	a	$b \rceil$
-1	$^{-1}$	2	$\begin{bmatrix} b \\ -2 \end{bmatrix}$
1	2	c	6

- (1) Find the values of a, b, c so that the system will have a unique solution.
- (2) Find the values of a, b, c so that the system will have infinitely many solutions.
- (3) Find the values of a, b, c so that the system will have NO SOLUTION

Department of Mathematics & Statistics, American University Of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates