FINAL EXAM FOR MATH 221, FALL 2004

TAHER ABUALRUB AND AYMAN BADAWI

Name
Id. Num.
, Score $\overline{100}$
QUESTION 1. (10 POINTS) (True or False)
(1) If A is a 4×4 nonsingular matrix, then $\operatorname{Rank}(A)=4$.
(2) If A is a 4×4 matrix, then $\operatorname{det}(A)=\operatorname{det}(-A)$.
(3) $\left\{(x, y) \in R^{2} \mid x \geq 0\right\}$ is a subspace of R^{2}.
(4) If A is a 3×4 matrix, then there is a $b, 3 \times 1$, such that $A X=b$ has a unique solution.
(5) $\operatorname{Span}\left\{\left(1+x^{2}, x^{2}\right\}=P_{3}\right.$

QUESTION 2. (1) (10 points) Let $T: R^{4} \longrightarrow R^{3}$ be a linear transformation such that $T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}+x_{2},-x_{1}-x_{2}+x_{3},-x_{1}+2 x_{3}\right)$. Find a basis for the Kernel of T and a basis for the Range (Image) of T.
(2) (4 points) Let $T: R^{2} \longrightarrow R$ such that $T(2,-4)=-1$ and $T(-2,1)=2$. Find $T(6,-9)$.
(3) (6 points) If $\operatorname{dim}(S=\operatorname{span}\{(-1,-1,0,-1),(-1,-1,1,-1),(0,-1,0,1)\})=$ 3. Find an orthonormal basis for S using Gram-Schmidt-Process.

QUESTION 3. (15 points) Find the eigenvalues and the corresponding eigenspaces
of the matrix $A=\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & 2\end{array}\right]$. Given that A is similar to a diagonal matrix D.
Find D and find a matrix Q such that $Q^{-1} A Q=D$.

QUESTION 4. (6 points) Given that A, B are 4×4 matrix such that $\operatorname{det}(A)=$ -2 and $\operatorname{det}(B)=1 / 2$. Find
(1) $\operatorname{det}\left(2 A B^{T}\right)$
(2) $\operatorname{det}\left(A^{-1} B\right)$
(3) $\operatorname{det}\left(B^{-1}+\operatorname{adj}(B)\right)$

QUESTION 5. (6 points) Let $A=\left[\begin{array}{ccc}a & -2 & -2 \\ b & 4 & -1 \\ 5 & 0 & 0\end{array}\right]$. Show that $\operatorname{det}(A) \neq 0$. Then find the $(1,3)$-entry of A^{-1}.

QUESTION 6. (1) (6 points) Given that $S=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in R^{4} \mid x_{1}=\right.$ $x_{2}-3 x_{3}$ and $\left.x_{4}=2 x_{2}-x_{3}\right\}$ is a subspace of R^{4}. Find the dimension of S, then find a basis for S.
(2) (8 points) Let $S=\left\{A \in R^{2 \times 2} \mid A\right.$ is an upper triangular matrix $\}$. Show that A is a subspace of A. Then find a basis for S.
(3) (4 points) Let $S=\operatorname{span}\left\{1+2 x+x^{2},-1+x+x^{2}, 3 x+2 x^{2}\right\}$. Find a basis for S.
(4) (4 points) Is $S=\left\{A \in R^{2 \times 2} \mid \operatorname{det}(A)=0\right\}$ a subspace of $R^{2 \times 2}$? Explain

QUESTION 7. (6 points) Given A, B are 3×3 matrices such that B is obtained from A by performing the following two row-operations on A :
$A \underline{2 R_{1}+R_{3} \rightarrow R_{3}} A_{1} \underline{3 R_{3}} B$. Find two elementary matrices E_{1}, E_{2} such that $A=E_{1} E_{2} B$.

QUESTION 8. (6 points) Let $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & 2 & 0 \\ -2 & 2 & 1\end{array}\right]$ Find A^{-1}.

QUESTION 9. (9 points) Given the augmented matrix of a system of linear equations:
$\left[\begin{array}{cccc}1 & 2 & a & b \\ -1 & -1 & 2 & -2 \\ 1 & 2 & c & 6\end{array}\right]$
(1) Find the values of a, b, c so that the system will have a unique solution.
(2) Find the values of a, b, c so that the system will have infinitely many solutions.
(3) Find the values of a, b, c so that the system will have NO SOLUTION

Department of Mathematics \& Statistics, American University Of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates

