MTH221, LINEAR ALGEBRA, FINAL EXAM FALL 2006

Question 1. (6 points) Let $A=\left[\begin{array}{ccc}2 & 123 & -1 \\ 1 & 456 & 1 \\ 2 & 789 & 1\end{array}\right]$ If you know that $\operatorname{det}(A)=$ -420 , then find the value of x_{2} in the solution of the linear system $A\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$

Question 2. Determine whether the following vectors are linearly independent in the vector space V (SHOW YOUR WORK).
a)(4 points) $V=R^{3},\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$
b) (4 points) $V=P_{3}, \quad 3 x^{2}, \quad x^{2}-10 x+15, \quad 10 x-15$

Question 3. For each of the following sets of vectors, determine if it is a subspace. If YES explain why and, if your answer is a NO then give an example to show why it is not subspace.
(a) (5 points) $S=\left\{\left.\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \right\rvert\, x_{1}-5 x_{3}=0\right\}$
b)(5 points) $S=\left\{B \in R^{2 \times 2} \mid A\right.$ is singular (non-invertible) $\}$

Question 4. Find a Basis for each of the following subspace S of the given vector space V. (DO NOT SHOW IT IS A SUBSPACE)
a) $(5$ points $) V=R^{5}, S=\left\{\left.\left[\begin{array}{c}a+b \\ b \\ c \\ 0 \\ c+b\end{array}\right] \right\rvert\, a, b, c \in R\right\}$
b) (5 points) $V=R^{2 x 2}, S=\left\{A \in R^{2 \times 2} \mid-A=A^{T}\right\}$
c)(5 points) $V=P_{4}, S=\left\{p \in P_{4} \mid p(1)=p(0)=0\right\}$

Question 5. Let $S=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 2 \\ 2\end{array}\right]\right\}$.
a)(4 points) Find a basis for S.
b)(4 points) Find an ORTHONORMAL BASIS for S.

Question 6. Consider the following set of polynomials in P_{3}.

$$
S=\left\{t^{2}+1, t^{2}+2 t, 3 t^{2}+t-1\right\}
$$

c. (4 points) Find a basis for $\operatorname{Span}\{S\}$.
b. (4 points) Does $6 t^{2}-1$ belong to $\operatorname{Span}\{S\}$?

Question 7. We have $a \times 3$ matrix $A=\left[\begin{array}{lll}a & 1 & 2 \\ b & 3 & 4 \\ c & 5 & 6\end{array}\right]$ with $\operatorname{det}(A)=3$. Compute the determinant of the following matrices:
(a) (2 points) $\left[\begin{array}{lll}a-2 & 1 & 2 \\ b-4 & 3 & 4 \\ c-6 & 5 & 6\end{array}\right]$
(b) (2 points) $\left[\begin{array}{lll}7 a & 7 & 14 \\ b & 3 & 4 \\ c & 5 & 6\end{array}\right]$
(c) $\left(\mathbf{3}\right.$ points) $2 A^{-1} A^{T}$
d) (4 points) $\left[\begin{array}{lll}a-2 & 1 & 2 \\ b & 3 & 4 \\ c & 5 & 6\end{array}\right]$

Question 8.

$$
\text { If } A=\left(\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right)
$$

a) (4 points) Find all eigenvalues A
b) (6 points)Find a nonsingular matrix Q and a diagonal matrix D such that $Q^{-1} A Q=D$ (that it is $A=Q D Q^{-1}$)
c) (5 points) For the matrix A in Question number 8, find A^{5}

Question 9. (6 points) Let $L: R^{3} \longrightarrow R^{3}$ be a linear transformation such that $L\left(\left[\begin{array}{c}-2 \\ 1 \\ -2\end{array}\right]\right)=\left[\begin{array}{c}-3 \\ 1 \\ 2\end{array}\right], \quad L\left(\left[\begin{array}{c}3 \\ 2 \\ -1\end{array}\right]\right)=\left[\begin{array}{c}2 \\ -2 \\ 1\end{array}\right], \quad L\left(\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right]\right)=\left[\begin{array}{c}-1 \\ 2 \\ 4\end{array}\right]$.
Find $L\left(\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]\right)$

Question 10. It is given that $A=\left[\begin{array}{ccccc}1 & 0 & -2 & 1 & 3 \\ -1 & 1 & 5 & -1 & -3 \\ 0 & 2 & 6 & 0 & 1 \\ 1 & 1 & 1 & 1 & 4\end{array}\right]$ and its reduced row echelon form is given by $B=\left[\begin{array}{ccccc}1 & 0 & -2 & 1 & 0 \\ 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
(a) (2 points) Find the rank of A.
(b) (2 points)Find the nullity of A.
(c) (3 points) Find a basis for the column space of A.
(d) (3 points) Find a basis for the row space of A.
(e) (3 points) Find a basis for the null space of A.

