Question 1. Write down true or false (12 points)
(1) If A is an $n \times n$ matrix and b is a column matrix, $n \times 1$, such that $A X=b$ has infinitely many solutions, then 0 is an eigenvalue of A.
(2) If A is an $n \times n$ matrix, then A and A^{T} have the same eigenvalues.
(3) If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then the adjoint of A is $\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
(4) If A, B are row equivalent $n \times n$ matrices, then both have the same eigenvalues.
(5) If a homogeneous system has infinitely many solutions, then the system has more variables than equations.
(6) If A is a 3×4 matrix with a rank equals to 2, then there must be a vector b, 3×1, such that $A X=b$ has no solution.

Question 2. (1) (6 points) Use Cramer's method to find the solution for x_{2}

$$
\begin{aligned}
& 2 x_{1}-2 x_{2}+4 x_{3}=2 \\
& -2 x_{1}+x_{2}+x_{3}=1 \\
& x_{1}-x_{2}+3 x_{3}=2
\end{aligned}
$$

(2) (8 points) Given $\operatorname{dim}(\operatorname{span}\{(-1,1,0,1),(1,1,1,1),(1,-1,0,1)\})=3$. Find an orthonormal basis for S.
Question 3. (1) (4 points)Let A be a 6×4 matrix such that the second column of A and the fourth column of A are identical, and let be a 6×1 column matrix. Given that $X=\left[\begin{array}{c}3 \\ 2 \\ -1 \\ 3\end{array}\right]$ is a solution to the system $A X=b$. Find another two different solutions to the system $A X=b$.
(2) (6 points) Given A is a 3×3 matrix such that
$A \underbrace{3 R_{2}} A_{1} \underbrace{-2 R_{2}+R_{3} \rightarrow R_{3}} \quad B=\left[\begin{array}{ccc}-2 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & -1 & 2\end{array}\right]$
a) Find $\operatorname{det}(A)$
b) Find two elementary matrices E_{1} and E_{2} such that $A=E_{1} E_{2} B$
(3) (6 points) Given the augmented matrix of a system of linear equations
$A=\left[\begin{array}{cccc}-2 & 3 & a & 3 \\ 2 & -2 & b & -2 \\ 2 & -3 & 4 & c\end{array}\right]$

1) For what values of a, b, c does the system have unique solution?
2) For what values of a, b, c does the system have no solution.
3) For what values of a, b, c does the system have infinitely many solutions?

Question 4.

$$
\text { (1) Let } A=\left[\begin{array}{ccc}
-1 & 2 & 1 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

(14 points) Find a nonsingular matrix Q and a diagonal matrix D such that $Q^{-1} A Q=D$.
(2) (4 points) Let $A=\left[\begin{array}{ll}3 & a \\ 0 & 3\end{array}\right]$. For what values of a is the matrix A diagonalizable? EXPLAIN.

Question 5. (1) (8 points)Let $A=\left[\begin{array}{cc}2 & 0 \\ 0 & -1\end{array}\right]$ and let $S=\left\{B \in R^{2 \times 2} \mid A B=\right.$ $B A\}$. Show that S is a subspace of A. Find a basis for S.
(2) (4 points) Given $S=\left\{f(x) \in P_{5} \mid f(x)=(b+c)+b x+(2 b-d) x^{2}+c x^{3}+\right.$ $\left.d x^{4}\right\}$ is a subspace of P_{5}. Find a basis for S.
(3) (6 points)Does $(0,1,2,3)$ belong to $S=\operatorname{span}\{(1,-1,0,1),(-1,2,1,1),(-1,1,1,0)\}$? EXPLAIN
(4) (4 points)Let $S=\left\{(a, b, c) \in R^{3} \mid a+b+c+1=0\right\}$. Is S a subspace of R^{3} ? if No, then explain. If yes, then find basis for S.
Question 6. Let $A=\left[\begin{array}{cccc}1 & -1 & 2 & -2 \\ -2 & 2 & -4 & 5 \\ -3 & 3 & -6 & 6\end{array}\right]$ Given $T: R^{4} \longrightarrow R^{3}$ such that $T\left(\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3} \\ a_{4}\end{array}\right]\right)=A\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3} \\ a_{4}\end{array}\right]$ is a linear transformation
a) (6 points) Find a basis for $\operatorname{Ker}(T)$
b)(6 points) Find a basis for Range (T).
(6 points) Let $T: R^{2} \longrightarrow R^{3}$ be a linear transformation such that $T(2,-4)=(1,1,1)$ and $T(-3,8)=(-2,-2,3)$. Find the standard matrix representation of T.

Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates, www.ayman-badawi.com

E-mail address: abadawi@aus.ac.ae

