MATH 221, FINAL EXAM , SPRING 004

DR. AYMAN BADAWI AND DR.ISMAIL KUCUK

Name-,ID.Num. QUESTION 1. (9 points) (True or False) (1) If A is a matrix 3×3 and B = 2A, then det(B) = 2det(A) () (2) There is a linear transformation from R^5 into R^6 such that $Range(T) = R^6$ ((3) If A is 4×4 matrix and AX = B has no solution for some $B, 4 \times 1$, then AX = 0 has infinitely many solutions ((4) If E is a 4×4 matrix and in reduced echelon form such that $E \neq I$, then $EX = \begin{bmatrix} 2\\3\\0\\4 \end{bmatrix} \text{ has no solution (}$) (5) If T is a linear transformation from \mathbb{R}^8 into R such that for some nonzero element $v \in \mathbb{R}^8$ we have T(v) = 21, then $\dim(Ker(T)) = 7$ () (6) $S = \{A \in \mathbb{R}^{3 \times 3} \mid det(A) = 0\}$ is a subspace of $\mathbb{R}^{3 \times 3}$ ()

QUESTION 2. (6 points) Let $A = \begin{bmatrix} 0 & -2 & -4 & 0 \\ 3 & 6 & 3 & 6 \\ -6 & -12 & 0 & 2 \\ 0 & 0 & -6 & 10 \end{bmatrix}$. Use row-operations

to find det(A).

QUESTION 3. (16 points) Let $A = \begin{bmatrix} 1 & 0 & -1 & 0 \\ -1 & 0 & 2 & 4 \\ 2 & 0 & -2 & 0 \end{bmatrix}$, and $T : R^4 \to R^3$ such that $T(a_1, a_2, a_3, a_4) = A \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix}$.

1) Show that T is a linear transformation

2) Find the Range(T), basis for Range(T), and dim(Range(T)).

3) Find Ker(T), basis for Ker(T), and dim(Ker(T))

QUESTION 4. (14 points) Let $S = \{(a_1, a_2, a_3, a_4) \in R^4 \mid a_1 + 2a_2 - 4a_3 + a_4 = 0\}$ be a subspace of R^4 .

1) Find a basis for S, what is the dimension of S.

2) Find an Orthogonal basis for S.

QUESTION 5. (15 points) Let $A = \begin{bmatrix} -1 & 2 & -2 & 0 \\ 0 & 3 & 1 & 2 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$.

1) Find the characteristic polynomial of A.

2) Find E_3 (The eigenspace of A that corresponds to the eigenvalue 3). Find a basis for E_3 , what is the dimension of E_3 ?.

4) Is A diagnolizable? Explain

QUESTION 6. (10 points) Given $T : \mathbb{R}^2 \to \mathbb{R}$ is a linear transformation such that $(-2, 4) \in Ker(T)$ and T(4, -2) = 3.

1) Find T(12, 0)

Is $(-6, 10) \in Ker(T)$? Explain

QUESTION 7. (9 points) Given A is a 3×3 matrix such that det(A) = -2. Find 1) det(adj(A))

2) $det(-3A^{-1}A^{T})$

 $3)det(2I_3 + 3adj(A)A)$

QUESTION 8. (6 points) Let
$$A = \begin{bmatrix} 0 & -2 & -2 \\ 2 & 1 & 4 \\ -4 & -2 & 2 \end{bmatrix}$$

1) Explain why A is invertible.

QUESTION 9. (5 points) Let $v, X_1, X_2, X_3 \in \mathbb{R}^4$ and suppose that there are UNIQUE real numbers c_1, c_2, c_3 such that $v = c_1X_1 + c_2X_2 + c_3X_3$. Prove that X_1, X_2, X_3 are independent.

QUESTION 10. (10 points) Let
$$A = \begin{bmatrix} 1 & -2 & 3 \\ -1 & a & -3 \\ 2 & -4 & b \end{bmatrix}$$
, and $B \begin{bmatrix} 1 \\ 3 \\ c \end{bmatrix}$.

1) Find the values of a, b, c so that the system AX = B has a unique solution

2) Find the values of a, b, c so that the system AX = B has infinitely many solutions.

3) Find the values of a, b, c so that the system AX = B has no solutions