MATH 221, FINAL EXAM , SPRING 004

DR. AYMAN BADAWI AND DR.ISMAIL KUCUK

Name ,ID.Num.—_
QUESTION 1. (9 points) (True or False)
(1) If A is a matrix 3×3 and $B=2 A$, then $\operatorname{det}(B)=2 \operatorname{det}(A)(\quad)$
(2) There is a linear transformation from R^{5} into R^{6} such that $\operatorname{Range}(T)=R^{6}$ (
(3) If A is 4×4 matrix and $A X=B$ has no solution for some $B, 4 \times 1$, then $A X=0$ has infinitely many solutions (
(4) If E is a 4×4 matrix and in reduced echelon form such that $E \neq I$, then $E X=\left[\begin{array}{l}2 \\ 3 \\ 0 \\ 4\end{array}\right]$ has no solution (
(5) If T is a linear transformation from R^{8} into R such that for some nonzero element $v \in R^{8}$ we have $T(v)=21$, then $\operatorname{dim}(\operatorname{Ker}(T))=7(\quad)$
(6) $S=\left\{A \in R^{3 \times 3} \mid \operatorname{det}(A)=0\right\} \quad$ is a subspace of $R^{3 \times 3}($

QUESTION 2. (6 points) Let $A=\left[\begin{array}{cccc}0 & -2 & -4 & 0 \\ 3 & 6 & 3 & 6 \\ -6 & -12 & 0 & 2 \\ 0 & 0 & -6 & 10\end{array}\right]$. Use row-operations to find $\operatorname{det}(A)$.

QUESTION 3. (16 points) Let $A=\left[\begin{array}{cccc}1 & 0 & -1 & 0 \\ -1 & 0 & 2 & 4 \\ 2 & 0 & -2 & 0\end{array}\right]$, and $T: R^{4} \rightarrow R^{3}$ such that $T\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=A\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3} \\ a_{4}\end{array}\right]$.

1) Show that T is a linear transformation
2) Find the Range(T), basis for Range(T), and dim(Range (T)).
3) Find $\operatorname{Ker}(T)$, basis for $\operatorname{Ker}(T)$, and $\operatorname{dim}(\operatorname{Ker}(T))$

QUESTION 4. (14 points) Let $S=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in R^{4} \mid a_{1}+2 a_{2}-4 a_{3}+a_{4}=\right.$ $0\}$ be a subspace of R^{4}.

1) Find a basis for S, what is the dimension of S.
2) Find an Orthogonal basis for S.

QUESTION 5. (15 points) Let $A=\left[\begin{array}{cccc}-1 & 2 & -2 & 0 \\ 0 & 3 & 1 & 2 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3\end{array}\right]$.

1) Find the characteristic polynomial of A.
2) Find E_{3} (The eigenspace of A that corresponds to the eigenvalue 3). Find a basis for E_{3}, what is the dimension of E_{3} ?.
3) Is A diagnolizable? Explain

QUESTION 6. (10 points) Given $T: R^{2} \rightarrow R$ is a linear transformation such that $(-2,4) \in \operatorname{Ker}(T)$ and $T(4,-2)=3$.

1) Find $T(12,0)$

Is $(-6,10) \in \operatorname{Ker}(T)$? Explain

QUESTION 7. (9 points) Given A is a 3×3 matrix such that $\operatorname{det}(A)=-2$.
Find

1) $\operatorname{det}(\operatorname{adj}(A))$
2) $\operatorname{det}\left(-3 A^{-1} A^{T}\right)$
3) $\operatorname{det}\left(2 I_{3}+3 \operatorname{adj}(A) A\right)$

QUESTION 8. (6 points) Let $A=\left[\begin{array}{ccc}0 & -2 & -2 \\ 2 & 1 & 4 \\ -4 & -2 & 2\end{array}\right]$

1) Explain why A is invertible.
2) find the (3,2)-entry of A^{-1}.

QUESTION 9. (5 points) Let $v, X_{1}, X_{2}, X_{3} \in R^{4}$ and suppose that there are UNIQUE real numbers c_{1}, c_{2}, c_{3} such that $v=c_{1} X_{1}+c_{2} X_{2}+c_{3} X_{3}$. Prove that X_{1}, X_{2}, X_{3} are independent.

QUESTION 10. (10 points) Let $A=\left[\begin{array}{ccc}1 & -2 & 3 \\ -1 & a & -3 \\ 2 & -4 & b\end{array}\right]$, and $B\left[\begin{array}{l}1 \\ 3 \\ c\end{array}\right]$.

1) Find the values of a, b, c so that the system $A X=B$ has a unique solution
2)Find the values of a, b, c so that the system $A X=B$ has infinitely many solutions.
2) Find the values of a, b, c so that the system $A X=B$ has no solutions
