FINAL EXAM MTH 221, SPRING006

AYMAN BADAWI

QUESTION 1. Let $T: P_{3} \longrightarrow R^{3}$ be a linear transformation such that $T(f(x))=\left(f^{\prime}(0), f(1), 0\right)$.
a) Show that T is a linear transformation. (4 points)
b) Find basis for $\operatorname{Ker}(T)$ (6 points).
c)Find basis for Range(T) (4 points).

QUESTION 2. Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 2 & 0 \\ 2 & 0 & 2\end{array}\right]$
1)Find the eigenvalues of A. (4 points)
2)For each eigenvalue of A find the corresponding eigenspace.(10 points)

Question TWO continues: 3) Find nonsingular matrices Q_{1}, Q_{2} AND diagonal matrices D_{1}, D_{2} such that $Q_{1}^{-1} A Q_{1}=D_{1}$ and $Q_{2}^{-1} A Q_{2}=D_{2} .(5$ points $)$

QUESTION 3. Let $S=\operatorname{Span}\{(1,0,1,-2),(0,1,0,2),(-2,1,-2,6)\}$.

1) Find a basis for S. (4 points)
2)Find an orthogonal basis for $S .(4$ points)

QUESTION 4. The following are subspaces (DO NOT NEED TO SHOW THAT).
FIND A BASIS FOR EACH ONE OF THEM:

1) Let $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 4\end{array}\right]$, and let $S=\left\{B \in R^{2 \times 2} \mid A B=B A\right\}$ (6 points)
2) Let $S=\left\{f(x) \in P_{4} \mid f(1)=f(-1)\right\}$. (6 points)

QUESTION 5. Does span $\left\{1+x^{2}, x^{2}, 2+5 x^{2}\right\}=P_{3}$ (explain) (4 points)

QUESTION 6. Given A is a 3×3 matrix such that $A \underbrace{2 R_{2}} B \underbrace{-R_{1}+R_{2} \rightarrow R_{2}} C=$ $\left[\begin{array}{ccc}1 & 1 & 1 \\ -2 & 2 & -2 \\ 0 & 1 & 1\end{array}\right]$. a) Find an elementary matrix E such that $A=E B$. (3 points)
b) Find the matrix A. (5 points)

QUESTION 7. Let $A=\left[\begin{array}{cccc}2 & -2 & -3 & 1 \\ 0 & 2 & -2 & 1 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 4\end{array}\right]$. Find the (2, 3)-entry of A^{-1}. (5
points)

QUESTION 8. 1)Find a basis for R^{4} that contains the following two independent elements : $(-4,0,1,6),(4,0,-1,-4)$. (4 points)

QUESTION 9. Let $L: R^{2} \longrightarrow R$ be a linear transformation such that $L(2,2)=$ -4 and $L(2,1)=-6$. Find $L(10,8)$ (5 points)

QUESTION 10. Let $A=\left[\begin{array}{cccc}1 & -1 & -1 & 1 \\ -1 & 1 & 1 & 0 \\ 2 & -2 & -2 & 2\end{array}\right]$ 1) Solve $A X=\left[\begin{array}{l}3 \\ 4 \\ 6\end{array}\right]$ (5 points)
2) Find a basis for the column space of A. (4 points)

QUESTION 11. 1) Given A is a 3×3 matrix with eigenvalues 4, -2, -3. a) Find the eigenvalues of $A^{2}+5 I_{3}$. (4 points)
b) What is the $\operatorname{det}\left(A^{-1}\right)$ (2 points).

QUESTION 12. Let A be a 3×3 matrix such that $\left(A^{-1}+2 I_{3}\right)^{T}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 4 & 4 \\ 0 & 0 & 4\end{array}\right]$.
Find the matrix A. (6 points)

