MATH 221, FINAL EXAM (9:30), SUMMER 008

AYMAN BADAWI

QUESTION 1. (15 points) (Write DOWN T OR F)
(1) If V is an eigenvector of a matrix $n \times n \quad A$, then V is also an eigenvector of A^{3}.
(2) If A is 4×3, then the homogeneous system $A X=0$ has infinitely many solutions.
(3) If A is nonsingular, 3×3, then the reduced echelon form of A is I_{3}.
(4) If A is a 3×5 matrix such that $\operatorname{Nullity}(A)=2$, then for every column matrix $3 \times 1 \quad b$ the system $A X=b$ has infinitely many solutions.
(5) If 2 is an eginvalue of a 4×4 matrix A, then the matrix $A-2 I_{4}$ is singular.
(6) If A is a 4×4 matrix, then $\operatorname{det}(3 A)=3 \operatorname{det}(A)$.
(7) If 7 is an eigenvalue of an $n \times n$ matrix A, then $\frac{1}{7}$ is an eigenvalue of A^{T}.
(8) If A is an 3×3 matrix and $A=A^{-1}$, then $A^{3}=A$
(9) If A is nonsingular, then A^{T} is nonsingular.
(10) At this minute, you are in Nab 10.

QUESTION 2. (5 points) Find the matrix $2 \times 2 A$ such that
$\left(A\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]\right)^{-1}=A^{-1}+2 I_{2}$

[^0]QUESTION 3. (12 points) Let $A\left[\begin{array}{ccc}3 & 0 & -2 \\ -2 & 2 & 4 \\ 1 & 0 & 0\end{array}\right]$ For each eigenvalue of A
find the corresponding eigenspace. If A is diagnolizable, then find a diagonal matrix D, and a nonsingular matrix Q such that $Q^{-1} A Q=D$.

QUESTION 4. Given $T: R^{3} \longrightarrow R^{4}$ is a linear transformation such that
$T\left(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right)=\left[\begin{array}{c}1 \\ 2 \\ -1 \\ 1\end{array}\right], \quad T\left(\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right)=\left[\begin{array}{c}2 \\ 4 \\ -2 \\ 2\end{array}\right]$, and $T\left(\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}4 \\ 8 \\ 3 \\ 4\end{array}\right]$
a) (5 points) Find $T\left(\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right)$
b) (8 points) Find the standard matrix representation of T. Then find a basis for $\operatorname{Ker}(T)$, and a basis for Range(T).

QUESTION 5. (6 points) Let $A=\left[\begin{array}{ccc}2 & -2 & 3 \\ -1 & 0 & -1 \\ 1 & 1 & 1\end{array}\right]$. Find A^{-1}, and find $\left(A^{T}\right)^{-1}$.

QUESTION 6. Given $A \quad \overrightarrow{R_{1} \leftrightarrow R_{2}} \quad A_{1} \overrightarrow{16 R_{2}} \quad A_{2} \overrightarrow{-R_{1}+R_{3} \rightarrow R_{3}} A_{3}=$ $\left[\begin{array}{ccc}2 & 3 & 4 \\ 0 & 4 & -3 \\ 0 & 0 & 6\end{array}\right]$. a) (4 points) Find $\operatorname{det}(2 A)$.
b)(5 points) Write A as product of elementary matrices with A_{3}.

QUESTION 7. a) (5 points) $D=\left\{f(x) \in P_{4} \mid f^{\prime}(0)=0, f(1)=0\right\} \quad$ is subspace of P_{4} (DO NOT SHOW THAT). Find a basis for D.
b)(5 points) $L=\left\{A \in M_{3 \times 2}(R) \mid a_{21}+a_{22}+a_{31}=0\right\}$ is a subspace of $M_{3 \times 2}(R)$ (DO NOT SHOW THAT). Find a basis for L.
c) (5 points) Let $M=\operatorname{span}\left\{1+x,-1+2 x, x^{2}, 3 x+x^{2}\right\}$. Find a basis for M.

QUESTION 8. a) (6 points) Use CRAMER RULE to solve for x_{3}
$x_{1}+x_{2}+x_{3}=12$
$-x_{1}+x_{2}-x_{3}=-10$
$-5 x_{1}+-5 x_{2}+2 x_{3}=10$
b) (6 points) Let $A=\left[\begin{array}{lll}a & 3 & 1 \\ b & 5 & 2 \\ c & 1 & 3\end{array}\right]$ and the REDUCED ECHELON FORM
OF A IS the MATRIX $\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$. Find a, b, c (SHOW THE WORK....GUESSING IS NOT ACCEPTABLE)

QUESTION 9. a) (7 points) Solve the following system
$x_{1}+4 x_{2}+3 x_{3}-x_{4}+x_{5}=2$
$-x_{1}-3 x_{2}-3 x_{3}+x_{4}+x_{5}=-4$
$2 x_{1}+8 x_{2}+6 x_{3}-x_{4}+3 x_{5}=-2$
b) (6 points) Let $D=\operatorname{Span}\{1,0,1,2),(1,1,0,0),(1,0,-1,-1)\}$. Find an ORTHOGONAL BASIS for D.

Department of Mathematics \& Statistics, American University Of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates, www.ayman-badawi.com

E-mail address: abadawi@aus.edu

[^0]: Date: July 23, 008.

