Review for final, MTH 320, SPRING 2009

Ayman Badawi

QUESTION 1. (i) Is (Q^*, \times) a group-isomorphic to (Q, +)?

- (ii) Let (M, *) be a group such that $a \in M$ and $|a| < \infty$. If $b \in M$, show that $|b * a * b^{-1}| = |a|$
- (iii) Is it true that every ideal of (Z, +, .) is of the form nZ for some $n \ge 1$?
- (iv) How many group isomorphism are there from $(Z_8, +_8)$ into $(Z_8, +_8)$?
- (v) Show there is only one nontrivial group homomorphism from $(Z_{10}, +_{10})$ into (Z_5^*, \times_5) .
- (vi) Let (M, *) be a group and assume $(M/Z(M), \wedge)$ is cyclic. Prove that M is abelian (Hint: See my proof of the result every group of of order q^2 is abelian)
- (vii) Let $I = (x^2 + 1)$ be an ideal of $(Z_7[X], +, .)$. We know that $(Z_7[X]/I, +^{\wedge}, .^{\wedge})$ is a field. How many elements does $Z_7[X]/I$ have?
- (viii) Let (M, *) be an infinite cyclic group. Show that (M, *) is group-isomorphic to (Z, +).
- (ix) What are the values of 3/4, 2/3 in (Z_5^*, \times_5) .
- (x) If a, b in a group such that |a| = |b| = 12. Is it possible that $a^6 = b^4$?
- (xi) Let H be a finite subgroup of (C^*, \times) . Show that H is cyclic.
- (xii) Let H be a finite subgroup of (C^*, \times) with 6 elements. Find the elements of H.
- (xiii) Show that there is a group-homomorphism, say f, from (Z, +) into (C^*, \times) such that Ker(f) = 6Z
- (xiv) What is the order of 3/7 + 5Z in the group $(Q/5Z, \wedge)$?
- (xv) A problem in Number Theory that it is two lines proof using groups: Let $p \ge 3$ be a prime number. Show that $p \mid (p-1)! + 1$.
- (xvi) Let $H = \{\pm \frac{q_1^{k_1} \times \cdots \times q_n^{k_n}}{p_1^{m_1} \times \cdots \times p_i^{m_i}} \mid k_1 + \cdots + k_n = m_1 + \cdots + m_i \text{ where all } q_i's \text{ and } p_i's \text{ are positive prime numbers in } Z, \text{ and all } k_i's \text{ and } m_i's \text{ are nonnegative integers } \}$ be a subset of Q^* .
 - a. Show that (H, \times) is a subgroup of (Q^*, \times) .
 - b. Define $=_R$ on (Q^*, \times) such that $a =_R b$ if $b^{-1} \times a = a/b \in H$. We know that $=_R$ is an equivalent relation since H is a subgroup of Q^* . Show that $49 =_R 15$. Show that $27 \neq_R 21$. In general show that if m is a prime number in Z, then $m =_R 2$.
 - c. Since (Q^*/H) is a group, note that each element in Q^*/H is of the form $d \times H$ for some $d \in Q^*$. Show that $(Q^*/H, \wedge)$ is cyclic and it is generated by $3 \times H$.

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.

E-mail: abadawi@aus.edu, www.ayman-badawi.com