Review for final, MTH 320, SPRING 2009

Ayman Badawi

QUESTION 1. (i) Is $\left(Q^{*}, \times\right)$ a group-isomorphic to $(Q,+)$?
(ii) Let $(M, *)$ be a group such that $a \in M$ and $|a|<\infty$. If $b \in M$, show that $\left|b * a * b^{-1}\right|=|a|$
(iii) Is it true that every ideal of $(Z,+,$.$) is of the form n Z$ for some $n \geq 1$?
(iv) How many group isomorphism are there from $\left(Z_{8},+_{8}\right)$ into $\left(Z_{8},+{ }_{8}\right)$?
(v) Show there is only one nontrivial group homomorphism from $\left(Z_{10},+_{10}\right)$ into $\left(Z_{5}^{*}, \times_{5}\right)$.
(vi) Let $(M, *)$ be a group and assume $(M / Z(M), \wedge)$ is cyclic. Prove that M is abelian (Hint: See my proof of the result every group of of order q^{2} is abelian)
(vii) Let $I=\left(x^{2}+1\right)$ be an ideal of $\left(Z_{7}[X],+,.\right)$. We know that $\left(Z_{7}[X] / I,+^{\wedge}, .^{\wedge}\right)$ is a field. How many elements does $Z_{7}[X] / I$ have?
(viii) Let $(M, *)$ be an infinite cyclic group. Show that $(M, *)$ is group-isomorphic to $(Z,+)$.
(ix) What are the values of $3 / 4,2 / 3$ in $\left(Z_{5}^{*}, \times_{5}\right)$.
(x) If a, b in a group such that $|a|=|b|=12$. Is it possible that $a^{6}=b^{4}$?
(xi) Let H be a finite subgroup of $\left(C^{*}, \times\right)$. Show that H is cyclic.
(xii) Let H be a finite subgroup of $\left(C^{*}, \times\right)$ with 6 elements. Find the elements of H.
(xiii) Show that there is a group-homomorphism, say f, from $(Z,+)$ into $\left(C^{*}, \times\right)$ such that $\operatorname{Ker}(f)=6 Z$
(xiv) What is the order of $3 / 7+5 Z$ in the group $(Q / 5 Z, \wedge)$?
(xv) A problem in Number Theory that it is two lines proof using groups: Let $p \geq 3$ be a prime number. Show that $p \mid(p-1)!+1$.
(xvi) Let $H=\left\{\left. \pm \frac{q_{1}^{k_{1}} \times \cdots \times q_{n}^{k_{n}}}{p_{1}^{m_{1}} \times \cdots \times p_{i}^{m_{i}}} \right\rvert\, k_{1}+\cdots+k_{n}=m_{1}+\cdots+m_{i}\right.$ where all $q_{i}^{\prime} s$ and $p_{i}^{\prime} s$ are positive prime numbers in Z, and all $k_{i}^{\prime} s$ and $m_{i}^{\prime} s$ are nonnegative integers $\}$ be a subset of Q^{*}.
a. Show that (H, \times) is a subgroup of $\left(Q^{*}, \times\right)$.
b. Define $={ }_{R}$ on $\left(Q^{*}, \times\right)$ such that $a={ }_{R} b$ if $b^{-1} \times a=a / b \in H$. We know that $={ }_{R}$ is an equivalent relation since H is a subgroup of Q^{*}. Show that $49=_{R} 15$. Show that $27 \neq{ }_{R} 21$. In general show that if m is a prime number in Z, then $m={ }_{R} 2$.
c. Since $\left(Q^{*} / H\right)$ is a group, note that each element in Q^{*} / H is of the form $d \times H$ for some $d \in Q^{*}$. Show that $\left(Q^{*} / H, \wedge\right)$ is cyclic and it is generated by $3 \times H$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

