Review, MTH 320, SPRING 2009

Ayman Badawi

QUESTION 1. YOU MUST BE AWARE of all the concepts discussed in HW1 to HW8.
Few words but it says it all : "o a mathematician, real life is a special case."
"One should not aim at being possible to understand, but at being impossible to misunderstand."
QUESTION 2. Let N, H be normal subgroups of a group $(G, *)$. Prove that $N H=\{n * h: n \in N$ and $h \in H\}$ is a normal subgroup of G. (First prove that NH is a subgroup of G , then show it is normal in G)

QUESTION 3. Let H be a subgroup of a group G such that $[\mathrm{G}: \mathrm{H}]=2$ (Note that [G:H] denotes the number of distinct left cosets of H). Prove that H is a normal subgroup of G.

QUESTION 4. Let H be a normal subgroup of a group $(G, *)$ and let $a \in G$. If $|a| \neq 5, a * H \in G / H$ such that $|a H|=5$, and H has exactly 7 elements, what is the order of a ? prove your claim.

QUESTION 5. Let G be a group with an odd number of elements. Prove that $a^{2} \neq e$ for each non identity $a \in G$.
QUESTION 6. Let G be a cyclic group with n elements. Let k be a factor of $\mathrm{n}(k \geq 1)$ Prove that the equation $x^{k}=e$ has exactly k distinct solutions.

QUESTION 7. Give me an example of a an abelian group G with 8 elements such that the equation $x^{2}=e$ has exactly 8 distinct solutions. So you should conclude from the previous question that "cyclic" is crucial in the statement.

QUESTION 8. Let G be a group such $|G|_{s}=\mathrm{pq}$, where p and q are prime numbers. Prove that every proper subgroup of G is cyclic. (A subgroup H of G is called a proper subgroup if $H \neq G$.)

QUESTION 9. Let $a \in A_{5}$ such that $|a|=2$. Show that $a=\left(a_{1}, a_{2}\right) o\left(a_{3}, a_{4}\right)$, where $a_{1}, a_{2}, a_{3}, a_{4}$ are distinct elements in $\{1,2,3,4,5\}$.

QUESTION 10. Let $\alpha=(1,2,3)(1,2,5,6) \in S_{6}$. Find $|\alpha|$, then find α^{53}.
QUESTION 11. Let $(M, *)$ be a monoid with identity e and H be a subset of M. If $(\mathrm{H}, *)$ is a group, can we conclude that the identity of H is also e? Prove it or give a counter example.

QUESTION 12. Let $(M, *)$ be a group with identity e and H be a subset of M. If ($\mathrm{H},{ }^{*}$) is a group, can we conclude that the identity of H is also e? Prove it or give a counter example.

QUESTION 13. Give me an example of a group M such that every proper subgroup of M is cyclic but M is not cyclic.

QUESTION 14. Let ($\mathbf{M},{ }^{*}$) be a finite abelian group and $a \in M(a \neq e)$ such that $|a|=k$. Let $S=\{c \in M| | c \mid=$ $k\}$. Can we conclude that S has exactly $\Phi(k)$ elements? Prove it or give a counter example.
QUESTION 15. Let ($\mathrm{M}, *)$ be a finite cyclic group and $a \in M(a \neq e)$ such that $|a|=k$. Let $S=\{c \in M| | c \mid=k\}$. Can we conclude that S has exactly $\Phi(k)$ elements? Prove it or give a counter example.

QUESTION 16. Let a be an element in a group G such that $a^{n}=e$ for some positive integer n. If m is a positive integer such that $\operatorname{gcd}(\mathrm{n}, \mathrm{m})=1$, then prove that $a=b^{m}$ for some \mathbf{b} in \mathbf{G}. (Note that if $\operatorname{gcd}(\mathrm{m}, \mathrm{n})=\mathrm{k}$, then there are two integers d, f such that $k=d m+f n$.)

QUESTION 17. If ($M,{ }^{*}$) is an infinite group, prove that M has infinitely many subgroups.
QUESTION 18. Let $(M, *)$ be an abelian group of with 45 elements. If H is a subgroup of ($\mathrm{M},{ }^{*}$) such that G / H is a cyclic group with 9 elements. Prove that M is a cyclic group.

QUESTION 19. Let H_{1}, H_{2} be subgroups of a group ($M, *$). Suppose that $H_{1} \nsubseteq H_{2}$ and $H_{2} \nsubseteq H_{1}$. Prove that $\left(H_{1} \cup H_{2}, *\right)$ is never a group.

Faculty information

