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QUESTION 1. YOU MUST BE AWARE of all the concepts discussed in HW1 to HW8.
Few words but it says it all : "o a mathematician, real life is a special case."
"One should not aim at being possible to understand, but at being impossible to misunderstand."

QUESTION 2. Let N,H be normal subgroups of a group (G, ∗). Prove that NH = {n ∗ h : n ∈ N and h ∈ H} is a
normal subgroup of G. (First prove that NH is a subgroup of G, then show it is normal in G)

QUESTION 3. Let H be a subgroup of a group G such that [G:H] = 2 (Note that [G:H] denotes the number of distinct
left cosets of H) . Prove that H is a normal subgroup of G.

QUESTION 4. Let H be a normal subgroup of a group (G, ∗) and let a ∈ G. If | a |6= 5, a ∗ H ∈ G/H such that
| aH |= 5, and H has exactly 7 elements, what is the order of a? prove your claim.

QUESTION 5. Let G be a group with an odd number of elements. Prove that a2 6= e for each non identity a ∈ G.

QUESTION 6. Let G be a cyclic group with n elements. Let k be a factor of n (k ≥ 1) Prove that the equation xk = e
has exactly k distinct solutions.

QUESTION 7. Give me an example of a an abelian group G with 8 elements such that the equation x2 = e has exactly
8 distinct solutions. So you should conclude from the previous question that "cyclic" is crucial in the statement.

QUESTION 8. Let G be a group such | G |s = pq, where p and q are prime numbers. Prove that every proper
subgroup of G is cyclic. (A subgroup H of G is called a proper subgroup if H 6= G.)

QUESTION 9. Let a ∈ A5 such that | a |= 2. Show that a = (a1, a2)o(a3, a4), where a1, a2, a3, a4 are distinct
elements in {1, 2, 3, 4, 5}.
QUESTION 10. Let α = (1, 2, 3)(1, 2, 5, 6) ∈ S6. Find | α |, then find α53.

QUESTION 11. Let (M, ∗) be a monoid with identity e and H be a subset of M . If (H, *) is a group, can we conclude
that the identity of H is also e? Prove it or give a counter example.

QUESTION 12. Let (M, ∗) be a group with identity e and H be a subset of M . If (H, *) is a group, can we conclude
that the identity of H is also e? Prove it or give a counter example.

QUESTION 13. Give me an example of a group M such that every proper subgroup of M is cyclic but M is not
cyclic.

QUESTION 14. Let (M, *) be a finite abelian group and a ∈ M (a 6= e )such that | a |= k. Let S = {c ∈ M | | c |=
k}. Can we conclude that S has exactly Φ(k) elements? Prove it or give a counter example.

QUESTION 15. Let (M, *) be a finite cyclic group and a ∈ M (a 6= e )such that | a |= k. Let S = {c ∈ M | | c |= k}.
Can we conclude that S has exactly Φ(k) elements? Prove it or give a counter example.

QUESTION 16. Let a be an element in a group G such that an = e for some positive integer n. If m is a positive
integer such that gcd(n,m) = 1, then prove that a = bm for some b in G. (Note that if gcd(m, n) = k, then there are
two integers d, f such that k = dm + fn.)

QUESTION 17. If (M, *) is an infinite group, prove that M has infinitely many subgroups.

QUESTION 18. Let (M, ∗) be an abelian group of with 45 elements. If H is a subgroup of (M, *) such that G/H is
a cyclic group with 9 elements. Prove that M is a cyclic group.

QUESTION 19. Let H1, H2 be subgroups of a group (M, ∗). Suppose that H1 6⊆ H2 and H2 6⊆ H1. Prove that
(H1 ∪H2, ∗) is never a group.
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