PROBLEM SET 8

HAMID SAGBAN

Exercise 1. Consider the group $(\mathbb{Z},+)$, and let H be a subgroup of \mathbb{Z}. Show that $H=n \mathbb{Z}$ for some $n \geq 1$.

Proof. We know \mathbb{Z} is cyclic and generated by 1 . Now let $a \in H$, then $a=1^{m}$ for some $m \in \mathbb{Z}$. Thus each element of H is a power of 1 . Let $k=\min \left\{m \in \mathbb{Z}^{+} \mid 1^{m} \in H\right\}$. Then $H=\left\langle 1^{k}\right\rangle=\langle k\rangle$, this choice of k follows from the proof in class. So we have $H=\langle k\rangle=\{\ldots,-2 k,-k, 0, k, 2 k, \ldots\}=$ $k \times\{\ldots,-2,-1,0,1,2, \ldots\}=k \mathbb{Z}$.

Exercise 2 (a). Let $M=\{2,4,6,8,10,12\}$. Show that $\left(M, \times_{14}\right)$ is a cyclic group.

Solution. We note that 8 is the identity of this group, and this verifiable from the following multiplicative table.

\times_{14}	2	4	6	8	10	12
2	4	8	12	2	6	10
4	8	2	10	4	12	6
6	12	10	8	6	4	2
8	2	4	6	8	10	12
10	6	12	4	10	2	8
12	10	6	2	12	8	4

An element of order 6 in the group M is 10 , thus M is cyclic.

Exercise 2 (b). Let $H=\{6,8\}$. Show that $\left(H, \times_{14}\right)$ is a normal subgroup of M (M as in part (a)).

Solution. H is clearly a subgroup of M since 6 is an element of order 2 , and $e=8 \in H$. Normality of H is clear since M is an abelian group.

Exercise 2 (c). Now consider the quotient group $(M / H, \wedge)$. Find all elements of M / H. Find the order of each element of M / H. Is $(M / H, \wedge)$ a cyclic group? Explain.

Solution. Finding the elements of M / H amounts to finding the left cosets of H. We first note that $[M: H]=3$. Computing the left cosets of H, we get $M / H=\{H, 2 * H, 4 * H\}=\{\{6,8\},\{12,2\},\{10,4\}\}$. Also, $|H|=1,|2 * H|=3$, and $|3 * H|=3$, and this is clear since M / H is of prime order. This also implies that M / H is cyclic.

Exercise 3 (a). Let $(M, *)$ be a finite abelian group of order n. Let $a_{1}, a_{2}, \ldots, a_{n}$ be the elements of M. If n is an odd number, show that $a_{1} * a_{2} * a_{3} * \ldots * a_{n}=e$

Proof. Take all a_{i} 's $\neq e$. Each a_{i} must have a distinct inverse (that is, there is no element of order 2 since the order of the group is odd). Since M is abelian, we can write the elements in the following form: $\left(a_{i} * a_{i}^{-1}\right) *\left(a_{j} * a_{j}^{-1}\right) * \ldots *\left(a_{n} * a_{n}^{-1}\right)=e$ and we are done.

Exercise 3 (b). If n is an even number, show that $x=a_{1} * a_{2} * a_{3} * \ldots * a_{n} \in M$ and x is of order 2.

Proof. Let $\lambda=\{m \in M| | m \mid \neq 2\}$. For every element a of order greater than 2 , there exists a distinct element a^{-1} such that $a * a^{-1}=a^{-1} * a=e$. There is an even number of such elements since we have some arbitrary number of pairs of a, a^{-1}. Thus we can write elements of order greater than 2 in the following form: $\left(a_{i} * a_{i}^{-1}\right) *\left(a_{j} * a_{j}^{-1}\right) * \ldots *\left(a_{n} * a_{n}^{-1}\right)=e$. Note, however, than the order of λ is odd since the inverse of the identity is trivially itself. Thus to show (b), we only consider the product of elements of order 2. That is, elements of the set $M \backslash \lambda$. Clearly it is nonempty since $|M|>|\lambda|$, and $|M|$ and $|\lambda|$ are even and odd, respectively, so their difference is odd. If $M \backslash \lambda$ is a singleton, then we are done. Otherwise assume $|M \backslash \lambda|>1$, and take distinct $a, b \in M \backslash \lambda$. Clearly $a * b \neq e$. We have $|a * b|=2$ since $(a * b)^{2}=a^{2} * b^{2}=e$. Thus the product of all elements of M must give us an element of order 2 .

Exercise 3 (c). (From the book) Consider the numbers 1, 2, 3, .., 10: can you add + or - in front of each number so that when you add them, then you get zero?

Solution. No, you cannot. The sum of the numbers $1,2,3, \ldots, 10$ can easily be found to be 55 . Notice that adding a minus in front of some digit k constitutes to subtracting $2 k$ from the sum. Since the sum 55 is odd, subtracting distinct even numbers will never yield 0 .

Exercise 3 (d). (From the book) consider the numbers 1, 2, 3, $\ldots, 19$: can you add + or - in front of each number so that when you add them, then you get zero?

Solution. Yes. In fact, $(1+2+3+4+5+6+7+8+9+(-10)+11+12+13+14+(-15)+(-16)+$ $(-17)+(-18)+(-19))=0$.

