PROBLEM SET 7

HAMID SAGBAN

Exercise 1. Find all subgroups of $\left(\mathbb{Z}_{13}^{*}, \times_{13}\right)$.

Solution. We know $\left|\left(\mathbb{Z}_{13}^{*}, \times_{13}\right)\right|=\varphi(13)=12$. Also, the factors of 12 are $1,2,3,4,6$, and 12 . We now form the 6 cyclic subgroups of \mathbb{Z}_{13}^{*}. For the factors 1 and 12 , we have $12=12 \times 1$, and thus $<\overline{2}^{12}>=\{\overline{1}\}$, and $<\overline{2}^{1}>=\mathbb{Z}_{13}^{*}$. Now for the factors 6 and 2 , we have $12=6 \times 2$, and thus $<\overline{2}^{2}>=\left\{\overline{2}^{2}, \overline{2}^{4}, \overline{2}^{6}, \overline{2}^{8}, \overline{2}^{10}, \overline{2}^{12}\right\}=$ $\{\overline{4}, \overline{3}, \overline{12}, \overline{9}, \overline{10}, \overline{1}\}$, and $<\overline{2}^{6}>=\left\{\overline{2}^{6}, \overline{2}^{12}\right\}=\{\overline{12}, \overline{1}\}$. Finally, for the factors 4 and 3, we have $12=4 \times 3$, and thus $<\overline{2}^{3}>=\left\{\overline{2}^{3}, \overline{2}^{6}, \overline{2}^{9}, \overline{2}^{12}\right\}=\{\overline{8}, \overline{1}, \overline{5}, \overline{1}\}$, and $<\overline{2}^{4}>=\left\{\overline{2}^{4}, \overline{2}^{8}, \overline{2}^{12}\right\}=\{\overline{3}, \overline{9}, \overline{1}\}$.

Exercise 2. Let $n \geq 3$. Show that $[n-1] \in\left(U\left(\mathbb{Z}_{n}\right), \times_{n}\right)$ is an element of order 2.

Proof. To show that $[n-1] \in U\left(\mathbb{Z}_{n}\right)$, it suffices to show that $\operatorname{gcd}(n, n-1)=1$. Let k be a divisor of n. Then $n=m k$ for some positive integer m. Thus $n-1=m k-1$, and hence k cannot be a divisor of $n-1$, for otherwise $n-1=r k$ for some $r \in \mathbb{Z}^{+}$, so that $n=r k+1$, contradiction. Thus $\operatorname{gcd}(n, n-1)=1$. Since $n \geq 3$, we know $[n-1] \neq[1]$. So we compute $(n-1)^{2} \bmod n$; we have $(n-1)(n-1)=(n(n-2)+1) \equiv 1 \bmod n$, since $n(n-2) \equiv 0 \bmod n$. Thus $[n-1]^{2}=[1]$, and $|[n-1]|=2$.

Exercise 3. Show that $\left(U\left(\mathbb{Z}_{35}\right), \times_{35}\right)$ is not a cyclic group. (Hint: find elements in $U\left(\mathbb{Z}_{35}\right)$ that have order 2)

Proof. We know by (3) that there is an element of order 2 in $U\left(\mathbb{Z}_{35}\right)$, namely [35-1] $=[34]$. Therefore, we can form a cyclic subgroup of order 2 ; that is, $\left\langle\overline{34}>=\{\overline{34}, \overline{1}\}\right.$. If $U\left(\mathbb{Z}_{35}\right)$ is cyclic, then there is exactly one cyclic subgroup of order 2 . But it turns out that the order of $\overline{6}=2$; so $<6>=\{\overline{6}, \overline{1}\}$. We have found two distinct cyclic subgroups of order 2 in $U\left(\mathbb{Z}_{35}\right)$, thus $U\left(\mathbb{Z}_{35}\right)$ cannot be cyclic.

Exercise 4. We know that $\left(\mathbb{Z}_{47}^{*}, \times_{47}\right)$ is a cyclic group. Show that there are as many elements of order 23 as there are elements of order 46 .

Proof. We know there exist cyclic subgroups of orders $1,2,23$, and 46 . Let b be an element of order 46. Then for all $k<46$ such that $\operatorname{gcd}(46, k)=1,\left|b^{k}\right|=\frac{46}{\operatorname{gcd}(k, 46)}=46$. There are $\varphi(46)=22$ such k 's and thus 22 elements of order 46. Now let a be an element of order 23. We know $\left|a^{n}\right|=\frac{23}{\operatorname{gcd}(n, 23)}=23$ for all $n<23$; there are $\varphi(23)=22$ such n 's and thus 22 elements of order 23 .

Exercise 5. Let $\alpha \in S_{99}$ such that $|\alpha|=99$. Show that α^{66} is either a 3-cycle or the composition of disjoint 3-cycles.

Proof. $\left|\alpha^{66}\right|=\frac{99}{\operatorname{gcd}(66,99)}=3$. Permutations of order 3 can be obtained by 3 -cycles, since the order of a 3 -cycle is 3 . One can also get cycles of order 3 by setting $\operatorname{lcm}(a, b, \ldots, n)=3$, where a, b, \ldots, n are orders of some disjoint cycles $(\neq(1))$ whose composition equate to α. Thus a, b, \ldots, n must all be 3 for this to be satisfied since 3 is a prime number.

Exercise 6. Let $S=\left\{\left.\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right] \right\rvert\, a, b, c \in \mathbb{Z}_{23}\right\}$. It is easy to see that $\left(S, \times_{23}\right)$ is a monoid. Note that \times_{23} is the normal multiplication of matricies modulo 23. Let $U(S)$ be the set of all invertible elements of S under \times_{23}. Thus we know $\left(U(S), \times_{23}\right)$ is a group. Find $|U(S)|$, and explain whether $U(S)$ is an abelian or a non-abelian group.

Solution. All arithmetic operations are modulo 23 , so the subscripts indicating this are absent. We begin by showing that S is a monoid; we first show closure. Take two elements $\alpha, \beta \in S$. Then $\alpha=\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right]$ and $\beta=\left[\begin{array}{ll}x & y \\ 0 & z\end{array}\right]$, for a, b, c and $x, y, z \in \mathbb{Z}_{23}$. Computing $\alpha \beta$, we get $\alpha \beta=\left[\begin{array}{cc}a x & a y+b z \\ 0 & c z\end{array}\right]$, with $a x, a y+b z, c z \in \mathbb{Z}_{23}$. Thus $\alpha \beta \in S$. We claim that $e=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. This can easily be seen by taking $\alpha \in S$, and computing αe and $e \alpha$. Therefore, S is a monoid. Now, we describe the group $U(S)$; that is, $U(S)=\left\{\left.\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right] \right\rvert\, \operatorname{gcd}(a, 23)=\operatorname{gcd}(b, 23)=1, a, b, c \in \mathbb{Z}_{23}\right\}$. Note that a, c cannot be [0] by the gcd criterion. Take $\alpha \in U(S)$, thus $\alpha=\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right]$ for $a, b, c \in \mathbb{Z}_{23}$, and with $\operatorname{gcd}(a, 23)=\operatorname{gcd}(c, 23)=1$. a^{-1}
can be easily verified to be $\left[\begin{array}{cc}\frac{1}{a} & -\frac{b}{a c} \\ 0 & \frac{1}{c}\end{array}\right]$, and invertibility of a and c is guaranteed since a, c are relatively prime to 23 . The order of $U(S)$ is thus $\varphi(23) \times \varphi(23) \times 23=22 \times 22 \times 23 . U(S)$ is clearly nonabelian for take $\alpha=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ and $\beta=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$. Then $\alpha \beta=\left[\begin{array}{ll}1 & 8 \\ 0 & 3\end{array}\right]$ and $\beta \alpha=\left[\begin{array}{ll}1 & 4 \\ 0 & 3\end{array}\right]$.

Exercise 7. Let $a=\left[\begin{array}{cc}2 & 18 \\ 0 & 7\end{array}\right]$. Then $a \in S$. Is $a \in U(S)$? If yes, then find a^{-1}. Note that S and $U(S)$ are as defined previously.

Solution. $a \in U(S)$ since $\operatorname{gcd}(2,23)=\operatorname{gcd}(7,23)=1$. We can use the form described above for the inverse to find a^{-1}, which is $\left[\begin{array}{cc}12 & 2 \\ 0 & 10\end{array}\right]$.

Exercise 8. Let $M=\left\{\left.\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right] \right\rvert\, a, b, c \in \mathbb{Z}\right\}$. It is easy to see that (M, \times) is a monoid. Note that \times is the normal multiplication of matricies. Let $U(M)$ be the set of all invertible elements of S under \times. Thus we know $(U(M), \times)$ is a group. Is $U(M)$ an abelian or a nonabelian group? If $\alpha \in U(M)$, find a general form of α. Let $a=\left[\begin{array}{cc}2 & 18 \\ 0 & 7\end{array}\right]$. Then $a \in M$. Is $a \in U(M)$? If yes, then find a^{-1}.

Solution. $U(M)$ is not abelian, for take $\alpha=\left[\begin{array}{cc}1 & 5 \\ 0 & -1\end{array}\right]$ and $\beta=\left[\begin{array}{ll}1 & 4 \\ 0 & 1\end{array}\right]$. Then $\alpha \beta=\left[\begin{array}{cc}1 & 9 \\ 0 & -1\end{array}\right]$ and $\beta \alpha=\left[\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right]$. Now a general form of α is $\left[\begin{array}{cc} \pm 1 & b \\ 0 & \pm 1\end{array}\right]$ with $b \in \mathbb{Z}$. Thus clearly, a as given in the last part of the question does not belong to $U(M)$.

