PROBLEM SET 7

HAMID SAGBAN

Exercise 1. Find all subgroups of $(\mathbb{Z}_{13}^*, \times_{13})$.

Solution. We know $|(\mathbb{Z}_{13}^*, \times_{13})| = \varphi(13) = 12$. Also, the factors of 12 are 1, 2, 3, 4, 6, and 12. We now form the 6 cyclic subgroups of \mathbb{Z}_{13}^* . For the factors 1 and 12, we have $12 = 12 \times 1$, and thus $\langle \bar{2}^{12} \rangle = \{\bar{1}\}$, and $\langle \bar{2}^1 \rangle = \mathbb{Z}_{13}^*$. Now for the factors 6 and 2, we have $12 = 6 \times 2$, and thus $\langle \bar{2}^2 \rangle = \{\bar{2}^2, \bar{2}^4, \bar{2}^6, \bar{2}^8, \bar{2}^{10}, \bar{2}^{12}\} = \{\bar{4}, \bar{3}, \bar{1}2, \bar{9}, \bar{1}0, \bar{1}\}$, and $\langle \bar{2}^6 \rangle = \{\bar{2}^6, \bar{2}^{12}\} = \{\bar{1}2, \bar{1}\}$. Finally, for the factors 4 and 3, we have $12 = 4 \times 3$, and thus $\langle \bar{2}^3 \rangle = \{\bar{2}^3, \bar{2}^6, \bar{2}^9, \bar{2}^{12}\} = \{\bar{8}, \bar{1}2, \bar{5}, \bar{1}\}$, and $\langle \bar{2}^4 \rangle = \{\bar{2}^4, \bar{2}^8, \bar{2}^{12}\} = \{\bar{3}, \bar{9}, \bar{1}\}$.

Exercise 2. Let $n \ge 3$. Show that $[n-1] \in (U(\mathbb{Z}_n), \times_n)$ is an element of order 2.

Proof. To show that $[n-1] \in U(\mathbb{Z}_n)$, it suffices to show that gcd(n, n-1) = 1. Let k be a divisor of n. Then n = mk for some positive integer m. Thus n-1 = mk-1, and hence k cannot be a divisor of n-1, for otherwise n-1 = rk for some $r \in \mathbb{Z}^+$, so that n = rk+1, contradiction. Thus gcd(n, n-1) = 1. Since $n \ge 3$, we know $[n-1] \ne [1]$. So we compute $(n-1)^2 \mod n$; we have $(n-1)(n-1) = (n(n-2)+1) \equiv 1 \mod n$, since $n(n-2) \equiv 0 \mod n$. Thus $[n-1]^2 = [1]$, and |[n-1]| = 2.

Exercise 3. Show that $(U(\mathbb{Z}_{35}), \times_{35})$ is not a cyclic group. (Hint: find elements in $U(\mathbb{Z}_{35})$ that have order 2)

Proof. We know by (3) that there is an element of order 2 in $U(\mathbb{Z}_{35})$, namely [35-1] = [34]. Therefore, we can form a cyclic subgroup of order 2; that is, $\langle \bar{34} \rangle = \{\bar{34}, \bar{1}\}$. If $U(\mathbb{Z}_{35})$ is cyclic, then there is exactly one cyclic subgroup of order 2. But it turns out that the order of $\bar{6} = 2$; so $\langle 6 \rangle = \{\bar{6}, \bar{1}\}$. We have found two distinct cyclic subgroups of order 2 in $U(\mathbb{Z}_{35})$, thus $U(\mathbb{Z}_{35})$ cannot be cyclic.

Exercise 4. We know that $(\mathbb{Z}_{47}^*, \times_{47})$ is a cyclic group. Show that there are as many elements of order 23 as there are elements of order 46.

HAMID SAGBAN

Proof. We know there exist cyclic subgroups of orders 1,2,23, and 46. Let b be an element of order 46. Then for all k < 46 such that gcd(46, k) = 1, $|b^k| = \frac{46}{gcd(k,46)} = 46$. There are $\varphi(46) = 22$ such k's and thus 22 elements of order 46. Now let a be an element of order 23. We know $|a^n| = \frac{23}{gcd(n,23)} = 23$ for all n < 23; there are $\varphi(23) = 22$ such n's and thus 22 elements of order 23.

Exercise 5. Let $\alpha \in S_{99}$ such that $|\alpha| = 99$. Show that α^{66} is either a 3-cycle or the composition of disjoint 3-cycles.

Proof. $|\alpha^{66}| = \frac{99}{\gcd(66,99)} = 3$. Permutations of order 3 can be obtained by 3-cycles, since the order of a 3-cycle is 3. One can also get cycles of order 3 by setting lcm(a, b, ..., n) = 3, where a, b, ..., n are orders of some disjoint cycles (\neq (1)) whose composition equate to α . Thus a, b, ..., n must all be 3 for this to be satisfied since 3 is a prime number.

Exercise 6. Let $S = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \mid a, b, c \in \mathbb{Z}_{23} \right\}$. It is easy to see that (S, \times_{23}) is a monoid. Note that \times_{23} is the normal multiplication of matricies modulo 23. Let U(S) be the set of all invertible elements of S under \times_{23} . Thus we know $(U(S), \times_{23})$ is a group. Find |U(S)|, and explain whether U(S) is an abelian or a non-abelian group.

Solution. All arithmetic operations are modulo 23, so the subscripts indicating this are absent. We begin by showing that S is a monoid; we first show closure. Take two elements $\alpha, \beta \in S$. Then $\alpha = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$

and
$$\beta = \begin{bmatrix} x & y \\ 0 & z \end{bmatrix}$$
, for a, b, c and $x, y, z \in \mathbb{Z}_{23}$. Computing $\alpha\beta$, we get $\alpha\beta = \begin{bmatrix} ax & ay + bz \\ 0 & cz \end{bmatrix}$, with

 $ax, ay + bz, cz \in \mathbb{Z}_{23}$. Thus $\alpha\beta \in S$. We claim that $e = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. This can easily be seen by taking $\alpha \in S$, and computing αe and $e\alpha$. Therefore, S is a monoid. Now, we describe the group U(S); that is, $U(S) = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \mid \gcd(a, 23) = \gcd(b, 23) = 1, \ a, b, c \in \mathbb{Z}_{23} \right\}$. Note that a, c cannot be [0] by the gcd

criterion. Take $\alpha \in U(S)$, thus $\alpha = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$ for $a, b, c \in \mathbb{Z}_{23}$, and with gcd(a, 23) = gcd(c, 23) = 1. a^{-1}

PROBLEM SET 7

can be easily verified to be $\begin{bmatrix} \frac{1}{a} & -\frac{b}{ac} \\ 0 & \frac{1}{c} \end{bmatrix}$, and invertibility of a and c is guaranteed since a, c are relatively prime to 23. The order of U(S) is thus $\varphi(23) \times \varphi(23) \times 23 = 22 \times 22 \times 23$. U(S) is clearly nonabelian for take $\alpha = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ and $\beta = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$. Then $\alpha\beta = \begin{bmatrix} 1 & 8 \\ 0 & 3 \end{bmatrix}$ and $\beta\alpha = \begin{bmatrix} 1 & 4 \\ 0 & 3 \end{bmatrix}$.

Exercise 7. Let $a = \begin{bmatrix} 2 & 18 \\ 0 & 7 \end{bmatrix}$. Then $a \in S$. Is $a \in U(S)$? If yes, then find a^{-1} . Note that S and U(S) are as defined previously.

Solution. $a \in U(S)$ since gcd(2,23) = gcd(7,23) = 1. We can use the form described above for the inverse to find a^{-1} , which is $\begin{bmatrix} 12 & 2 \\ 0 & 10 \end{bmatrix}$.

Exercise 8. Let $M = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \mid a, b, c \in \mathbb{Z} \right\}$. It is easy to see that (M, \times) is a monoid. Note that \times is the normal multiplication of matricies. Let U(M) be the set of all invertible elements of S under \times . Thus we know $(U(M), \times)$ is a group. Is U(M) an abelian or a nonabelian group? If $\alpha \in U(M)$, find a general form of α . Let $a = \begin{bmatrix} 2 & 18 \\ 0 & 7 \end{bmatrix}$. Then $a \in M$. Is $a \in U(M)$? If yes, then find a^{-1} .

Solution. U(M) is not abelian, for take $\alpha = \begin{bmatrix} 1 & 5 \\ 0 & -1 \end{bmatrix}$ and $\beta = \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix}$. Then $\alpha\beta = \begin{bmatrix} 1 & 9 \\ 0 & -1 \end{bmatrix}$ and $\beta\alpha = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$. Now a general form of α is $\begin{bmatrix} \pm 1 & b \\ 0 & \pm 1 \end{bmatrix}$ with $b \in \mathbb{Z}$. Thus clearly, a as given in the last part of the question does not belong to U(M).