PROBLEM SET 6

HAMID SAGBAN

Exercise 1. Let $(M, *)$ be a group and $(H, *)$ be a subgroup of M such that $H \neq M$.
(a) Define $={ }_{R}$ on M such that for every $a, b \in M$ (a, b not necessarily distinct), $a={ }_{R} b$ if $b^{-1} * a \in H$. Show that $=_{R}$ is an equivalent relation on $(M, *)$.
(b) Assume that M is an abelian group (and hence H is abelian). Let S be the set of all distinct equivalence classes of $\left(M, *,={ }_{R}\right)$. Define a binary opeartion \wedge on S as following: Let $d, k \in S$. Then $d=[a]$ and $k=[b]$ for some $a, b \in M$. Now $[a] \wedge[b]$ means: choose $u \in[a]$ and $j \in[b]$, and let $[a] \wedge[b]=[u * j]$. Show that \wedge is a well-defined relation on S, and then show that (S, \wedge) is an abelian group.

Proof. For (a), we have $a={ }_{R} a \Longleftrightarrow a^{-1} * a \in H$, so that $e \in H$, which is true since H is a subgroup of M. Now $a={ }_{R} b \Longleftrightarrow b^{-1} * a \in H$, and since $\left(b^{-1} * a\right)^{-1}=a^{-1} * b \in H$, we have $b={ }_{R} a$. Finally, we have $a={ }_{R} b$ and $b={ }_{R} c \Longleftrightarrow b^{-1} * a \in H$ and $c^{-1} * b \in H$. Now $c^{-1} * b * b^{-1} * a=c^{-1} * a \in H$ and thus $a={ }_{R} c$, as desired.

To show well-definition of \wedge, it suffices to show that $\left(u^{\prime} * j^{\prime}\right)^{-1} *(u * j) \in H$, since this implies $u^{\prime} * j^{\prime}={ }_{R} u * j$ and thus $\left[u^{\prime} * j^{\prime}\right]=[u * j]$. We know that $u^{\prime-1} * u=h_{1}$ for some $h_{1} \in H$, and this is clear since $u^{\prime}, u \in[a]$ $\Longleftrightarrow u^{\prime}={ }_{R} a$ and $u={ }_{R} a \Longleftrightarrow u^{\prime}={ }_{R} u$. Similarly, we have $j^{\prime-1} * j=h_{2}$ for some $h_{2} \in H$. Thus, we have $\left(u^{\prime} * j^{\prime}\right)^{-1} *(u * j)=j^{\prime-1} * u^{\prime-1} * u * j=j^{\prime-1} * h_{1} * j=h_{1} *\left(j^{\prime-1} * j\right)=h_{1} * h_{2} \in H$. Thus $[u * j]=\left[u^{\prime} * j^{\prime}\right]$, and the operation is well-defined.

We now show that S is an abelian group. Take $[a],[b] \in S$, and pick a, b as representatives for $[a],[b]$ respectively. Then $[a] \wedge[b]=[a * b]$. Since $a * b \in M$, and there exists $[c] \in S$ such that $a * b \in[c]$, we have $[a * b]=[c] \in S$, and thus S is closed under \wedge. Now to show associativity, take $[a],[b],[c] \in S$. Then $([a] \wedge[b]) \wedge[c]=[a * b] \wedge[c]=[(a * b) * c]=[a *(b * c)]=[a] \wedge[b * c]=[a] \wedge([b] \wedge[c])$. Now take $e \in M$, then there exists $[x] \in S$ such that $e \in[x]$. Thus $[e]=[x] \in S$, and for any $[a] \in S$, we have $[e] \wedge[a]=[e * a]=[a]$ and $[a] \wedge[e]=[a * e]=[a]$. Now for inverses, take any $a \in M$. There exists $a^{-1} \in M$ such that $a * a^{-1}=a^{-1} * a=e$. There also exist $[x],[y] \in S$ such that $a \in[x]$ and $a^{-1} \in[y]$. Thus $[a]=[x] \in S$ and $\left[a^{-1}\right]=[y] \in S$. Now we have $[a] \wedge\left[a^{-1}\right]=\left[a * a^{-1}\right]=[e]$, and $\left[a^{-1}\right] \wedge[a]=\left[a^{-1} * a\right]=[e]$,
and thus S is a group. It remains to show that its an abelian group, but this is clear by first picking $a, b \in M$. Then there exist $[x],[y] \in S$ such that $a \in[x]$ and $b \in[y]$. Thus $[a]=[x] \in S$ and $[b]=[y] \in S$. Now $[a] \wedge[b]=[a * b]=[b * a]=[b] \wedge[a]$, as desired.

Exercise 2. Let $(M, *)$ be a group.
(a) Let $a, b \in M$ such that $a * b=b * a,|a|=m,|b|=n$, and $\operatorname{gcd}(n, m)=1$. Show that $|a * b|=n m$.
(b) Let $a, b \in M$ such that $a * b=b * a,|a|=m,|b|=n$. Show there is an element $c \in M$ such that $|c|=\operatorname{lcm}(n, m)$.

Lemma 1. Let $a, b \in N^{*}$. Suppose $a \mid b$ and $b \mid a$. Then $a=b$.

Proof. If $a \mid b$, then $b=m a$ for some $m \in N^{*}$. If $b \mid a$, then $a=n b$ for some $n \in N^{*}$. Thus we have $b=m a=m n b$, and thus $m n=1$. The only combination of positive integers that satisfies $m n=1$ is $m=n=1$. Thus we have $a=b$.

Proof of Exercise 2. For (a), we have $(a * b)^{n m}=a^{n m} * b^{n m}=\left(a^{m}\right)^{n} *\left(b^{n}\right)^{m}=(e)^{n} *(e)^{m}=e$. It remains to show that $n m$ is the least positive integer such that $(a * b)^{n m}=e$. Suppose $|a * b|=k$. Then k is a factor of $n m$. Also, since $e^{m}=\left((a * b)^{k}\right)^{m}=(a * b)^{k m}=\left(a^{k m} * b^{k m}\right)=b^{k m}$, we have $n \mid k m$, and thus $n \mid k$ since $\operatorname{gcd}(n, m)=1$. Similarly, $e^{n}=\left((a * b)^{k}\right)^{n}=(a * b)^{k n}=\left(a^{k n} * b^{k n}\right)=a^{k n}$ gives us $m \mid k$. Now since $m \mid k$ and $n \mid k$, and $\operatorname{gcd}(m, n)=1$, we have $m n \mid k$. Since $m n \mid k$ and $k \mid m n$, we have $k=m n$ by Lemma 1.

For (b), we have two cases. Suppose $\operatorname{gcd}(n, m)=1$, and let $c=a * b$. Then by part (a), $|c|=$ $|a * b|=n m=\frac{n m}{\operatorname{gcd}(n, m)}=\operatorname{lcm}(n, m)$. Now suppose $\operatorname{gcd}(n, m)=k>1$. Then there exist two positive integers x, y such that $x y=k$ and $\operatorname{gcd}\left(\frac{m}{x}, \frac{n}{y}\right)=1$. Thus $x \mid m$ and $y \mid n$. Let $c=a^{x} * b^{y}$. We know that $\left|a^{x}\right|=\frac{m}{\operatorname{gcd}(m, x)}=\frac{m}{x}$ and $\left|b^{y}\right|=\frac{n}{\operatorname{gcd}(n, y)}=\frac{n}{y}$. Since $\operatorname{gcd}\left(\frac{m}{x}, \frac{n}{y}\right)=1$, we can apply part (a) to get $|c|=\frac{m}{x} \times \frac{n}{y}=\frac{n m}{\operatorname{gcd}(n, m)}=\operatorname{lcm}(n, m)$, as desired.

Exercise 3. Construct the additive table for $\left(Z_{7},+_{7}\right)$ and the multiplicative table for $\left(Z_{7}^{*}, \times_{7}\right)$.

Solution. The additive table is shown first, followed by the multiplicative table. We emphasize that the entries in the tables are equivalence classes.

	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

