PROBLEM SET 6

HAMID SAGBAN

Exercise 1. Let (M, *) be a group and (H, *) be a subgroup of M such that $H \neq M$.

(a) Define $=_R$ on M such that for every $a, b \in M$ (a, b not necessarily distinct), $a =_R b$ if $b^{-1} * a \in H$. Show that $=_R$ is an equivalent relation on (M, *).

(b) Assume that M is an abelian group (and hence H is abelian). Let S be the set of all distinct equivalence classes of $(M, *, =_R)$. Define a binary opeartion \land on S as following: Let $d, k \in S$. Then d = [a] and k = [b] for some $a, b \in M$. Now $[a] \land [b]$ means: choose $u \in [a]$ and $j \in [b]$, and let $[a] \land [b] = [u * j]$. Show that \land is a well-defined relation on S, and then show that (S, \land) is an abelian group.

Proof. For (a), we have $a =_R a \iff a^{-1} * a \in H$, so that $e \in H$, which is true since H is a subgroup of M. Now $a =_R b \iff b^{-1} * a \in H$, and since $(b^{-1} * a)^{-1} = a^{-1} * b \in H$, we have $b =_R a$. Finally, we have $a =_R b$ and $b =_R c \iff b^{-1} * a \in H$ and $c^{-1} * b \in H$. Now $c^{-1} * b * b^{-1} * a = c^{-1} * a \in H$ and thus $a =_R c$, as desired.

To show well-definition of \wedge , it suffices to show that $(u'*j')^{-1}*(u*j) \in H$, since this implies $u'*j' =_R u*j$ and thus [u'*j'] = [u*j]. We know that $u'^{-1}*u = h_1$ for some $h_1 \in H$, and this is clear since $u', u \in [a]$ $\iff u' =_R a$ and $u =_R a \iff u' =_R u$. Similarly, we have $j'^{-1}*j = h_2$ for some $h_2 \in H$. Thus, we have $(u'*j')^{-1}*(u*j) = j'^{-1}*u'^{-1}*u*j = j'^{-1}*h_1*j = h_1*(j'^{-1}*j) = h_1*h_2 \in H$. Thus [u*j] = [u'*j'], and the operation is well-defined.

We now show that S is an abelian group. Take $[a], [b] \in S$, and pick a, b as representatives for [a], [b] respectively. Then $[a] \wedge [b] = [a * b]$. Since $a * b \in M$, and there exists $[c] \in S$ such that $a * b \in [c]$, we have $[a * b] = [c] \in S$, and thus S is closed under \wedge . Now to show associativity, take $[a], [b], [c] \in S$. Then $([a] \wedge [b]) \wedge [c] = [a * b] \wedge [c] = [(a * b) * c] = [a * (b * c)] = [a] \wedge [b * c] = [a] \wedge ([b] \wedge [c])$. Now take $e \in M$, then there exists $[x] \in S$ such that $e \in [x]$. Thus $[e] = [x] \in S$, and for any $[a] \in S$, we have $[e] \wedge [a] = [e * a] = [a]$ and $[a] \wedge [e] = [a * e] = [a]$. Now for inverses, take any $a \in M$. There exists $a^{-1} \in M$ such that $a * a^{-1} = a^{-1} * a = e$. There also exist $[x], [y] \in S$ such that $a \in [x]$ and $a^{-1} \in [y]$. Thus $[a] = [x] \in S$ and $[a^{-1}] = [y] \in S$. Now we have $[a] \wedge [a^{-1}] = [a * a^{-1}] = [e]$, and $[a^{-1}] \wedge [a] = [a^{-1} * a] = [e]$,

and thus S is a group. It remains to show that its an abelian group, but this is clear by first picking $a, b \in M$. Then there exist $[x], [y] \in S$ such that $a \in [x]$ and $b \in [y]$. Thus $[a] = [x] \in S$ and $[b] = [y] \in S$. Now $[a] \wedge [b] = [a * b] = [b * a] = [b] \wedge [a]$, as desired.

Exercise 2. Let (M, *) be a group.

(a) Let $a, b \in M$ such that a * b = b * a, |a| = m, |b| = n, and gcd(n, m) = 1. Show that |a * b| = nm.

(b) Let $a, b \in M$ such that a * b = b * a, |a| = m, |b| = n. Show there is an element $c \in M$ such that $|c| = \operatorname{lcm}(n, m)$.

Lemma 1. Let $a, b \in N^*$. Suppose $a \mid b$ and $b \mid a$. Then a = b.

Proof. If $a \mid b$, then b = ma for some $m \in N^*$. If $b \mid a$, then a = nb for some $n \in N^*$. Thus we have b = ma = mnb, and thus mn = 1. The only combination of positive integers that satisfies mn = 1 is m = n = 1. Thus we have a = b.

Proof of Exercise 2. For (a), we have $(a * b)^{nm} = a^{nm} * b^{nm} = (a^m)^n * (b^n)^m = (e)^n * (e)^m = e$. It remains to show that nm is the least positive integer such that $(a * b)^{nm} = e$. Suppose |a * b| = k. Then k is a factor of nm. Also, since $e^m = ((a * b)^k)^m = (a * b)^{km} = (a^{km} * b^{km}) = b^{km}$, we have n | km, and thus n | k since gcd(n,m) = 1. Similarly, $e^n = ((a * b)^k)^n = (a * b)^{kn} = (a^{kn} * b^{kn}) = a^{kn}$ gives us m | k. Now since m | k and n | k, and gcd(m,n) = 1, we have mn | k. Since mn | k and k | mn, we have k = mn by Lemma 1.

For (b), we have two cases. Suppose gcd(n,m) = 1, and let c = a * b. Then by part (a), $|c| = |a * b| = nm = \frac{nm}{gcd(n,m)} = lcm(n,m)$. Now suppose gcd(n,m) = k > 1. Then there exist two positive integers x, y such that xy = k and $gcd(\frac{m}{x}, \frac{n}{y}) = 1$. Thus $x \mid m$ and $y \mid n$. Let $c = a^x * b^y$. We know that $|a^x| = \frac{m}{gcd(m,x)} = \frac{m}{x}$ and $|b^y| = \frac{n}{gcd(n,y)} = \frac{n}{y}$. Since $gcd(\frac{m}{x}, \frac{n}{y}) = 1$, we can apply part (a) to get $|c| = \frac{m}{x} \times \frac{n}{y} = \frac{nm}{gcd(n,m)} = lcm(n,m)$, as desired.

Exercise 3. Construct the additive table for $(Z_7, +_7)$ and the multiplicative table for (Z_7^*, \times_7) .

Solution. The additive table is shown first, followed by the multiplicative table. We emphasize that the entries in the tables are *equivalence classes*.

PROBLEM SET 6

	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1