
PROBLEM SET 6

HAMID SAGBAN

Exercise 1. Let (M, ∗) be a group and (H, ∗) be a subgroup of M such that H 6= M .

(a) Define =R on M such that for every a, b ∈ M (a, b not necessarily distinct), a =R b if b−1 ∗ a ∈ H.

Show that =R is an equivalent relation on (M, ∗).
(b) Assume that M is an abelian group (and hence H is abelian). Let S be the set of all distinct equivalence

classes of (M, ∗, =R). Define a binary opeartion ∧ on S as following: Let d, k ∈ S. Then d = [a] and

k = [b] for some a, b ∈ M . Now [a]∧ [b] means: choose u ∈ [a] and j ∈ [b], and let [a]∧ [b] = [u ∗ j]. Show

that ∧ is a well-defined relation on S, and then show that (S,∧) is an abelian group.

Proof. For (a), we have a =R a ⇐⇒ a−1 ∗ a ∈ H, so that e ∈ H, which is true since H is a subgroup of

M . Now a =R b ⇐⇒ b−1 ∗ a ∈ H, and since (b−1 ∗ a)−1 = a−1 ∗ b ∈ H, we have b =R a. Finally, we have

a =R b and b =R c ⇐⇒ b−1 ∗ a ∈ H and c−1 ∗ b ∈ H. Now c−1 ∗ b ∗ b−1 ∗ a = c−1 ∗ a ∈ H and thus

a =R c, as desired.

To show well-definition of ∧, it suffices to show that (u′∗j′)−1∗(u∗j) ∈ H, since this implies u′∗j′ =R u∗j
and thus [u′ ∗ j′] = [u ∗ j]. We know that u′−1 ∗ u = h1 for some h1 ∈ H, and this is clear since u′, u ∈ [a]

⇐⇒ u′ =R a and u =R a ⇐⇒ u′ =R u. Similarly, we have j′−1 ∗ j = h2 for some h2 ∈ H. Thus, we have

(u′ ∗ j′)−1 ∗ (u∗ j) = j′−1 ∗u′−1 ∗u∗ j = j′−1 ∗h1 ∗ j = h1 ∗ (j′−1 ∗ j) = h1 ∗h2 ∈ H. Thus [u∗ j] = [u′ ∗ j′],

and the operation is well-defined.

We now show that S is an abelian group. Take [a], [b] ∈ S, and pick a, b as representatives for [a], [b]

respectively. Then [a] ∧ [b] = [a ∗ b]. Since a ∗ b ∈ M , and there exists [c] ∈ S such that a ∗ b ∈ [c],

we have [a ∗ b] = [c] ∈ S, and thus S is closed under ∧. Now to show associativity, take [a], [b], [c] ∈ S.

Then ([a] ∧ [b]) ∧ [c] = [a ∗ b] ∧ [c] = [(a ∗ b) ∗ c] = [a ∗ (b ∗ c)] = [a] ∧ [b ∗ c] = [a] ∧ ([b] ∧ [c]). Now take

e ∈ M , then there exists [x] ∈ S such that e ∈ [x]. Thus [e] = [x] ∈ S, and for any [a] ∈ S, we have

[e]∧ [a] = [e∗a] = [a] and [a]∧ [e] = [a∗e] = [a]. Now for inverses, take any a ∈ M . There exists a−1 ∈ M

such that a ∗ a−1 = a−1 ∗ a = e. There also exist [x], [y] ∈ S such that a ∈ [x] and a−1 ∈ [y]. Thus

[a] = [x] ∈ S and [a−1] = [y] ∈ S. Now we have [a]∧[a−1] = [a∗a−1] = [e], and [a−1]∧[a] = [a−1∗a] = [e],
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and thus S is a group. It remains to show that its an abelian group, but this is clear by first picking

a, b ∈ M . Then there exist [x], [y] ∈ S such that a ∈ [x] and b ∈ [y]. Thus [a] = [x] ∈ S and [b] = [y] ∈ S.

Now [a] ∧ [b] = [a ∗ b] = [b ∗ a] = [b] ∧ [a], as desired.

¤

Exercise 2. Let (M, ∗) be a group.

(a) Let a, b ∈ M such that a ∗ b = b ∗ a, |a| = m, |b| = n, and gcd(n,m) = 1. Show that |a ∗ b| = nm.

(b) Let a, b ∈ M such that a ∗ b = b ∗ a, |a| = m, |b| = n. Show there is an element c ∈ M such that

|c| = lcm(n,m).

Lemma 1. Let a, b ∈ N∗. Suppose a | b and b | a. Then a = b.

Proof. If a | b, then b = ma for some m ∈ N∗. If b | a, then a = nb for some n ∈ N∗. Thus we have

b = ma = mnb, and thus mn = 1. The only combination of positive integers that satisfies mn = 1 is

m = n = 1. Thus we have a = b. ¤

Proof of Exercise 2. For (a), we have (a∗b)nm = anm ∗bnm = (am)n ∗(bn)m = (e)n ∗(e)m = e. It remains

to show that nm is the least positive integer such that (a ∗ b)nm = e. Suppose |a ∗ b| = k. Then k is a

factor of nm. Also, since em = ((a ∗ b)k)m = (a ∗ b)km = (akm ∗ bkm) = bkm, we have n | km, and thus

n | k since gcd(n,m) = 1. Similarly, en = ((a ∗ b)k)n = (a ∗ b)kn = (akn ∗ bkn) = akn gives us m | k. Now

since m | k and n | k, and gcd(m,n) = 1, we have mn | k. Since mn | k and k | mn, we have k = mn by

Lemma 1.

For (b), we have two cases. Suppose gcd(n,m) = 1, and let c = a ∗ b. Then by part (a), |c| =

|a ∗ b| = nm = nm
gcd(n,m) = lcm(n, m). Now suppose gcd(n, m) = k > 1. Then there exist two positive

integers x, y such that xy = k and gcd(m
x , n

y ) = 1. Thus x | m and y | n. Let c = ax ∗ by. We know

that |ax| = m
gcd(m,x) = m

x and |by| = n
gcd(n,y) = n

y . Since gcd(m
x , n

y ) = 1, we can apply part (a) to get

|c| = m
x × n

y = nm
gcd(n,m) = lcm(n,m), as desired. ¤

Exercise 3. Construct the additive table for (Z7, +7) and the multiplicative table for (Z∗7 ,×7).

Solution. The additive table is shown first, followed by the multiplicative table. We emphasize that the

entries in the tables are equivalence classes.
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0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 4 6 1 3 5

3 3 6 2 5 1 4

4 4 1 5 2 6 3

5 5 3 1 6 4 2

6 6 5 4 3 2 1
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