## PROBLEM SET 5

HAMID SAGBAN

Exercise 1. Let $a \in S_{8}$ such that $a \neq e$. Find all possibilites for $|a|$. For each order you claim, say m, give an element $a \in S_{8}$ such that $|a|=m$.

Solution. The possible orders of elements living in $S_{8}$ are $2,3,4,5,6,7,8,10,12$ and 15 . We demonstrate this below:
$\left|(123) \circ\left(\begin{array}{llll}4 & 6 & 7 & 8\end{array}\right)\right|=15$
$\left|\left(\begin{array}{lll}1 & 2 & 3\end{array}\right) \circ\left(\begin{array}{lll}5 & 6 & 7\end{array}\right)\right|=12$
$|(12) \circ(45678)|=10$
$|(12345678)|=8$
$|(1234567)|=7$
$|(123456)|=6$
$|(12345)|=5$
$\left|\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)\right|=4$
$\left|\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right|=3$
$|(12)|=2$

Exercise 2. Give me an abelian subgroup, say $H$, of the group $\left(S_{5}, \circ\right)$ such that $|H|=6$.

Solution. Let $h=\left(\begin{array}{ll}1 & 2\end{array}\right) \circ(45)$. We have $|h|=\operatorname{lcm}(3,2)=6$. Let $H=<h>$, thus $|H|=6$.

Exercise 3. Let $(M, *)=\langle w\rangle$ be a finite cyclic group of order 12 and generaterd by $w \in M$. Find all elements in $M$ that have order 12. Also, find all elements in $M$ that have order 4. In both cases, write your answers in terms of $w$.

Solution. For the first part, the orders of $w, w^{5}, w^{7}, w^{11}$ are 12 , since 5,7 , and 11 are the only relatively prime numbers to 12 . For the latter, we have $w^{3}$ and $w^{9}$, all with order 4 .

