PROBLEM SET 5

HAMID SAGBAN

Exercise 1. Let $a \in S_8$ such that $a \neq e$. Find all possibilites for |a|. For each order you claim, say m, give an element $a \in S_8$ such that |a| = m.

Solution. The possible orders of elements living in S_8 are 2, 3, 4, 5, 6, 7, 8, 10, 12 and 15. We demonstrate this below:

 $|(1\ 2\ 3) \circ (4\ 5\ 6\ 7\ 8)| = 15$ $|(1\ 2\ 3\ 4) \circ (5\ 6\ 7)| = 12$ $|(1\ 2\ 3\ 4) \circ (4\ 5\ 6\ 7\ 8)| = 10$ $|(1\ 2\ 3\ 4\ 5\ 6\ 7\ 8)| = 8$ $|(1\ 2\ 3\ 4\ 5\ 6\ 7)| = 7$ $|(1\ 2\ 3\ 4\ 5\ 6\ 7)| = 7$ $|(1\ 2\ 3\ 4\ 5\ 6)| = 6$ $|(1\ 2\ 3\ 4\ 5)| = 5$ $|(1\ 2\ 3\ 4)| = 4$ $|(1\ 2\ 3)| = 3$ $|(1\ 2)| = 2$

Exercise 2. Give me an abelian subgroup, say H, of the group (S_5, \circ) such that |H| = 6.

Solution. Let $h = (1 \ 2 \ 3) \circ (4 \ 5)$. We have |h| = lcm(3, 2) = 6. Let $H = \langle h \rangle$, thus |H| = 6.

Exercise 3. Let $(M, *) = \langle w \rangle$ be a finite cyclic group of order 12 and generaterd by $w \in M$. Find all elements in M that have order 12. Also, find all elements in M that have order 4. In both cases, write your answers in terms of w.

Solution. For the first part, the orders of w, w^5 , w^7 , w^{11} are 12, since 5, 7, and 11 are the only relatively prime numbers to 12. For the latter, we have w^3 and w^9 , all with order 4.