PROBLEM SET 3

HAMID SAGBAN

Exercise 1. Let H be a subgroup of a group S, and $a \in S / H$. Show a * H is never a subgroup of S.

Proof. We know that a subgroup H of S contains the identity of S. To form a coset of H, one has to select $a \in S / H$. Suppose this is done, then we know that $a * H \cap H$ is empty, so the identity of H (that is, the identity of S) is not an element of a * H. Thus a * H cannot be a subgroup of S.

Exercise 2. Given $\alpha = (1\ 2\ 3\ 4\ 5\ 6\ 7\ 8)$, with the identity map as sketched. Find m so that α^m is the following:

Solution.
$$m = 4$$
, with $\alpha^m = \alpha^4 = (1 \ 5) \circ (2 \ 6) \circ (3 \ 7) \circ (4 \ 8)$.

Exercise 3. Let $H = \{e, (1 \ 3)\}$. This is a subgroup of S_3 . Find all distinct left and right cosets of H (including e * H and H * e).

Solution. We know by Lagrange's Theorem that $[S_3:H] = 3$; we begin by computing the left cosets.

$$e * H = \{e, (1 \ 3)\}$$

$$(2 \ 3) * H = \{(2 \ 3), (1 \ 2 \ 3)\}$$

$$(1 \ 3 \ 2) * H = \{(1 \ 3 \ 2), (1 \ 2)\}$$

and one can easily verify that $H \cup (2 \ 3) * H \cup (1 \ 3 \ 2) * H = S_3$. We now list the right cosets,

$$H * e = \{e, (1 \ 3)\}$$
$$H * (2 \ 3) = \{(2 \ 3), (1 \ 3 \ 2)\}$$
$$H * (1 \ 2 \ 3) = \{(1 \ 2 \ 3), (1 \ 2)\}$$

Exercise 4. Let (M, *) be a group such that $a^2 = e$ for all $a \in M$. Prove that M is an abelian group.

Proof. Take $\alpha, \beta \in M$. By the hypothesis, $(\alpha * \beta)^2 = e$. So we have $\alpha * \beta = \alpha * e * \beta = \alpha * \alpha * \beta * \alpha * \beta * \beta = e * \beta * \alpha * e = \beta * \alpha$. Thus M is an abelian group.