PROBLEM SET 3

HAMID SAGBAN

Exercise 1. Let H be a subgroup of a group S, and $a \in S / H$. Show $a * H$ is never a subgroup of S. Proof. We know that a subgroup H of S contains the identity of S. To form a coset of H, one has to select $a \in S / H$. Suppose this is done, then we know that $a * H \cap H$ is empty, so the identity of H (that is, the identity of S) is not an element of $a * H$. Thus $a * H$ cannot be a subgroup of S.

Exercise 2. Given $\alpha=(12345678)$, with the identity map as sketched. Find m so that α^{m} is the following:

Solution. $m=4$, with $\alpha^{m}=\alpha^{4}=(15) \circ(26) \circ(37) \circ(48)$.

Exercise 3. Let $H=\left\{e,\left(\begin{array}{ll}1 & 3\end{array}\right)\right\}$. This is a subgroup of S_{3}. Find all distinct left and right cosets of H (including $e * H$ and $H * e$).

Solution. We know by Lagrange's Theorem that $\left[S_{3}: H\right]=3$; we begin by computing the left cosets.

$$
\begin{gathered}
\left.e * H=\left\{\begin{array}{lll}
e, & (1 & 3
\end{array}\right)\right\} \\
\left(\begin{array}{ll}
2 & 3
\end{array}\right) * H=\left\{\left(\begin{array}{lll}
2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\right\} \\
\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right) * H=\left\{\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right),\left(\begin{array}{ll}
1 & 2
\end{array}\right)\right\}
\end{gathered}
$$

and one can easily verify that $H \cup\left(\begin{array}{ll}2 & 3\end{array}\right) * H \cup\left(\begin{array}{ll}1 & 3\end{array}\right) * H=S_{3}$. We now list the right cosets,

$$
\begin{gathered}
H * e=\left\{e,\left(\begin{array}{ll}
1 & 3
\end{array}\right)\right\} \\
H *\left(\begin{array}{ll}
2 & 3
\end{array}\right)=\left\{\left(\begin{array}{lll}
2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)\right\} \\
H *\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)=\left\{\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right),\left(\begin{array}{ll}
1 & 2
\end{array}\right)\right\}
\end{gathered}
$$

Exercise 4. Let $(M, *)$ be a group such that $a^{2}=e$ for all $a \in M$. Prove that M is an abelian group.

Proof. Take $\alpha, \beta \in M$. By the hypothesis, $(\alpha * \beta)^{2}=e$. So we have $\alpha * \beta=\alpha * e * \beta=\alpha * \alpha * \beta * \alpha * \beta * \beta=$ $e * \beta * \alpha * e=\beta * \alpha$. Thus M is an abelian group.

