PROBLEM SET 2

HAMID SAGBAN

Exercise 1. Let $\alpha=\left(\begin{array}{ccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 4 & 5 & 6 & 1 & 7 & 2\end{array}\right)$. Write α as a composition of disjoint cycles. Solution. $\alpha=\left(\begin{array}{ll}1 & 3\end{array}\right) \circ(2467)$.

Exercise 2. Let X be an infinite set, and $f \in X^{X}$. We say f is almost identical iff the set $\{\alpha \in$ $X \mid f(\alpha) \neq \alpha\}$ is finite. Now let $M=\left\{f \in X^{X} \mid \mathrm{f}\right.$ is almost identical $\}$. Show that (M, \circ) is a monoid.

Proof. Associativity follows trivially, for \circ is an associative binary operation on X^{X}, and M is a subset of X^{X}. There exists $e(\alpha)=\alpha$ in M since $\{\alpha \in X \mid e(\alpha) \neq \alpha\}=\emptyset$ is finite. To show closure, take $f, g \in M$. Then we know that $F=\{\alpha \in X \mid f(\alpha) \neq \alpha\}$ and $G=\{\alpha \in X \mid g(\alpha) \neq \alpha\}$ are finite. We have to show that $H=\{\alpha \in X \mid f \circ g(\alpha) \neq \alpha\}$ is finite. We denote the set $X-G$ to be $\{\alpha \in X \mid \alpha \notin G\}$. Since $g(\alpha)=\alpha$ for all but finitely many $\alpha \in X$ (to put it more precisely, $g(\alpha)=\alpha$ for all $\alpha \in X-G$), we have $J=\{\alpha \in X-G \mid f \circ g(\alpha) \neq \alpha\}=\{\alpha \in X-G \mid f(\alpha) \neq \alpha\}$ is finite since J is a subset of F. It remains to show that $E=\{\alpha \in G \mid f \circ g(\alpha) \neq \alpha\}$ is finite, but G is finite and thus E must also be finite. Thus H is finite, and $f \circ g$ is almost identical. We have thus shown that (M, \circ) is a monoid.

Exercise 3. Let $n \geq 3$. Show that S_{n} is a nonabelian group.

Proof. We know that S_{n} is a group. Take two 2-cycle elements (12), (2 3), denoted as α and β, respectively. Then $\alpha \circ \beta=\left(\begin{array}{ll}1 & 2\end{array}\right) \circ\left(\begin{array}{ll}2 & 3\end{array}\right)=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$, whereas $\beta \circ \alpha=\left(\begin{array}{ll}2 & 3\end{array}\right) \circ\left(\begin{array}{ll}1 & 2\end{array}\right)=\left(\begin{array}{ll}1 & 3\end{array} 2\right)$. Note that $\alpha, \beta \in S_{n}$ for all $n \geq 3$, but we have shown that α and β do not commute. Thus the conclusion follows.

Exercise 4. Let α, β be disjoint cycles, and n, m be positive integers.
(a) Show that $\alpha^{m} \circ \beta^{n}=\beta^{n} \circ \alpha^{m}$
(b) Show that $\alpha^{-1} \circ \beta=\beta \circ \alpha^{-1}$ and $\alpha^{-1} \circ \beta^{-1}=\beta^{-1} \circ \alpha^{-1}$

Proof. For (a), let $\alpha=\left(a_{1} a_{2} \cdots a_{j}\right)$, and $\beta=\left(b_{1} b_{2} \cdots b_{k}\right)$. Since α and β are disjoint, $a_{r} \neq b_{s}$ for all $r \in\{1,2, \ldots, j\}$ and $s \in\{1,2, \ldots, k\}$. Now assume for the sake of contradiction that $\alpha^{m} \circ \beta^{n} \neq \beta^{n} \circ \alpha^{m}$. That is, α^{m} and β^{n} are not disjoint. Then we can find an entry k that belongs to both α^{m} and β^{n}. Consider α^{m} first. Since k belongs to α^{m}, then by Lemma $1, k$ will equal to a_{y} for some $y \in\{1,2, \ldots, j\}$. That is, k is an entry in α. But the same argument can be used to show that k is an entry in β. We have just shown α and β are not disjoint, contradiction. Thus our original assumption does not hold, and α^{m} and β^{n} are disjoint. The conclusion follows since disjoint implies commutativity.

For (b), $\alpha^{-1}=\left(a_{j} \cdots a_{2} a_{1}\right)$ and $\beta^{-1}=\left(b_{k} \cdots b_{2} b_{1}\right)$, so α^{-1} and β^{-1} consist of all entries of α and β, respectively. But we know that α and β share no common entries, so α^{-1} and β are disjoint, and thus commute. By the same token, α^{-1} and β^{-1} are disjoint, and so they also commute.

Lemma 1. For all positive integers m, α^{m} is written as the composition of disjoint cycles with entries from α.

Proof 1. We induct on m. The base case is trivial. Now suppose inductively that α^{m} is written as the composition of disjoint cycles with entries from α. Then we have to show that α^{m+1} is written as the composition of disjoint cycles with entries from α. That is, $\alpha^{m} \circ \alpha$ is written as the composition of disjoint cycles with entries from α. But by the inductive hypothesis, α^{m} consists of entries from α, and hence α^{m+1} consists of entries of α, and is written as the composition of disjoint cycles with entries from α. Thus the induction is closed.

Proof 2. Take $a_{1} \in \alpha$, then the permutation α^{m} will map a_{1} into a_{1+m}. Similarly, a_{1+m} will be mapped into $a_{1+2 m}$, and so on, until for some $x \in \mathbb{N}, a_{1+x m}=a_{1}$. If we have exhausted the entries in α, then we are done. Otherwise, find the next element not in the first cycle, and repeat the process, so that α^{m} will be written as a composition of disjoint cycles with entries from α.

