HW number Seven, MTH 320, SPRING 2009

Ayman Badawi

QUESTION 1. Find all subgroups of $\left(Z_{13}^{*}, \times_{13}\right)$.

QUESTION 2. a) Let $n \geq 3$. Show that $[n-1] \in\left(U\left(Z_{n}\right), \times_{n}\right)$ is an element of order 2 .
b) Show that $\left(U\left(Z_{35}, \times_{35}\right)\right.$ is not a cyclic group. (Hint: find elements in $U\left(Z_{35}\right)$ that have order 2)
c) We know that $\left(Z_{47}^{*}, \times_{47}\right)$ is a cyclic group. Show that there are as many elements of order 23 as there are elements of order 46 .
d) Let $\alpha \in S_{99}$ such that $|\alpha|=99$. Show that α^{66} is either a 3-cycle or the composition of disjoint 3-cycles.

QUESTION 3. a) Let $S=\left\{\left.\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right] \right\rvert\, a, b, c \in Z_{23}\right\}$. It is easy to see that $\left(S, \times_{23}\right)$ is a monoid. Note that \times_{23} is the normal multiplication of matrices but module 23. (I explain more on Sunday). Let $\mathrm{U}(\mathrm{S})$ be the set of all invertible elements of S under \times_{23}. Thus we know $\left(U(S), \times_{23}\right)$ is a group. Find $|U(S)|$. Is $\mathrm{U}(\mathbf{S})$ an abelian group? or a non-abelian group? EXPLAIN
b) Let $a=\left[\begin{array}{cc}2 & 18 \\ 0 & 7\end{array}\right]$. Then $a \in S$. Is $a \in U(S)$? if yes then find a^{-1}. Note that $\mathrm{S}, \mathrm{U}(\mathbf{S})$ are as in (a).
c)Let $M=\left\{\left.\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right] \right\rvert\, a, b, c \in Z\right\}$. It is easy to see that (M, \times) is a monoid. Note that \times is the normal multiplication of matrices. Let $\mathrm{U}(\mathrm{M})$ be the set of all invertible elements of M under \times. Thus we know $(U(M), \times)$ is a group. Is $\mathrm{U}(\mathrm{M})$ an abelian group? or a non-abelian group? EXPLAIN. If $a \in U(M)$, find a general form (describtion) of a. Let $a=\left[\begin{array}{cc}2 & 18 \\ 0 & 7\end{array}\right]$. Then $a \in M$. Is $a \in U(M)$? if yes then find a^{-1}

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

