HW number Six, MTH 320, SPRING 2009

Ayman Badawi

QUESTION 1. a) Let $(M, *)$ be a group and $(H, *)$ be a subgroup of M such that $H \neq M$. Define $=_{R}$ on M such that for every $a, b \in M$ (a, b not necessary distinct) $a={ }_{R} b$ if $b^{-1} * a \in H$. Show that $={ }_{R}$ is an equivalent relation on $(M, *)$ (you must show reflexive, symmetric, transitive)
b)Let M and H as in (a) but assume that M is an abelian group (and hence H is abelian). Let S be the set of all distinct equivalence classes of $\left(M, *,=_{R}\right)$. Define a binary operation \wedge on S as following: Let $d, k \in S$. Then $d=[a], k=[c]$ for some $a, c \in M$. Now $[a] \wedge[c]$ means : chose $u \in[a]$ and chose $j \in[c]$ and let $[a] \wedge[c]=[u * j]$.
i) Show that \wedge is a well-defined relation on S.
ii) Show that (S, \wedge) is an abelian group.

QUESTION 2. Let $(M, *)$ be a group:
a) Let $a, b \in M$ such that $a * b=b * a,|a|=n,|b|=m$, and $\operatorname{gcd}(n, m)=1$. Show that $|a * b|=n m$.
b)Let $a, b \in M$ such that $a * b=b * a,|a|=n,|b|=m$. Show there is an element $c \in M$ such that $|c|=L C M[n, m]$. (Hint: you may want to use the conclusion of (a))

QUESTION 3. Construct the additive table for $\left(Z_{7},+_{7}\right)$ and the multiplicative table for $\left(Z_{7}^{*}, \times_{7}\right)$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

