HW number Six, MTH 320, SPRING 2009

Ayman Badawi

QUESTION 1. a) Let (M, *) be a group and (H, *) be a subgroup of M such that $H \neq M$. Define $=_R$ on M such that for every $a, b \in M$ (a, b not necessary distinct) $a =_R b$ if $b^{-1} * a \in H$. Show that $=_R$ is an equivalent relation on (M, *) (you must show reflexive, symmetric, transitive)

b)Let M and H as in (a) but assume that M is an abelian group (and hence H is abelian). Let S be the set of all distinct equivalence classes of $(M, *, =_R)$. Define a binary operation \wedge on S as following: Let $d, k \in S$. Then d = [a], k = [c] for some $a, c \in M$. Now $[a] \wedge [c]$ means : chose $u \in [a]$ and chose $j \in [c]$ and let $[a] \wedge [c] = [u * j]$. i) Show that \wedge is a well-defined relation on S.

i) Show that (S, \wedge) is an abelian group.

QUESTION 2. Let (M, *) be a group:

a) Let $a, b \in M$ such that a * b = b * a, |a| = n, |b| = m, and gcd(n, m) = 1. Show that |a * b| = nm.

b)Let $a, b \in M$ such that a * b = b * a, |a| = n, |b| = m. Show there is an element $c \in M$ such that |c| = LCM[n, m]. (Hint: you may want to use the conclusion of (a))

QUESTION 3. Construct the additive table for $(Z_7, +_7)$ and the multiplicative table for (Z_7^*, \times_7) .

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.

E-mail:abadawi@aus.edu, www.ayman-badawi.com