HW number three, MTH 320, SPRING 2009

Ayman Badawi

QUESTION 1. (From the book) Let $S=\left\{\left.\left[\begin{array}{ll}a & a \\ a & a\end{array}\right] \right\rvert\, a \in R \backslash\{0\}\right\}$, and let * be the normal multiplication of matrices. Show that
($\mathrm{S},{ }^{*}$) is a group. (You need to show closure, you need to find an identity, you need to show that for each $c \in S$, there is a $c^{-1} \in S$, YOU DO NOT NEED TO SHOW THE ASSOCIATIVE since we know it is true for matrices under normal multiplications. (This problem is indeed WAWWW NICE)

QUESTION 2. a set (S,*) is called a left-cancelative set if whenever a, b, c are elements in S (not necessary distinct) such that $a * b=a * c$, then $\mathrm{b}=\mathrm{c}$. Also, a set ($\mathrm{S},{ }^{*}$) is called a right-cancelative set if whenever a, b, c are elements in S (not necessary distinct) such that $b * a=c * a$, then $\mathrm{b}=\mathrm{c}$.
a)Prove that every group (M, *) is both left-cancelative and right-cancelative.
b) Give me an EXAMPLE of a monoid ($\mathrm{M}, *$) such that ($\mathrm{M},{ }^{*}$) is neither left-cancelative nor right-cancelative.

QUESTION 3. a) Let $(M, *)$ be group and ($\mathrm{H}, *$) be a subgroup of ($\mathbf{M},{ }^{*}$). Suppose there is an $a \in M \backslash H$ and choose an element $h \in H$. Prove that the left coset $a * H$ is the same as the left coset $a * h * H$.
b)Let $(M, *)$ be group and ($\mathrm{H},{ }^{*}$) be a subgroup of ($\mathrm{M}, *$). Suppose there is an $a \in M \backslash H$ and suppose that $a * H=b * H$ for some $b \in M$. Show that $b \in a * H$.

QUESTION 4. Let $(M, *)$ is a group. Then
a) Suppose that $a * b=b * a$ for some $a, b \in M$. Prove that $a^{-1} * b^{-1}=b^{-1} * a^{-1}$ and $a * b^{-1}=b^{-1} * a$.
b) Suppose that $a \in M$ and $\operatorname{ord}(a)=|a|=m$. Show that $\operatorname{ord}\left(a^{-1}\right)=m$.
c) Let $\alpha=(234) o(234) o(13425) \in S_{5}$. Find $\operatorname{ord}(\alpha)$.

QUESTION 5. a)Let $(M, *)$ be a finite set with a binary operation $*$ on M . Assume that $(\mathrm{M}, *)$ satisfies : Closure property, Associative Property, and assume that ($\mathrm{M}, *$) is left-cancelative and right-cancelative. Prove that ($\mathrm{M}, *$) is a group.
b) Give me an example of a semigroup $(\mathrm{M}, *)$ that satisfies the cancelation property but it is not a group.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

