(1) (a) For suppose not, then we would have $|f(a)|=k$ for some $k \in \mathbb{Z}^{+}$. Now $f\left(a^{k+1}\right)=f\left(a^{k}\right) \diamond f(a)=$ $(f(a))^{k} \diamond f(a)=f(a)$, so that $a^{k+1}=a$ since f is injective. Thus $a^{k}=e$, a contradiction since $|a|=\infty$.
(b) Take $c \in M_{2}$. Since f is bijective, there is $a \in M_{1}$ such that $f(a)=c$. Now take $j \in f(H)$, thus $j=f\left(h_{1}\right)$ for some $h_{1} \in H$. We have $c \diamond j=f(a) \diamond f\left(h_{1}\right)=f\left(a * h_{1}\right)=f\left(h_{2} * a\right)=f\left(h_{2}\right) \diamond c$, for some $h_{2} \in H$. Since $f\left(h_{2}\right) \in f(H)$, the conclusion follows.
(c) Let $y \in A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\} \subseteq M_{1}$. Then $(f(y))^{m}=f\left(y^{m}\right)=f(b)$; distinctness of these solutions follows from the injectivity of f. Now suppose $d^{m}=f(b)$, with $d=f(a)$ for some $a \in M_{1}$. Then $d^{m}=f(b) \Longrightarrow f(a)^{m} \diamond(f(b))^{-1}=e_{m_{2}} \Longrightarrow f\left(a^{m}\right) \diamond f\left(b^{-1}\right)=e_{m_{2}} \Longrightarrow f\left(a^{m} * b^{-1}\right)=f\left(e_{m_{1}}\right)$, so that $a^{m} * b^{-1}=e_{m_{1}}$, and thus $a^{m}=b$. We know $a \in A$, and thus $d \in f(A)$.
(2) We know $U\left(Z_{9}\right)=\{1,2,4,5,7,8\}$ under \times_{9}, and $\left(Z_{3},+_{3}\right) \oplus\left(Z_{2},+_{2}\right)=\{(0,0),(0,1),(1,0),(1,1)$, $(2,0),(2,1)\}$. Since $|2|=6$, we have $U\left(Z_{9}\right)=\langle 2\rangle$, and thus $\left(U\left(Z_{9}\right), \times_{9}\right) \cong\left(Z_{6},+_{6}\right)$. Also, we have $\left(Z_{3},+_{3}\right) \oplus\left(Z_{2},+_{2}\right)=\langle(1,1)\rangle$, so we have $\left(Z_{3},+_{3}\right) \oplus\left(Z_{2},+_{2}\right) \cong\left(Z_{6},+_{6}\right)$. Thus $\left(U\left(Z_{9}\right), \times_{9}\right) \cong\left(Z_{3},+_{3}\right) \oplus$ $\left(Z_{2},+_{2}\right)$. The possibilities for $f(2)$ are $(1,1)$ and $(2,1)$.
(3) Let $f: U\left(Z_{8}\right) \rightarrow U\left(Z_{12}\right)$. Define f explicitly such that $f(1)=1, f(7)=7, f(5)=5, f(3)=11$. Well-definition can be seen from the mapping. Clearly f is injective by construction. Also, for each $b \in U\left(Z_{12}\right)$, we have an $a \in U\left(Z_{8}\right)$ such that $f(a)=b$. It remains to show homomorphism. Since the function is defined explicitly, we show this explicitly:

$$
\begin{aligned}
& f\left(1 \times_{8} 1\right)=f(1)=1=f(1) \times_{12} f(1) \\
& f\left(1 \times_{8} 3\right)=f(3)=11=f(1) \times_{12} f(3) \\
& f\left(1 \times_{8} 5\right)=f(5)=5=f(1) \times_{12} f(5) \\
& f\left(1 \times_{8} 7\right)=f(7)=7=f(1) \times_{12} f(7) \\
& f\left(3 \times_{8} 3\right)=f(1)=1=f(3) \times_{12} f(3) \\
& f\left(3 \times_{8} 5\right)=f(7)=7=f(3) \times_{12} f(5) \\
& f\left(3 \times_{8} 7\right)=f(5)=5=f(3) \times_{12} f(7) \\
& f\left(5 \times_{8} 5\right)=f(1)=1=f(5) \times_{12} f(5)
\end{aligned}
$$

$f\left(5 \times_{8} 7\right)=f(3)=11=f(5) \times_{12} f(7)$
$f(7 \times 87)=f(1)=1=f(7) \times_{12} f(7)$ and we are done.
(4) To show well definition, we have to show $a=b$ implies $f(a)=f(b)$ for all $a, b \in M$. We know $a=b$, so we have $a * b^{-1}=e$, thus $\left(a * b^{-1}\right) *\left(a * b^{-1}\right)^{n-1}=e *\left(a * b^{-1}\right)^{n-1} \Longrightarrow a^{n} * b^{-n}=e$ so $a^{n}=b^{n}$ and we are done. To show one-to-one, we have to show $f(a)=f(b)$ implies $a=b$ for all $a, b \in M$. Thus we have $a^{n}=b^{n} \Longrightarrow a^{n} * b^{-n}=\left(a * b^{-1}\right)^{n}=e$. Suppose for some arbitrary k, we have $k^{n}=e$. Thus $|k| \mid n$, and we know $|k| \mid m$. But since $\operatorname{gcd}(n, m)=1,|k|=1$, and we have $k=e$. So $a * b^{-1}=e$, and thus $a=b$. Onto follows since the mapping is from a set to itself. Now we have to show $f(a * b)=f(a) * f(b)$ for all $a, b \in M$. We have $f(a * b)=(a * b)^{n}=a^{n} * b^{n}=f(a) * f(b)$ and we are done.
(5) We have $\left\langle a^{10}\right\rangle \cap\left\langle a^{21}\right\rangle=\left\{a^{14}, a^{28}\right\}$. Thus $H=\left\langle a^{14}\right\rangle$ and of order 2. Now $\langle a\rangle /\left\langle a^{14}\right\rangle=\left\{\left\{a, a^{15}\right\}\right.$, $\left\{a^{2}, a^{16}\right\},\left\{a^{3}, a^{17}\right\},\left\{a^{4}, a^{18}\right\},\left\{a^{5}, a^{19}\right\},\left\{a^{6}, a^{20}\right\},\left\{a^{7}, a^{21}\right\},\left\{a^{8}, a^{22}\right\},\left\{a^{9}, a^{23}\right\},\left\{a^{10}, a^{24}\right\},\left\{a^{11}, a^{25}\right\}$, $\left.\left\{a^{12}, a^{26}\right\},\left\{a^{13}, a^{27}\right\},\left\{a^{14}, a^{28}\right\}\right\}$, the order of whose elements are $14,7,14,7,14,7,2,7,14,7,14,7$, 14, and 1 , respectively. Since $\left|\langle a\rangle /\left\langle a^{14}\right\rangle\right|=14=7 \times 3$, then by the exam question, $\langle a\rangle /\left\langle a^{14}\right\rangle$ is a cyclic subgroup of order 14 . Thus $\langle a\rangle /\left\langle a^{14}\right\rangle \cong \mathbb{Z}_{n}$ for $n=14$ by the theorem proved in class.

For the latter part of the question, finding m amounts to finding the $\operatorname{lcm}(21,15)$, which is 105 . Thus $21 \mathbb{Z} \cap 15 \mathbb{Z}=105 \mathbb{Z}$, and we are done
(6) Since $10 Z$ is group-isomorphic to Z, it suffices to construct a mapping f from $\left(\mathbb{Q}^{*}, \times\right)$ to $(\mathbb{Z},+)$ such that $\operatorname{image}(f)=Z$. First, let $k(x)$ denote the number of all prime factors of x; suppose $x=p_{1}^{q_{1}} p_{2}^{q_{2}} \ldots p_{n}^{q_{n}}$ for some primes $p_{1}, p_{2}, \ldots, p_{n}$. Then $k(x)=q_{1}+q_{2}+\ldots+q_{n}$. By default, let $k(\pm 1)=0$ since 1 has no prime factors. Also, the fundamental theorem of arithmetic guarantees well-definition of $k(x)$.

Now our mapping is defined as such: take $\frac{a}{b} \in \mathbb{Q}^{*}$. Then $f\left(\frac{a}{b}\right)=k(a)-k(b)$. Take $x, y \in \mathbb{Q}^{*}$, we show $f(x y)=f(x)+f(y)$. Since $x, y \in \mathbb{Q}^{*}$, we have $x=\frac{a}{b}$ and $y=\frac{c}{d}$, for some $a, b, c, d \in \mathbb{Z}^{*}$. Thus $f(x y)=f\left(\frac{a}{b} \times \frac{c}{d}\right)=f\left(\frac{a c}{b d}\right)=k(a c)-k(b d)=k(a)+k(c)-k(b)-k(d)$. Also, $f(x)+f(y)=f\left(\frac{a}{b}\right)+f\left(\frac{c}{d}\right)=$ $k(a)-k(b)+k(c)-k(d)$, and thus we have a group homomorphism that is not trivial. For completeness, we show well-definition of f. Suppose $\frac{a}{b}=\frac{c}{d}$, we have to show $f\left(\frac{a}{b}\right)=f\left(\frac{c}{d}\right)$. From $\frac{a}{b}=\frac{c}{d}$, we have $a d=b c$, so that $k(a d)=k(b c)$. Hence $k(a)+k(d)=k(b)+k(c)$. That is, $k(a)-k(b)=k(c)-k(d)$, and thus $f\left(\frac{a}{b}\right)=f\left(\frac{c}{d}\right)$. We provide an example. Take $\frac{10}{3} \in \mathbb{Q}^{*}$, then $f\left(\frac{10}{1} \times \frac{1}{3}\right)=f\left(\frac{10}{1}\right)+f\left(\frac{1}{3}\right)=$ $k(10)-k(1)+k(1)-k(3)=2-0+0-1=1$, whereas $f\left(\frac{10}{3}\right)=k(10)-k(3)=2-1=1$.
(7) Solved by Ayman: Since $H=\{1,-1\}$ is the only nontrivial finite subgroup of $\left(Q^{*}, \times\right)$ and $Z / 2 Z$ is group- isomorphic to H, we will construct a group homomorphism f from $(Z,+)$ into $\left(Q^{*}, \times\right)$ such that $\operatorname{Ker}(f)=2 Z$. Define $f:(Z,+) \rightarrow\left(Q^{*}, \times\right)$ such that $f($ even $)=1$ (note 0 is an even number) and $f(o d d)=-1$. It is easy to check that f is a group-homomorphism from Z into Q^{*}. Since H is the only finite subgroup of $\left(Q^{*}, \times\right)$, we conclude that there are no other nontrivial group-homomorphisms from Z into Q^{*}.
(8) $|(1,0)|=1,|(1,1)|=2,|(5,0)|=2,|(5,1)|=2,|(7,0)|=2,|(7,1)|=2,|(11,0)|=2,|(11,1)|=2$.
(9) We first prove an auxilary result: take $a, b \in \mathbb{Z}^{+}$such that $a \neq b$, then $\frac{1}{a}+\mathbb{Z} \cap \frac{1}{b}+\mathbb{Z}=\{ \}$. Suppose not, then there is a q such that $q \in \frac{1}{a}+\mathbb{Z}$ and $q \in \frac{1}{b}+\mathbb{Z}$. Thus we have $q=\frac{1}{a}+c$ and $q=\frac{1}{b}+d$, for some $c, d \in \mathbb{Z}$. We have $\frac{1}{a}+c=\frac{1}{b}+d$, so that $\frac{1}{a}=\frac{1}{b}+(d-c) \Longrightarrow \frac{1}{a} \in \frac{1}{b}+\mathbb{Z}$. The only element between 0 and 1 in $\frac{1}{b}+\mathbb{Z}$ is $\frac{1}{b}$, so we must have $\frac{1}{a}=\frac{1}{b}$, a contradiction.

Now suppose there are finitely many elements in \mathbb{Q} / \mathbb{Z}, then we have $[\mathbb{Q}: \mathbb{Z}]=m$ for some $m \in \mathbb{Z}^{+}$. Take the following m number of elements:

$$
1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{m}
$$

each of which is a representative of distinct left cosets by the auxiliary result proved previously. But then $\frac{1}{m+1}+\mathbb{Z}$ is another distinct left coset, contradiction.

Take $x \in \mathbb{Q}-\mathbb{Z}$. Then $x+\mathbb{Z}$ is a left coset of \mathbb{Z}. Now take the minimum of $x+\mathbb{Z}$, and call it y. Then $y=\frac{a}{b}$ such that $\operatorname{gcd}(a, b)=1$. Thus we have $|x+\mathbb{Z}|=|y+\mathbb{Z}|=\left|\frac{a}{b}+\mathbb{Z}\right|=b$, since b is the least number such that $\left(\frac{a}{b}\right)^{b} \in \mathbb{Z}$. Therefore, all elements of \mathbb{Q} / \mathbb{Z} are of finite order.
(10) We know $M_{1} / \operatorname{Ker}(f)$ is isomorphic to \mathbb{Z}_{6}. Thus $\left|M_{1} / \operatorname{Ker}(f)\right|=6$, so that $|\operatorname{Ker}(f)|=5$. Take $a \neq e \in \operatorname{Ker}(f)$. Then $|a|=5$. Since there is a b such that $f(b)=1$, we have $|1|||b|$, thus 6$||b|$. Therefore, $|b|$ is either 6 or 30 . If it is 30 , we are done. Otherwise assume $|b|=6$. Then $|a * b|=30$, and we are done.

