EXAM one, MTH 320, SPRING 2009

Ayman Badawi

QUESTION 1. Write down T or F (Do not justify your answer)
(i) If $(M, *)$ is an abelian group and $a, b \in M$ such that $|a|=6$ and $|b|=8$, then $|a * b|=48 \mathrm{~F}$
(ii) $\left(Z_{4},+_{4}\right) \oplus\left(Z_{5}^{*}, \times_{5}\right)$ is a cyclic group. F
(iii) Every subgroup of an abelian group is normal. T
(iv) A_{6} does not contain an element of order $8 . \mathrm{T}$
(v) If M is a group with n elements and k divides n, then M has a subgroup H such that H has k elements. F
(vi) If M is a cyclic group with 18 elements and k is the number of all subgroups of M with 6 elements, then $k=\Phi(6) . \mathrm{F}$
(vii) If M is a cyclic group with 36 elements, then there are exactly 12 elements in M such that each is of order 36 . T

QUESTION 2. Let $(M, *)$ be a group. Suppose that $\{e\}$ and M are the only subgroups of M. Prove that M is a cyclic group with prime number of elements.

Proof. Suppose if we have decided to assume that $\{e\}$ and M are the only subgroups of M. Since an infinite group must have infinitely many subgroups, we conclude that M is a finite group. Let $n=|M|_{s}$ and let $a \in M \backslash\{e\}$. Since $\{e\}$ and M are the only subgroups of M, we conclude that $(a)=M$. Hence M is cyclic. Suppose that $|M|_{s}=n=k l$ for some integers k, l such that $k \neq 1$ and $l \neq 1$. Then we know that M must have a subgroup of order K and it must have a subgroup of order l, which is impossible by the hypothesis. Hence n must be a prime number.

QUESTION 3. a) Let $(H, *)$ be a subgroup of $(M, *)$. Show that the identity element of H is the same as the identity element of M.

Proof. Let e_{m} be the identity of M and let e_{h} be the identity of H. We show that $e_{m}=e_{h}$. Let $a \in H$. Since $a \in H$, we know that $a * e_{h}=a$. Since $a \in M$, we know that $a * e_{m}=a$. Hence $a * e_{h}=a * e_{m}$ (in M). Since M is left-cancelative, we conclude that $e_{h}=e_{m}$.
b) Give me an example of two sets H, M such that $H \subset M,(M, *)$ is a monoid, $(H, *)$ is a group but the identity element of H is not the identity element of M.

Let $M=\left(Z_{14}, \times_{1} 4\right)$. Then M is a monoid with 1 as the identity (note M is not a group). Let $H=\{2,4,6,8,10,12\}$. Then $H \subset M$ and we know that $\left(H, \times_{14}\right)$ is a agroup with 8 as the identity.

QUESTION 4. a) Given $\left(M_{1}, *\right),\left(M_{2}, \square\right)$ are two groups. Let $a \in M_{1}$ such that $|a|=n, b \in M_{2}$ such that $|b|=k$ We know that $(a, b) \in\left(M_{1}, *\right) \oplus\left(M_{2}, \square\right)$. Show that $|(a, b)|=L C M[n, k]$

Proof. Let $l=L C M[n, k]$. Since $n \mid l$ and $k \mid l$, we conclude that $(a, b)^{l}=\left(a^{l}, b^{l}\right)=\left(e_{m_{1}}, e_{m_{2}}\right)$. Now let $m=|(a, b)|$. Thus $(a, b)^{m}=\left(a^{m}, b^{m}\right)=\left(e_{m_{1}}, e_{m_{2}}\right)$. Since $a^{m}=e_{m_{1}}$, we conclude $n \mid m$. Since $b^{m}=e_{m_{2}}$, we conclude that $k \mid m$. Since $(a, b)^{l}=(a, b)^{m}=\left(e_{m_{1}}, e_{m_{2}}\right)$ and l is the least positive integer such that $n \mid l$ and $k \mid l$, we conclude that $l=m=L C M[n, k]$.
b) Given $\left(M_{1}, *\right),\left(M_{2}, \square\right)$ are two CYCLIC groups such that M_{1} has 27 elements and M_{2} has 16 elements. Let $M=\left(M_{1}, *\right) \oplus\left(M_{2}, \square\right)$. Does M have an element of order 24? if yes, how many elements in M have order 24?

Solution: By the THEOREM, we know that M is cyclic with $3^{3} \times 2^{4}$ elements. Since $24=3 \times 2^{3}$ divides the order of M, we know there is an element $a=\left(m_{1}, m_{2}\right)$ of order 24 . By staring and by the above result, an element $a=\left(m_{1}, m_{2}\right)$ in M has order 24 if and only if the order of m_{1} in M_{1} is 3 and the order of m_{2} in M_{2} is 8 . Since M_{1} is cyclic, we know there are exactly $\Phi(3)$ elements in M_{1} of order 3 . Also, since M_{2} is cyclic, we know there are exactly $\Phi(8)$ elements in M_{2} of order 8 . Thus THERE ARE EXACTLY $\Phi(3) \times \Phi(8)=2 \times 4$ elements in M of order 24. (Another argument that is much shorter: Since M is cyclic, we know there are exactly $\Phi(24)$ elements in M of order 24 . Since $\Phi(24)=8$, there are exactly $\Phi(24)=8$ elements in M of order 24.)

QUESTION 5. Let $\alpha=(235) o(35146) \in S_{6}$. Is $\alpha \in A_{6}$? Find $|\alpha|$. SO EASY....Yes, order of α is 4 .

QUESTION 6. a)Let $(H, *)$ be a normal subgroup of a group $(\mathrm{M}, *)$. We know that $(M / H, \wedge)$ is a group. Let $a \in M$. Then $a * H \in M / H$. Suppose $|a|=k<\infty$. Show that $|a * H|$ divides k.

Proof. Since $|a|=k$, we know that $(a * H)^{k}=a^{k} * H=e * H=H$. Since H is the identity of the group M/H and $a * H$ is an element of M / H, we know that $|a * H|$ must divide k.
b) Let $(M, *)$ be an abelian group with $q_{1} \times q_{2}$ elements, where q_{1} and q_{2} are two distinct prime numbers. PROVE that M is cyclic.

PROOF. Let $a \in M$ such that $a \neq e$. If $|a|=q_{1} \times q_{2}$, then there is nothing to prove. Hence assume that $|a| \neq q_{1} \times q_{2}$. Thus $|a|=q_{1}$ or q_{2}. We may assume that $|a|=q_{1}$. Thus $H=\left\{a, a^{2}, a^{3}, \ldots, a^{q_{1}}=e\right\}$ is a subgroup of M. Since M is abelian, H is normal. Hence $(M / H, \wedge)$ is a group with exactly q_{2} elements (note number of elements in $\mathrm{M} / \mathrm{H}=$ number of elements in M divided by number of elements in H). Since q_{2} is prime, M / H is a cyclic group. Hence there is an element say $b * H \in M / H$ such that $|b * H|=q_{2}$, and $M / H=(b * H)$. By (a) above, we know $q_{2}=|b * H|$ must divide $|b|$. Hence either $|b|=q_{1} \times q_{2}$ or $|b|=q_{2}$. If $|b|=q_{1} \times q_{2}$, then $M=(b)$ and we are done. Hence assume $|b|=q_{2}$. We already know that H is cyclic and $H=(a)$ and $|a|=q_{1}$. Since M is abelian, $a * b=b * a$. Since $\operatorname{gcd}(|a|,|b|)=1$, we know that $|a * b|=q_{1} \times q_{2}$. Thus $M=(a * b)$ is cyclic.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

