Name: Djamila Ait Elhadi
Student ID: 00098182
MTH512 Homework $\sqrt{5}$ ${ }^{18}$ May 2023 Advanced Linear Algebra

1. Given A is similar to $H=C(\alpha-4) \oplus C(\alpha-4) \oplus C\left(\alpha^{2}+\alpha-20\right) \oplus C\left(\alpha^{2}+\alpha-20\right)$.

Then A is similar to a matrix J where J is in Jordan form.
(i) Explicitly, write down the entries of J.

Answer: $C_{A}(\alpha)=(\alpha-4)^{4}(\alpha-5)^{2}, m_{A}(\alpha)=(\alpha-4)(\alpha-5)$. Therefore, $J=J_{1}(4) \oplus J_{1}(4) \oplus J_{1}(4) \oplus J_{1}(4) \oplus J_{1}(-5) \oplus J_{1}(-5)$. Explicitly,

$$
J=\left[\begin{array}{cccccc}
4 & 0 & 0 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 & 0 & 0 \\
0 & 0 & 4 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 & -5 & 0 \\
0 & 0 & 0 & 0 & 0 & -5
\end{array}\right]
$$

(ii) What is the dimension of each generalized eigenspace?

Answer: $\operatorname{dim}\left(G-E_{4}(A)\right)=\operatorname{dim}\left(E_{4}(A)\right)=4, \operatorname{dim}\left(G-E_{-5}(A)\right)=$ $\operatorname{dim}\left(E_{-5}(A)\right)=2$
(iii) Theoretically, how do you construct the columns of the invertible matrix Q where $Q^{-1} A Q=J$?
Answer: Since every generalized eigenvector is of order 1 for each eigenvalue, (ie. $\operatorname{dim}\left(G-E_{a}(A)\right)=\operatorname{dim}\left(E_{a}(A)\right)$ for each a), we can choose $v_{1}, v_{2}, v_{3}, v_{4}$ which are independent eigenvectors corresponding to the eigenvalue 4 , and w_{1}, w_{2} which are independent eigenvectors corresponding to the eigenvalue 5 . These vectors form a basis for \mathbb{R}^{6}.
2. Given A is 4×4 and A is similar to $J_{4}(3)$.

(i) Find $C_{A}(\alpha)$ and $m_{A}(\alpha)$.

Answer: $C_{A}(\alpha)=m_{A}(\alpha)=(\alpha-3)^{4}$.

(ii) find $\operatorname{dim}\left(E_{3}(A)\right)$ and $\operatorname{dim}\left(G-E_{3}(A)\right)$.

Answer: $\operatorname{dim}\left(E_{3}(A)\right)=1$ and $\operatorname{dim}\left(G-E_{3}(A)\right)=4$.

(iii) Theoretically, how do you construct the columns of the invertible matrix Q where $Q^{-1} A Q=J_{4}(3)$?
Answer: Given v is a generalized eigenvector of order 4 corresponding to the eigenvalue 3, the columns of the matrix Q are $\left\{\left(A-3 I_{4}\right)^{3} v,(A-\right.$ $\left.\left.3 I_{4}\right)^{2} v,\left(A-3 I_{4}\right) v, v\right\}$.
(iv) Find the rational form of A.

Answer: $R=C\left((\alpha-3)^{4}\right)$

3. (1) Give me an example of a matrix A in Jordan form such that $C_{A}(\alpha)=$ $(\alpha-1)^{5}(\alpha-4)^{3}$ and $m_{A}(\alpha)=(\alpha-1)^{2}(\alpha-4) 2$ where $\operatorname{dim}\left(E_{1}(A)\right)=3$ [Hint: Write down your answer as $A=J() \oplus J() \oplus \ldots \oplus J()$]
Answer: $J=J_{1}(1) \oplus J_{2}(1) \oplus J_{2}(1) \oplus J_{1}(4) \oplus J_{2}(4)$
(2) Give me an example of a matrix A in Jordan form such that $C_{A}(\alpha)=$ $(\alpha-1)^{5}(\alpha-4)^{3}$ and $m_{A}(\alpha)=(\alpha-1)^{2}(\alpha-4) 2$ where $\operatorname{dim}\left(E_{1}(A)\right)=4$ Answer: $J=J_{1}(1) \oplus J_{1}(1) \oplus J_{1}(1) \oplus J_{2}(1) \oplus J_{1}(4) \oplus J_{2}(4)$
4. Assume A is 4×4 s.t. $C_{A}(\alpha)=(\alpha-3)^{4}$.

(i) Find all possible Jordan forms of A. For each form, find $\operatorname{dim}\left(E_{3}(A)\right)$ Answer: Since $C_{A}(\alpha)=(\alpha-3)^{4}$, we have $m_{A}(\alpha)=(\alpha-3)$ OR $m_{A}(\alpha)=$ $(\alpha-3)^{2}$ OR $m_{A}(\alpha)=(\alpha-3)^{3}$ OR $m_{A}(\alpha)=(\alpha-3)^{4}$
For $m_{A}(\alpha)=(\alpha-3)$, we have $J=J_{1}(3) \oplus J_{1}(3) \oplus J_{1}(3) \oplus J_{1}(3)=3 I_{4}$ $\overline{\left(\operatorname{dim}\left(E_{3}(A)\right)=4\right)} \rightarrow A=3$ I
For $m_{A}(\alpha)=(\alpha-3)^{2}$, we have $J=\widehat{J_{2}}(3) \oplus J_{1}(3) \oplus J_{1}(3)\left(\operatorname{dim}\left(E_{3}(A)\right)=\right.$ 3) OR $J=J_{2}(3) \oplus J_{2}(3)\left(\operatorname{dim}\left(E_{3}(A)\right)=2\right)$

For $m_{A}(\alpha)=(\alpha-3)^{3}$, we have $J=J_{1}(3) \oplus J_{3}(3)\left(\operatorname{drm}\left(E_{3}(A)\right)=2\right)$
For $m_{A}(\alpha)=(\alpha-3)^{4}$, we have $J=J_{4}(3)\left(\operatorname{dim}\left(E_{3}(A)\right)=1\right)$
(ii) Find all possible Rational forms of A.

Answer:
For $m_{A}(\alpha)=(\alpha-3)$, we have $R=C(\alpha-3) \oplus C(\alpha-3) \oplus C(\alpha-3) \oplus$
 $\bar{C}(\alpha-3)=3 I_{4}$
For $m_{A}(\alpha)=(\alpha-3)^{2}$, we have $R=C(\alpha-3) \oplus C(\alpha-3) \oplus C\left((\alpha-3)^{2}\right)$ $\overline{\text { OR } R=C\left((\alpha-3)^{2}\right) \oplus C\left((\alpha-3)^{2}\right)}$ \qquad
For $m_{A}(\alpha)=(\alpha-3)^{3}$, we have $R=C((\alpha-3)) \oplus C\left((\alpha-3)^{3}\right)$
For $m_{A}(\alpha)=(\alpha-3)^{4}$, we have $R=C\left((\alpha-3)^{4}\right)$

5. (Least square problem) The following is inconsistent system, ie., it has no solution. $\left[\begin{array}{cc}3 & -1 \\ 1 & 9 \\ 2 & -3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=w=\left[\begin{array}{c}2 \\ -7 \\ 6\end{array}\right]$
. Find the best solution for x, y, i.e., find x, y and $d \in \operatorname{span}\left\{v_{1}, v_{2}\right\}(v 1=$ first column, $v_{2}=$ second column) such that $\left[\begin{array}{cc}3 & -1 \\ 1 & 9 \\ 2 & -3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=d$ is consistent
and $|w-d|$ is minimum. Note that $<>$ is the normal dot product on \mathbb{R}^{n}. [Hint: observe that the columns of the coefficient matrix are orthogonal, hence by HW, you know how to find d, thus $x=\frac{\left\langle w, v_{1}\right\rangle}{\left|v_{1}\right|^{2}}$ and $y=\frac{\left\langle w, v_{2}\right\rangle}{\left|v_{2}\right|^{2}}, v_{1}$ is the first column, v_{2} is the second column].
Answer: We have

$$
d=\frac{\left\langle w, v_{1}\right\rangle}{\left|v_{1}\right|^{2}} v_{1}+\frac{\left\langle w, v_{2}\right\rangle}{\left|v_{2}\right|^{2}} v_{2}
$$

Therefore, $x=\frac{\left\langle w, v_{1}\right\rangle}{\left|v_{1}\right|^{2}}=\frac{11}{14}, y=\frac{\left\langle w, v_{2}\right\rangle}{\left|v_{2}\right|^{2}} v_{2}=\frac{-83}{91}$
6. Let $\mathrm{A}=\left[\begin{array}{cc}1 & -1 \\ 1 & 1 \\ 1 & 1\end{array}\right], w=\left[\begin{array}{c}5 \\ -5 \\ 5\end{array}\right]$ such that $A\left[\begin{array}{l}x \\ y\end{array}\right]=w$ is inconsistent. Find the best solution for x, y. [hint: $v_{1}==$ first column, $v_{2}=$ second column. Note that the columns of A are not orthogonal. Hence find orthogonal points Q_{1}, Q_{2} such that $M=\operatorname{span}\left\{Q_{1}, Q_{2}\right\}=\operatorname{span}\left\{v_{1}, v_{2}\right\}$. Now find d in M, the closets to w and $A\left[\begin{array}{l}x \\ y\end{array}\right]=d$. Another method, no need for Q_{1}, Q_{2} and d, just solve $\left.A^{T} A\left[\begin{array}{l}x \\ y\end{array}\right]=A^{T} w\right]$
Answer: We have $A^{T} A=\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right], A^{T} w=\left[\begin{array}{c}5 \\ -5\end{array}\right] \Rightarrow\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}5 \\ -5\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}\frac{5}{2} \\ \frac{-5}{2}\end{array}\right] \ll$
7. . Let $T: P_{5} \rightarrow P_{5}$ be a L. T such that $T\left(a x^{4}+b x^{3}+c x^{2}+d x+e\right)=$ $(a+2 b+c+3 d+4 e) x^{4}+(2 a+3 b+c+5 d) x^{3}+(a+b+6 c+d+e) x^{2}+(3 a+$ $5 b+c+7 d+2 e) x+(4 a+c+2 d+6 e)$. Convince me that T is diagnolizable (hint: Writing the question is harder than the answer, find the co-linear and stare).
Answer: Let $L: \mathbb{R}^{5} \rightarrow \mathbb{R}^{5}$ be the colinear of T,

$$
M_{L}=\left[\begin{array}{lllll}
1 & 2 & 1 & 3 & 4 \\
2 & 3 & 1 & 5 & 0 \\
1 & 1 & 6 & 1 & 1 \\
3 & 5 & 1 & 7 & 2 \\
4 & 0 & 1 & 2 & 6
\end{array}\right]
$$

By staring, M_{L} is symmetric. $\Rightarrow L$ is diagonalizable $\Rightarrow T$ is diagonalizable.
8. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a L . T . Assume the normal dot product on \mathbb{R}^{3}. Convince me that $T+T^{a}+2 I_{3}: R 3 \rightarrow R 3$ is diagnolizable, i.e., the standard matrix N of $T+T^{a}+2 I_{3}$ is diagnolizable
Answer: We have $M_{T+T^{a}+2 I_{3}}=M_{T}+M_{T}^{T}+2 I_{3} . M_{T+T^{a}+2 I_{3}}^{T}=\left(M_{T}+M_{T}^{T}+\right.$ $\left.2 I_{3}\right)^{T}=M_{T}+M_{T}^{T}+2 I_{3}=M_{T+T^{a}+2 I_{3}}$. Hence, $T+T^{a}+2 I_{3}$ is symmetric. Therefore, $T+T^{a}+2 I_{3}$ is diagonalizable.

QUESTION 1. Given A is similar to $H=C(\alpha-4) \oplus C(\alpha-4) \oplus C\left(\alpha^{2}+\alpha-20\right) \oplus C\left(\alpha^{2}+\alpha-20\right)$. Then A is similar to a matrix J where J is in Jordan form.
(i) Explicitly, write down the entries of J.

$$
A \approx J_{1}(4) \oplus J_{1}(4) \oplus J_{1}(4) \oplus J_{1}(-5) \oplus J_{1}(4) \oplus J_{1}(-5)
$$

$$
J=\left(\begin{array}{cccccc}
4 & 0 & 0 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 & 0 & 0 \\
0 & 0 & 4 & 0 & 0 & 0 \\
0 & 0 & 0 & -5 & 0 & 0 \\
0 & 0 & 0 & 0 & 4 & 0 \\
0 & 0 & 0 & 0 & 0 & -5
\end{array}\right) \cup \zeta
$$

(ii) What is the dimension of each generalized eigenspace?
G $\operatorname{dim}\left(G-E_{y}(A)\right)=4, \quad \operatorname{dim}_{-4}(A)$
(iii) Theoretically, how do you construct the columns of the invertible matrix Q where $Q^{-1} A Q=J$?
\qquad - where $V_{1}, V_{2}, V_{3}, V_{4}$ are the eigenvectors associated to the eigenvalue 4.

- V_{5}, V_{6} are the eigenvectors associated to the eigenvalue - 5

QUESTION 2. Given A is 4×4 and A is similar to $J_{4}(3)$.
(i) Find $C_{A}(\alpha)$ and $m_{A}(\alpha)$.

$$
C_{A}(\alpha)=(\alpha-3)^{4}, \quad m_{A}(\alpha)=(\alpha-3)^{4}
$$

(ii) find $\operatorname{dim}\left(E_{3}(A)\right)$ and $\operatorname{dim}\left(G-E_{3}(A)\right)$

$$
\operatorname{dim}\left(E_{3}(A)\right)=1 \quad \operatorname{dim}\left(G-E_{3}(A)\right)=4
$$

(iii) Theoretically, how do you construct the columns of the invertible matrix Q where $Q^{-1} A Q=J_{4}(3)$?

$$
Q=\left\{\left(A-3 I_{4}\right)^{3} v,\left(A-3 I_{4}\right)^{2} v,\left(A-3 I_{4}\right) v, v\right\}
$$

where V is the generalized eigenvector associated to 3
(iv) Find the rational form of A.

$$
A \approx c\left((\alpha-3)^{4}\right) \vee /
$$

QUESTION 3. (1) Give me an example of a matrix A in Jordan form such that $C_{A}(\alpha)=(\alpha-1)^{5}(\alpha-4)^{3}$ and $m_{A}(\alpha)=(\alpha-1)^{2}(\alpha-4)^{2}$ where $\operatorname{dim}\left(E_{1}(A)\right)=3$ [Hint: Write down your answer as $A=J() \oplus J() \oplus \cdots \oplus J()$
]

$$
\left\langle A \approx J_{2}(1) \oplus J_{2}(1) \oplus J_{1}(1) \oplus J_{2}(4) \oplus J_{1}(4)\right.
$$

(2) Give me an example of a matrix A in Jordan form such that $C_{A}(\alpha)=(\alpha-1)^{5}(\alpha-4)^{3}$ and $m_{A}(\alpha)=$ $(\alpha-1)^{2}(\alpha-4)^{2}$ where $\operatorname{dim}\left(E_{1}(A)\right)=4$.
$\}_{\text {QUESTION 4. Assume } A \text { is } 4 \times 4 \text { st. } C_{A}(\alpha)=(\alpha-3)^{4} .} A \approx J_{2}(1) \oplus J_{2}(4) \oplus J_{1}(1)$
(i) Find all possible Jordan forms of A. For each form, find $\operatorname{dim}\left(E_{3}(A)\right)$
case 1: $J_{4}(3)$

(i) P ($\left.\mathrm{E}_{3}(A)\right)$
case 2: $\quad J_{3}(3) \oplus J_{1}(3)$

$$
\begin{aligned}
& \operatorname{dim}\left(E_{3}(A)\right)=1 \\
& \operatorname{dim}\left(E_{3}(A)\right)=2 \\
& \operatorname{dim}\left(E_{3}(A)\right)=2 \\
& \operatorname{dim}\left(E_{3}(A)\right)=3 \\
& \operatorname{dim}\left(E_{3}(A)\right)=4
\end{aligned}
$$

case 3: $\quad J_{2}(3) \oplus J_{2}(3)$
Case 4:- $J_{2}(3) \oplus J_{1}(3) \oplus J_{1}(3)$
Case 5: $\quad J_{1}(3) \oplus J_{1}(3) \oplus J_{1}(3)+J_{1}(3)$

(ii) Find all possible Rational forms of A.
case 1:-

$$
c\left((\alpha-3)^{4}\right)
$$

case 2:-

$$
C((\alpha-3)) \oplus C\left((\alpha-3)^{3}\right)
$$

case 3:- $\quad C\left((\alpha-3)^{2}\right) \oplus C\left((\alpha-3)^{2}\right)$
Case 4: $\quad\left((\alpha-3) \oplus C(\alpha-3) \oplus C\left((\alpha-3)^{2}\right)\right.$
Case 5: $\quad C(\alpha-3) \oplus C(\alpha-3) \oplus C(\alpha-3) \oplus C(\alpha-3)$

QUESTION 5. (Least square problem) The following is inconsistent system, i.e., it has no solution. $\left[\begin{array}{cc}3 & -1 \\ 1 & 9 \\ 2 & -3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=$ $w=\left[\begin{array}{c}2 \\ -7 \\ 6\end{array}\right]$. Find the best solution for x, y, i.e., find x, y and $d \in \operatorname{span}\left\{v_{1}, v_{2}\right\}\left(v_{1}==\right.$ first column, $v_{2}=$ second column) such that $\left[\begin{array}{cc}3 & -1 \\ 1 & 9 \\ 2 & -3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=d$ is consistent and $|w-d|$ is minimum. Note that $<>$ is the normal dot product on R^{n}. [Hint: observe that the columns of the coefficient matrix are orthogonal, hence by HW, you know how to find d, thus $x=<w, v_{1}>/\left|v_{1}\right|^{2}$ and $y=<w, v_{2}>/\left|v_{2}\right|^{2}, v_{1}$ is the first column, v_{2} is the second column].

$$
\begin{gathered}
\left\langle w, v_{1}\right\rangle=(2,-7,6) \cdot(3,1,2)=11 \\
x=\frac{\left\langle w, v_{1}\right\rangle}{\left|v_{1}\right|^{2}}=\frac{11}{14} \\
y=\frac{\left\langle w, v_{2}\right\rangle}{\left|v_{2}\right|^{2}}=\frac{-83}{91}
\end{gathered}
$$

QUESTION 6. Let $A=\left[\begin{array}{cc}1 & -1 \\ 1 & 1 \\ 1 & 1\end{array}\right], w=\left[\begin{array}{l}5 \\ 5 \\ 5\end{array}\right]$ such that $A\left[\begin{array}{l}x \\ y\end{array}\right]=w$ is inconsistent. Find the best solution for x, y. [hint: $v_{1}==$ first column, $v_{2}=$ second column. Note that the columns of A are not orthogonal. Hence find orthogonal points Q_{1}, Q_{2} such that $M=\operatorname{span}\left\{Q_{1}, Q_{2}\right\}=\operatorname{span}\left\{v_{1}, v_{2}\right\}$. Now find d in M, the closets to w and solve $A\left[\begin{array}{l}x \\ y\end{array}\right]=d$. Another method, no need for Q_{1}, Q_{2} and d, just solve $\left.A^{T} A\left[\begin{array}{l}x \\ y\end{array}\right]=A^{T} w\right]$

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
1 & 1 \\
1 & 1
\end{array}\right)\binom{x}{y}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
5 \\
5 \\
5
\end{array}\right)
$$

read my last
message on ilearn/
but the method

$\mathrm{x}=5, \mathrm{y}=0$ are the exact solution

$$
\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right)\binom{x}{y}=\binom{15}{5} \quad<
$$

$$
\begin{aligned}
& 3 x+y=15 \\
& x+3 y=5
\end{aligned} \quad \Rightarrow \quad \begin{aligned}
& x=5 \\
& y=0
\end{aligned} \quad\binom{x}{y}=\binom{5}{0}
$$

QUESTION 7. Let $T: P_{5} \rightarrow P_{5}$ be a L. T such that $T\left(a x^{4}+b x^{3}+c x^{2}+d x+e\right)=(a+2 b+c+3 d+4 e) x^{4}+$ $(2 a+3 b+c+5 d) x^{3}+(a+b+6 c+d+e) x^{2}+(3 a+5 b+c+7 d+2 e) x+(4 a+c+2 d+6 e)$. Convince me that T is diagnolizable (hint: Writing the question is harder than the answer, find the co-linear and stare).
$a \quad b \quad d \quad e$

$$
M_{T}=\left(\begin{array}{lllll}
1 & 2 & 1 & 3 & 4 \\
2 & 3 & 1 & 5 & 0 \\
1 & 1 & 6 & 1 & 1 \\
3 & 5 & 1 & 7 & 2 \\
4 & 0 & 1 & 2 & 6
\end{array}\right)
$$

M_{T} is symmetric
$\Rightarrow M_{T}$ is diagonalizable
$\Rightarrow T$ is diagonalizable

QUESTION 8. Let $T: R^{3} \rightarrow R^{3}$ be a L. T. Assume the normal dot product on R^{3}. Convince me that $T+T^{a}+2 I_{3}$: $R^{3} \rightarrow R^{3}$ is diagnolizable, ie., the standard matrix N of $T+T^{a}+2 I_{3}$ is diagnolizable .

$$
\begin{array}{r}
L: T+T^{a}+2 I_{3} \Rightarrow N=A+A^{\top}+2 I_{3} \\
N^{\top}=A^{\top}+\left(A^{\top}\right)^{\top}+2\left(I_{3}\right)^{\top}, \\
\\
=A^{\top}+A+2 I_{3}=N
\end{array}
$$

where A is the standard matrix representation of T.
$\Rightarrow N$ is symmetric
$\Rightarrow L$ is diagonalizable

