Name: Djamila Ait Elhadi Stude MTH512 Homework 5 ¹⁸ May 2023 Advanced

- 1. Given A is similar to $H = C(\alpha 4) \oplus C(\alpha 4) \oplus C(\alpha^2 + \alpha 20) \oplus C(\alpha^2 + \alpha 20)$. Then A is similar to a matrix J where J is in Jordan form.
 - (i) Explicitly, write down the entries of J. **Answer:** $C_A(\alpha) = (\alpha - 4)^4 (\alpha - 5)^2$, $m_A(\alpha) = (\alpha - 4)(\alpha - 5)$. Therefore, $J = J_1(4) \oplus J_1(4) \oplus J_1(4) \oplus J_1(4) \oplus J_1(-5) \oplus J_1(-5)$. Explicitly,

75/75

 $J = \begin{bmatrix} 4 & 0 & 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 & 0 & 0 \\ 0 & 0 & 4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 & -5 & 0 \\ 0 & 0 & 0 & 0 & 0 & -5 \end{bmatrix}$

- (ii) What is the dimension of each generalized eigenspace? **Answer:** $dim(G - E_4(A)) = dim(E_4(A)) = 4$, $dim(G - E_{-5}(A)) = dim(E_{-5}(A)) = 2$
- (iii) Theoretically, how do you construct the columns of the invertible matrix Q where $Q^{-1}AQ = J$?
 - **Answer:** Since every generalized eigenvector is of order 1 for each eigenvalue, (i.e. $dim(G E_a(A)) = dim(E_a(A))$ for each a), we can choose v_1, v_2, v_3, v_4 which are independent eigenvectors corresponding to the eigenvalue 4, and w_1, w_2 which are independent eigenvectors corresponding to the eigenvalue 5. These vectors form a basis for \mathbb{R}^6 .
- 2. Given A is 4×4 and A is similar to $J_4(3)$.
 - (i) Find $C_A(\alpha)$ and $m_A(\alpha)$.
 - **Answer:** $C_A(\alpha) = m_A(\alpha) = (\alpha 3)^4$.
 - (ii) find $dim(E_3(A))$ and $dim(G E_3(A))$. **Answer:** $dim(E_3(A)) = 1$ and $dim(G - E_3(A)) = 4$.
 - (iii) Theoretically, how do you construct the columns of the invertible matrix Q where $Q^{-1}AQ = J_4(3)$?

Answer: Given v is a generalized eigenvector of order 4 corresponding to the eigenvalue 3, the columns of the matrix Q are $\{(A - 3I_4)^3v, (A - 3I_4)^2v, (A - 3I_4)v, v\}$.

- (iv) Find the rational form of A. Answer: $R = C((\alpha - 3)^4)$
- 3. (1) Give me an example of a matrix A in Jordan form such that $C_A(\alpha) = (\alpha 1)^5 (\alpha 4)^3$ and $m_A(\alpha) = (\alpha 1)^2 (\alpha 4)^2$ where $dim(E_1(A)) = 3$ [Hint: Write down your answer as $A = J() \oplus J() \oplus ... \oplus J()$] Answer: $J = J_1(1) \oplus J_2(1) \oplus J_2(1) \oplus J_1(4) \oplus J_2(4)$
 - (2) Give me an example of a matrix A in Jordan form such that $C_A(\alpha) = (\alpha 1)^5 (\alpha 4)^3$ and $m_A(\alpha) = (\alpha 1)^2 (\alpha 4)^2$ where $dim(E_1(A)) = 4$ **Answer:** $J = J_1(1) \oplus J_1(1) \oplus J_1(1) \oplus J_2(1) \oplus J_1(4) \oplus J_2(4)$

4. Assume A is
$$4 \times 4$$
 s.t. $C_A(\alpha) = (\alpha - 3)^4$.

(i) Find all possible Jordan forms of A. For each form, find dim(E₃(A)) Answer: Since C_A(α) = (α-3)⁴, we have m_A(α) = (α-3) OR m_A(α) = (α - 3)² OR m_A(α) = (α - 3)³ OR m_A(α) = (α - 3)⁴ For m_A(α) = (α - 3), we have J = J₁(3) ⊕ J₁(3) ⊕ J₁(3) ⊕ J₁(3) = 3I₄ (dim(E₃(A)) = 4) For m_A(α) = (α - 3)², we have J = J₂(3)⊕J₁(3)⊕J₁(3) (dim(E₃(A)) = 3) OR J = J₂(3) ⊕ J₂(3) (dim(E₃(A)) = 2) For m_A(α) = (α - 3)³, we have J = J₁(3) ⊕ J₃(3) (dim(E₃(A)) = 2) For m_A(α) = (α - 3)⁴, we have J = J₄(3) (dim(E₃(A)) = 1)
(ii) Find all possible Rational forms of A. Answer:

For
$$m_A(\alpha) = (\alpha - 3)$$
, we have $R = C(\alpha - 3) \oplus C(\alpha - 3)^2$)
For $m_A(\alpha) = (\alpha - 3)^2$, we have $R = C(\alpha - 3) \oplus C(\alpha - 3) \oplus C((\alpha - 3)^2)$
OR $R = C((\alpha - 3)^2) \oplus C((\alpha - 3)^2)$
For $m_A(\alpha) = (\alpha - 3)^3$, we have $R = C((\alpha - 3)) \oplus C((\alpha - 3)^3)$
For $m_A(\alpha) = (\alpha - 3)^4$, we have $R = C((\alpha - 3)^4)$

5. (Least square problem) The following is inconsistent system, i.e., it has no solution. $\begin{bmatrix} 3 & -1 \\ 1 & 9 \\ 2 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = w = \begin{bmatrix} 2 \\ -7 \\ 6 \end{bmatrix}$

. Find the best solution for x, y, i.e., find x, y and $d \in span\{v_1, v_2\}$ $(v_1 = first column, v_2 = second column)$ such that $\begin{bmatrix} 3 & -1 \\ 1 & 9 \\ 2 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = d$ is consistent

and |w - d| is minimum. Note that $\langle \rangle$ is the normal dot product on \mathbb{R}^n . [Hint: observe that the columns of the coefficient matrix are orthogonal, hence by HW, you know how to find d, thus $x = \frac{\langle w, v_1 \rangle}{|v_1|^2}$ and $y = \frac{\langle w, v_2 \rangle}{|v_2|^2}$, v_1 is the first column, v_2 is the second column]. **Answer:** We have

$$d = \frac{\langle w, v_1 \rangle}{|v_1|^2} v_1 + \frac{\langle w, v_2 \rangle}{|v_2|^2} v_2$$

$$\frac{\langle w, v_1 \rangle}{|v_1|^2} = \frac{11}{|v_1|^2} v_1 = \frac{\langle w, v_2 \rangle}{|v_2|^2} v_2 = \frac{-83}{2}$$

Therefore, $x = \frac{\langle w, v_1 \rangle}{|v_1|^2} = \frac{11}{14}, \ y = \frac{\langle w, v_2 \rangle}{|v_2|^2} v_2 = \frac{-83}{91}$

6. Let $A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$, $w = \begin{bmatrix} 5 \\ -5 \\ 5 \end{bmatrix}$ such that $A \begin{bmatrix} x \\ y \end{bmatrix} = w$ is inconsistent. Find the

best solution for x, y. [hint: $v_1 ==$ first column, $v_2 =$ second column. Note that the columns of A are not orthogonal. Hence find orthogonal points Q_1, Q_2 such that $M = span\{Q_1, Q_2\} = span\{v_1, v_2\}$. Now find d in M, the closets to w and $A\begin{bmatrix} x\\ y \end{bmatrix} = d$. Another method, no need for Q_1, Q_2 and d, just solve $A^T A\begin{bmatrix} x\\ y \end{bmatrix} = A^T w$]

Answer: We have $A^T A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}, A^T w = \begin{bmatrix} 5 \\ -5 \end{bmatrix} \Rightarrow \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ -5 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{5}{2} \\ \frac{-5}{2} \end{bmatrix}$

7. Let $T: P_5 \rightarrow P_5$ be a L. T such that $T(ax^4 + bx^3 + cx^2 + dx + e) = (a+2b+c+3d+4e)x^4 + (2a+3b+c+5d)x^3 + (a+b+6c+d+e)x^2 + (3a+5b+c+7d+2e)x + (4a+c+2d+6e)$. Convince me that T is diagnolizable (hint: Writing the question is harder than the answer, find the co-linear and stare).

Answer: Let $L : \mathbb{R}^5 \to \mathbb{R}^5$ be the colinear of T,

$$M_L = \begin{bmatrix} 1 & 2 & 1 & 3 & 4 \\ 2 & 3 & 1 & 5 & 0 \\ 1 & 1 & 6 & 1 & 1 \\ 3 & 5 & 1 & 7 & 2 \\ 4 & 0 & 1 & 2 & 6 \end{bmatrix}$$

By staring, M_L is symmetric. $\Rightarrow L$ is diagonalizable $\Rightarrow T$ is diagonalizable.

$$\langle \gamma \rangle$$

8. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a L. T. Assume the normal dot product on \mathbb{R}^3 . Convince me that $T + T^a + 2I_3 : R3 \to R3$ is diagnolizable, i.e., the standard matrix N of $T + T^a + 2I_3$ is diagnolizable **Answer:** We have $M_{T+T^a+2I_3} = M_T + M_T^T + 2I_3$. $M_{T+T^a+2I_3}^T = (M_T + M_T^T + 2I_3)^T = M_T + M_T^T + 2I_3 = M_{T+T^a+2I_3}$. Hence, $T + T^a + 2I_3$ is symmetric.

Therefore,
$$T + T^a + 2I_3$$
 is diagonalizable.

MTH 512,HW 5	Hodeel 93357
QUESTION 1. Given A is similar to H = C(α − 4) ⊕ C(α − 4) ⊕ C(α² + α − 20) ⊕ C(α² + α − 20). Then	75/75
A ~ J, (4) ⊕ J, (4) ⊕ J, (4) ⊕ J, (-5) ⊕ J, (4) ⊕ J, (-5)	
$ \overline{d} = \begin{pmatrix} 4 & 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 & 0 \\ 0 & 0 & 4 & 0 & 0 & 0 \\ 0 & 0 & 0 & -5 & 0 & 0 \\ 0 & 0 & 0 & 0 & -5 & 0 \\ 0 & 0 & 0 & 0 & 0 & -5 & 0 \end{pmatrix} $	
(ii) What is the dimension of each generalized eigenspace?	
$\dim_{4}(A)$ $\dim (G - E_{4}(A)) = 4, \dim (G - E_{-5}(A)) = 2 = \dim_{4}(A)$	5(A)
(iii) Theoretically, how do you construct the columns of the invertible matrix Q where $Q^{-1}AQ = J$?	
$Q = \langle V_1, V_2, V_3, V_4, V_5, V_6 \rangle$. where V_1, V_2, V_3, V_4 are the associated to the eigenvalue 4	eigenvectors

•	VS. VA	one	the	eigenvectors	associated	to	the
				•			

eigenvalue -5

QUESTION 2. Given A is 4 × 4 and A is similar to J₄(3).
(i) Find C_A(α) and m_A(α).

 $m_{A}(\alpha) = (\alpha - \beta)^{\mu}$ $C_{A}(\alpha) = (\alpha - 3)^{H}$

(ii) find $dim(E_3(A))$ and $dim(G - E_3(A))$

 $\dim (E_{3}(A)) = 1 \qquad \dim (G - E_{3}(A)) = 4$

(iii) Theoretically, how do you construct the columns of the invertible matrix Q where $Q^{-1}AQ = J_4(3)$? $Q = \{ (A - 3I_{y})^{V}, (A - 3I_{y})^{2}V, (A - 3I_{y})V, V \}$ where V is the generalized eigenvector associated to 3 (iv) Find the rational form of A. $A \approx C((\alpha - 3)^{4})$ **QUESTION 3.** (1) Give me an example of a matrix A in Jordan form such that $C_A(\alpha) = (\alpha - 1)^5 (\alpha - 4)^3$ and $m_A(\alpha) = (\alpha - 1)^2 (\alpha - 4)^2$ where $dim(E_1(A)) = 3$ [Hint: Write down your answer as $A = J() \oplus J() \oplus \cdots \oplus J()$ $A \approx \mathcal{J}_{\mathfrak{g}}^{(1)} \oplus \mathcal{J}_{\mathfrak{g}}^{(1)} \oplus \mathcal{J}_{\mathfrak{g}}^{\mathfrak{g}} \mathfrak{f}_{\mathfrak{g}}^{\mathfrak{g}} \mathfrak{f}_{\mathfrak{g}} \mathfrak{f}_{\mathfrak{g}}^{\mathfrak{g}} \mathfrak{f}_{\mathfrak{g}}^{\mathfrak{g}} \mathfrak{f}_{\mathfrak{g}}^{\mathfrak{g}} \mathfrak{f}_{\mathfrak{g}}^{\mathfrak{g}} \mathfrak{f}_{\mathfrak{g}}^{\mathfrak{g}} \mathfrak{f}_{\mathfrak{g}}^{\mathfrak{g}} \mathfrak{f}_{\mathfrak{g}}^{\mathfrak{g}} \mathfrak{f}_{\mathfrak{g}} \mathfrak{f}_{\mathfrak{g}}^{\mathfrak{g}} \mathfrak{f}_{\mathfrak{g}} \mathfrak{f}_{\mathfrak{g}}^{\mathfrak{g}} \mathfrak{f}_{\mathfrak{g}} \mathfrak{f}_{\mathfrak{g}} \mathfrak{f}_{\mathfrak{g}}^{\mathfrak{g}} \mathfrak{f}_{\mathfrak{g}}^{\mathfrak{g}} \mathfrak{f}_{\mathfrak{g}}^{\mathfrak{g}} \mathfrak{f}} \mathfrak{f}_{\mathfrak{g}} \mathfrak{f}_{\mathfrak{g}}^{\mathfrak{g}} \mathfrak{f}} \mathfrak{f}_{\mathfrak{g}} \mathfrak{f}} \mathfrak{f}_{\mathfrak{g}} \mathfrak{f}} \mathfrak{f}_{\mathfrak{g}} \mathfrak{f}$ (2) Give me an example of a matrix A in Jordan form such that $C_A(\alpha) = (\alpha - 1)^5 (\alpha - 4)^3$ and $m_A(\alpha) = (\alpha - 1)^5 (\alpha - 4)^3$ $(\alpha - 1)^2 (\alpha - 4)^2$ where $dim(E_1(A)) = 4$. $A \approx J_2(1) \oplus J_2(4) \oplus J_2(1) \oplus J_2(1) \oplus J_2(1) \oplus J_2(1)$ **QUESTION 4.** Assume A is 4×4 s.t. $C_A(\alpha) = (\alpha - 3)^4$. (i) Find all possible Jordan forms of A. For each form, find $dim(E_3(A))$ J4(3) $\dim (E_3(A)) = 1$ Case 1 : $T_{3}(3) \oplus T_{1}(3)$ case 2 ... $\dim (E_3(A)) = 2$ $J_2(3) \oplus \overline{J}_2(3)$ Case3 . $\dim (E_{3}(A)) = 2$ $\overline{J}_{2}(3) \oplus \overline{J}_{1}(3) \oplus \overline{J}_{1}(3)$ $\dim (E_3(A)) = 3$ Casette $\overline{J}(3) \oplus \overline{J}(3) \oplus \overline{J}(3) + \overline{J}(3)$ $\dim (E_3(A)) = 4$ (ase 5: (ii) Find all possible Rational forms of A. $C((\alpha-3)^{4})$ Case 1 1 $C((\alpha-3)) \oplus C((\alpha-3)^3)$ Case 2 .. $C((\alpha-3)^2) \oplus C((\alpha-3)^2)$ Case3 . $((\alpha - 3) \bigoplus C(\alpha - 3) \bigoplus C((\alpha - 3)^2)$ Case 4: $C(\alpha-3) \oplus C(\alpha-3) \oplus C(\alpha-3) \oplus C(\alpha-3)$ Case 5 .

QUESTION 5. (Least square problem) The following is inconsistent system, i.e., it has no solution. $\begin{bmatrix} 5 & -1 \\ 1 & 9 \\ 2 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} =$ $\begin{bmatrix} -7 \\ 6 \end{bmatrix}$. Find the best solution for x, y, i.e., find x, y and $d \in span\{v_1, v_2\}$ ($v_1 ==$ first column, $v_2 =$ second column) such that $\begin{vmatrix} 3 & -1 \\ 1 & 9 \\ 2 & -3 \end{vmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = d$ is consistent and |w - d| is minimum. Note that < > is the normal dot product on \mathbb{R}^n . [Hint: observe that the columns of the coefficient matrix are orthogonal, hence by HW, you know how to find d, thus $x = \langle w, v_1 \rangle / |v_1|^2$ and $y = \langle w, v_2 \rangle / |v_2|^2$, v_1 is the first column, v_2 is the second column]. $\langle w, V_1 \rangle = (2, -7, 6) \cdot (3, 1, 2) = 11$ $\frac{\alpha = \langle \omega, v, \rangle}{|v_1|^2} = \frac{u}{u}$ $\frac{y = \langle w, v_z \rangle}{|v|^2} = \frac{-83}{91}$ **QUESTION 6.** Let $A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$, $w = \begin{bmatrix} 5 \\ 5 \\ 5 \end{bmatrix}$ such that $A \begin{bmatrix} x \\ y \end{bmatrix} = w$ is inconsistent. Find the best solution for x, y. [hint: $v_1 ==$ first column, $v_2 =$ second column. Note that the columns of A are not orthogonal. Hence find orthogonal points Q_1, Q_2 such that $M = span\{Q_1, Q_2\} = span\{v_1, v_2\}$. Now find d in M, the closets to w and solve $A \begin{bmatrix} x \\ y \end{bmatrix} = d$. Another method, no need for Q_1, Q_2 and d, just solve $A^T A \begin{bmatrix} x \\ y \end{bmatrix} = A^T w$] $\begin{array}{c|c} 1 & 1 \\ \hline 1 & 1 \end{array} \middle| \begin{array}{c} 1 & -1 \\ \hline 1 & 1 \end{array} \middle| \begin{array}{c} X \\ \hline y \end{array} \bigr| =$ $\left(\begin{array}{ccc}
1 & \underline{l} & \iota \\
-\underline{1} & \underline{l} & 1
\end{array}\right)$ 5 read my last message on ilearn/ but the method correct / note that 3x + y = 15 X + 3y = 5 → X=5 ¥=0 x = 5, y = 0 are the exact solution

