Name: Djamila Ait Elhadi MTH512 Homework 4

Student ID: 00098182 Advanced Linear Algebra

1. Assume A, B are similar $n \times n$ matrices, say $A = Q^{-1}BQ$ [109/110]

6 May 2023

(i) We know $C_A(\alpha) = C_B(\alpha)$. Prove $m_A(\alpha) = m_B(\alpha)$. **Answer:** $m_A(\alpha) = a_k \alpha^k + a_{k-1} \alpha^{k-1} + \dots + a_1 \alpha + a_0$. $m_b(\alpha) = b_k \alpha^k + b_{k-1} \alpha^{k-1} + \dots + b_1 \alpha + b_0$. We have

$$0_{n \times n} = M_A(A) = a_k A^k + a_{k-1} A^{k-1} + \dots + a_1 A + a_0 I$$

= $a_k (Q^{-1} B Q)^k + a_{k-1} (Q^{-1} B Q)^{k-1} + \dots + a_1 (Q^{-1} B Q) + a_0 I$
= $a_k Q^{-1} B^k Q + a_{k-1} Q^{-1} B^{k-1} Q + \dots + a_1 Q^{-1} B Q + a_0 I$
= $Q^{-1} (a_k B^k Q + a_{k-1} B^{k-1} Q + \dots + a_1 B Q + a_0 Q)$
= $Q^{-1} (a_k B^k + a_{k-1} B^{k-1} + \dots + a_1 B + a_0) Q = Q^{-1} m_A(B) Q$

 $m_A(B) = 0_{n \times n} \Rightarrow m_B(\alpha) | m_A(\alpha)$. It is clear that $B = QAQ^{-1}$. Repeating the process with $M_B(B)$, we get $0_{n \times n} = M_B(B) = QM_B(A)Q^{-1}$ $m_B(A) = 0_{n \times n} \Rightarrow m_A(\alpha) | m_B(\alpha)$. Since $m_B(\alpha) | m_A(\alpha)$ and $m_A(\alpha) | m_B(\alpha)$, $m_B(\alpha) = m_A(\alpha)$.

(ii) Assume that a is an eigenvalue of A and $v_1, v_2, ..., v_k$ is a basis for $E_a(A)$. Prove that $\{Q_{v_1}, Q_{v_2}, ..., Q_{v_k}\}$ is a basis for $E_a(B)$. [Hint: Observe that BQ = QA and since Q is invertible, $Qw = 0_n$ iff $w = 0_n$]

Answer: Let *a* be an eigenvalue of *A* and $v_1, v_2, ..., v_k$ be a basis for $E_a(A)$. Then *a* be an eigenvalue of *B* and $dim(E_a(B)) = dim(E_a(A)) = k$.

$$A = Q^{-1}BQ \Rightarrow QA = BQ \Rightarrow (QA)v_i = (BQ)v_i.$$

$$\Rightarrow Q(Av_i) = B(Qv_i) \Rightarrow a(Qv_i) = B(Qv_i).$$

Since Q is invertible and $v_i \neq 0$, Qv_i is a nonzero vector. Therefore, Qv_i is an eigenvector of B for $1 \leq i \leq k$. Therefore the set $\{Qv_1, Qv_2, ..., Qv_k\}$ forms a basis for $E_q(B)$. show?

2. Let $A = \begin{bmatrix} 0 & 4 \\ 1 & 0 \end{bmatrix}$	We show Qv_1,, Qv_k are independent. Assumme c_1Qv_1 + + c_kQv_k = 0. Thus Q(cv_1 ++ Qv_k) = 0. Since Q is invertible, c_1v_1 ++ c_kv_k = 0. Since v_1,, v_k are independent, c_1 = = c_k = 0
(i) Find $m_A(\alpha)$. and a	all eigenvalues of A .

Answer:
$$A = \begin{bmatrix} 0 & 4 \\ 1 & 0 \end{bmatrix} \Rightarrow C_A(\alpha) = |\alpha I_2 - A| = \alpha^2 - 4 = (\alpha - 2)(\alpha + \alpha)$$

2) = $m_A(\alpha)$. This is the product of two linear factors, therefore A is diagonalizable with eigenvalues $\alpha = 2, -2$.

(ii) If A is diagnolizable, then find an invertible matrix Q and a diagonal matrix D such that $Q^{-1}AQ = D$.

Answer: We have $D = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$. To find Q, we find eigenvectors associated with each eigenvalue.

For $\alpha = 2$, we have $(2I - A) = \begin{bmatrix} 2 & -4 \\ -1 & 2 \end{bmatrix}$. We find the null space of this matrix using an online calculator, which gives us $E_2(A) = span\{(2,1)\}$. For $\alpha = -2$, we have $(2I - A) = \begin{bmatrix} -2 & -4 \\ -1 & -2 \end{bmatrix}$. We find the null space of this matrix using an online calculator, which gives us $E_2(A) = span\{(-2,1)\}$. Therefore $Q = \begin{bmatrix} 2 & -2 \\ 1 & 1 \end{bmatrix}$ and $Q^{-1} = \begin{bmatrix} \frac{1}{4} & \frac{1}{2} \\ -\frac{1}{4} & \frac{1}{2} \end{bmatrix}$

(iii) Find A^{16} and A^{15} . [Hint: note that if $A = QDQ^{-1}$, then $Am = QD^mQ^{-1}$ and $A^{15} = A^{-1}A^{16}$] Answer:

$$A^{16} = QD^{16}Q^{-1} = \begin{bmatrix} 2^{16} & 0\\ 0 & 2^{16} \end{bmatrix} = \begin{bmatrix} 65536 & 0\\ 0 & 65536 \end{bmatrix}$$
$$A^{15} = A^{-1}A^{16} = \begin{bmatrix} 0 & 2^{16}\\ 2^{14} & 0 \end{bmatrix} = \begin{bmatrix} 0 & 65536\\ 16384 & 0 \end{bmatrix}$$

(iv) Convince me that $A^9 + A^7 + 4A^5 + 2A^3 + 7I_2 = c_1A + C_2I_2$ for some real numbers c_1, c_2 . Then find $A^9 + A^7 + 4A^5 + 2A^3 + 7I_2$.[Hint: Let $f(\alpha) = \alpha^9 + \alpha^7 + 4\alpha^5 + 2\alpha^3 + 7$. Then $f(\alpha) = q(\alpha)m_A(\alpha) + r(\alpha)$ such that $deg(r) < deg(m(\alpha))$. Since $m_A(A) = 0_{2\times 2}$, we have f(A) = r(A).] **Answer:** Using polynomial long division, we have

$$\frac{\alpha^9 + \alpha^7 + 4\alpha^5 + 2\alpha^3 + 7}{\alpha^2 - 4} = (\alpha^7 + 5\alpha^5 + 24\alpha^3 + 98\alpha) + \frac{392\alpha + 7}{\alpha^2 - 4}$$
$$\Rightarrow f(\alpha) = q(\alpha)m_A(\alpha) + (392\alpha + 7)$$
Therefore, $A^9 + A^7 + 4A^5 + 2A^3 + 7I_2 = 392A + 7I_2 = \begin{bmatrix} 7 & 1568\\ 392 & 7 \end{bmatrix}$

3. (i) Let $f(\alpha)$ be a polynomial such that $f(A) = 0_{n \times n}$. Convince me that $m_A(\alpha)|f(\alpha)$.

Answer: Let $f(\alpha)$ be a polynomial such that $f(A) = 0_{n \times n}$. We know that $deg(f(\alpha)) \ge deg(m_A(\alpha))$. Otherwise, $f(\alpha)$ would be the minimum polynomial for A. Suppose $f(\alpha) = q(\alpha)m_A(\alpha) + r(\alpha)$. Then f(A) = $q(A)m_A(A) + r(A) = 0 + r(A) = r(A) = 0$. But since $deg(r(\alpha)) \le$ $m_A(\alpha)$ that means $r(\alpha)$ would be the minimal polynomial, contradiction. Hence, $r(\alpha) = 0 \forall \alpha$ (i.e. $r(\alpha)$ is the zero polynomial). Therefore, $m_A(\alpha)|f(\alpha)$.

(ii) Up to similarity, classify all 5×5 matrices such that $A^2 - 5A = -6I_5$. [Hint: Let $f(\alpha) = \alpha^2 - 5\alpha + 6$. Hence, by hypothesis, $f(A) = 0_{5\times 5}$. By (i), $m_A(\alpha)|f(\alpha)$. Hence $m_A(\alpha) = \alpha - 2$ OR $m_A(\alpha) = \alpha - 3$ OR $m_A(\alpha) = f(\alpha)$.

Answer: There are three possibilities for $m_A(\alpha)$. Either $m_A(\alpha) = \alpha - 2$ OR $m_A(\alpha) = \alpha - 3$ OR $m_A(\alpha) = f(\alpha)$.

For
$$m_A(\alpha) = \alpha - 2$$
, $A \simeq C(\alpha - 2) \oplus C(\alpha - 2)$.
In fact, $A = 2I_5$

Similarly, For $m_A(\alpha) = \alpha - 3$, $A \simeq C(\alpha - 3) \oplus C(\alpha - 3) \oplus C(\alpha - 3) \oplus C(\alpha - 3) \oplus C(\alpha - 3)$. $G(\alpha - 3) \oplus C(\alpha - 3)$. Again, $A = 3I_5$

For $m_A(\alpha) = f(\alpha) = (\alpha - 3)(\alpha - 2)$, we have several possibilities for $C_A(\alpha)$. $C_A(\alpha) = (\alpha - 3)^3(\alpha - 2)^2$ OR $C_A(\alpha) = (\alpha - 3)^2(\alpha - 2)^3$ OR $C_A(\alpha) = (\alpha - 3)^4(\alpha - 2)^1$ OR $C_A(\alpha) = (\alpha - 3)^1(\alpha - 2)^4$.

For $C_A(\alpha) = (\alpha - 3)^3 (\alpha - 2)^2$, We have $A \simeq C(\alpha - 3) \oplus C((\alpha - 3)(\alpha - 2)) \oplus C((\alpha - 3)(\alpha - 2))$

$$= C(\alpha - 3) \oplus C(\alpha^2 - 5\alpha + 6) \oplus C(\alpha^2 - 5\alpha + 6).$$

For $C_A(\alpha) = (\alpha - 3)^2(\alpha - 2)^3$, We have $A \simeq C(\alpha - 2) \oplus C((\alpha - 3)(\alpha - 2))$

 $2)) \oplus C((\alpha - 3)(\alpha - 2)) = C(\alpha - 2) \oplus C(\alpha^2 - 5\alpha + 6) \oplus C(\alpha^2 - 5\alpha + 6).$

For
$$C_A(\alpha) = (\alpha - 3)^4 (\alpha - 2)$$
, We have $A \simeq C(\alpha - 3) \oplus C(\alpha - 3) \oplus C((\alpha - 3)) \oplus C((\alpha - 3)) \oplus C((\alpha - 3))$

$$= C(\alpha - 3) \oplus C(\alpha - 3)C(\alpha - 3) \oplus C(\alpha^2 - 5\alpha + 6).$$

For $C_A(\alpha) = (\alpha - 3)(\alpha - 2)^4$, We have $A \simeq C(\alpha - 2) \oplus C(\alpha - 2) \oplus C((\alpha - 2)) \oplus C(\alpha - 2) \oplus C(\alpha - 2)$

$$\overline{2)) \oplus C((\alpha - 3)(\alpha - 2))} = C(\alpha - 2) \oplus C(\alpha - 2) \oplus C(\alpha^2 - 5\alpha + 6).$$

(iii) Let A be a 4 × 4 such that A is similar to $H = \begin{bmatrix} 0 & 0 & 0 & 9 \\ 1 & 0 & 0 & -18 \\ 0 & 1 & 0 & 8 \\ 0 & 0 & 1 & 2 \end{bmatrix}$

(a) Find $C_A(\alpha)$ and $m_A(\alpha)$.

Answer:
$$A \simeq H = \begin{bmatrix} 0 & 0 & 0 & 9 \\ 1 & 0 & 0 & -18 \\ 0 & 1 & 0 & 8 \\ 0 & 0 & 1 & 2 \end{bmatrix} \Rightarrow A \simeq C(\alpha^4 - 2\alpha^3 - 8\alpha^2 + 18\alpha - 9)$$

$$\Rightarrow C_A(\alpha) = m_A(\alpha) = \alpha^4 - 2\alpha^3 - 8\alpha^2 + 18\alpha - 9$$

(b) For each eigenvalue a of A find $dim(E_a(A))[$ Hint: $C_A(\alpha) = (\alpha^2 - 2\alpha + 1)(\alpha^2 - 9)]$

Answer: $C_A(\alpha) = (\alpha^2 - 1)^2(\alpha - 3)(\alpha + 3)$. Therefore the eigenvalues a are 3, -3, and 1 and $dim(E_a(A)) = 1$ for each eigenvalue of the A.

(c) Theoretically, how do you construct the columns of the invertible matrix Q where $Q^{-1}AQ = H$?

Answer: By class notes, there exists w in \mathbb{R}^4 such that the columns of Q would be $\{w, Aw, A^2w, A^3w\}$ and $\{w, Aw, A^2w, A^3w\}$ is a basis of \mathbb{R}^4 .

4. (1) Give me an example of a matrix A such that $C_A(\alpha) = (\alpha - 1)^5 (\alpha - 4)^3$ and $m_A(\alpha) = (\alpha - 1)^2 (\alpha - 4)^2$ where $E_1(A) = 3$ [Hint: Write down your answer as $A = C() \oplus C() \oplus ... \oplus C()$] **Answer:** $A = C(\alpha - 1) \oplus C((\alpha - 1)^2 (\alpha - 4)) \oplus C((\alpha - 1)^2 (\alpha - 4)^2)$

(2) Give me an example of a matrix A such that $C_A(\alpha) = (\alpha - 1)^5 (\alpha - 4)^3$ and $m_A(\alpha) = (\alpha - 1)^2 (\alpha - 4)^2$ where $E_1(A) = 4$ Answer: $A = C(\alpha - 1) \oplus C(\alpha - 1) \oplus C((\alpha - 1)(\alpha - 4)) \oplus C((\alpha - 1)^2(\alpha - 4)^2)$

(3) Is there a matrix A such that $C_A(\alpha) = (\alpha - 1)^5 (\alpha - 4)^3$ and $m_A(\alpha) = (\alpha - 1)^2 (\alpha - 4)^2$ where $E_4(A) = 3$? Explain Briefly

Answer: We know that $dim(E_4(C(f_i))) = 1$ for each f_i such that $\prod_{i=1}^k f_i = C_A(\alpha) = (\alpha - 1)^5(\alpha - 4)^3$ and $f_k = m_A(\alpha) = (\alpha - 1)^2(\alpha - 4)^2$ and $f_1|...|f_k$. Since the multiplicity of 4 is 3, and 4 is repeated twice in the minimum polynomial, we can only have one more polynomial with $f_{k-1} = (\alpha - 1)^j(\alpha - 4)$ where $1 \le j \le 2$. so, we cannot, i.e., there is no such matrix

5. Given A is similar to $H = C(\alpha - 4) \oplus C(\alpha - 4) \oplus \overline{C(\alpha^2 + \alpha - 20)} \oplus C(\alpha^2 + \alpha - 20)$

(i) Find $C_A(\alpha)$ and $m_A(\alpha)$.

Answer: $C_A(\alpha) = (\alpha - 4)(\alpha - 4)(\alpha^2 + \alpha - 20)(\alpha^2 + \alpha - 20) = (\alpha - 4)^4(\alpha - 5)^2.$

$$m_A(\alpha) = \alpha^2 + \alpha - 20 = (\alpha - 4)(\alpha + 5)$$

(ii) For each eigenvalue a of A find $dim(E_a(A))$ Answer: $dim(E_4(A)) = 4$

$$\dim(E_{-5}(A)) = 2$$

(iii) Is A diagonalizable? explain briefly

Answer: Yes, because the minimum polynomial is a product of distinct linear factors with the roots being the distinct eigenvalues. (Another answer: Yes, because $dim(E_a(A))$ is equal to the multiplicity of a for each a eigenvalue of A).

(iv) Explicitly, write down the entries of H.

	[4	0	0	0	0	0]
	0	4	0	0	0	0
	0	0	0	20	0	0
Allswei:	0	0	1	-1	0	0
	0	0	0	0	0	20
	0	0	0	0	1	-1

6. Given A is similar to $J = J_1(2) \oplus J_1(2) \oplus J_3(2) \oplus J_2(5) \oplus J_4(5) \oplus J_5(7)$.

(i) Find $C_A(\alpha)$ and $m_A(\alpha)$

Answer: We have $C_A(\alpha) = (\alpha - 2)(\alpha - 2)(\alpha - 2)^3(\alpha - 5)^2(\alpha - 5)^4(\alpha -$ $7)^5 = (\alpha - 2)^5 (\alpha - 5)^6 (\alpha - 7)^5$

We know that the multiplicity of a in the minimum polynomial is the number associated with the biggest Jordan block for a. We have $m_A(\alpha) = (\alpha - 2)^3 (\alpha - 5)^4 (\alpha - 7)^5$

(ii) For each eigenvalue a of A find $dim(E_a(A))$ **Answer:** We know that $dim(E_a(A))$ is the number of Jordan blocks for

a. $dim(E_2(A)) = 3$ $dim(E_5(A)) = 2$ $dim(E_7(A)) = 1$

(iii) A is similar to a matrix H in rational form. Find H. [Hint: write $H = C() \oplus \dots \oplus C()]$ **Answer:** $H = C(\alpha - 2) \oplus C((\alpha - 2)(\alpha - 5)^2) \oplus C((\alpha - 2)^3(\alpha - 5)^4(\alpha - 7)^5)$ 7. Let $T : \mathbb{R}^2 \to P^2$ such that T(a, b) = bx + 2a + b. Define $\langle f1, f2 \rangle_{P^2} = \int_0^1 f_1 f_2 dx$ and $\langle q_1, q_2 \rangle_{\mathbb{R}^2} = q_1 \cdot q_2$. Find T^a (the adjoint operator of T) **Answer:** We know that $T^a(cx + d) = (m, n)$. We shall find m, n (in terms of c, d). We have

$$< T(a,b), cx + d >_{P^2} = < (a,b), (m,n) >_{\mathbb{R}^2}$$
$$\int_0^1 (bx + 2a + b)(cx + d) \, dx = am + bn$$
$$\frac{bc}{3} + ac + \frac{bc}{2} + \frac{bd}{2} + 2ad + bd = am + bn$$
$$b(\frac{5c}{6} + \frac{3d}{2}) + a(2d + c) = am + bn$$
$$\Rightarrow m = (2d + c), n = (\frac{5c}{6} + \frac{3d}{2})$$

Therefore, $T^a(cx+d) = (2d+c, \frac{5c}{6} + \frac{3d}{2})$

(ii) If A is diagonalizable, then find an invertible matrix Q and a diagonal matrix D such that $Q^{-1}AQ = D$.

$$E_{2}(A) = 5pan\{(2,1)\}$$

$$E_{-2}(A) = 5pan\{(-2,1)\}$$

$$O = \begin{pmatrix} 2 & -2 \\ -2 & -2 \end{pmatrix}, \quad O^{-1} = \begin{pmatrix} 1/4 & 1/2 \\ -2/4 & 1/2 \end{pmatrix}$$

$$D = O^{-1}AQ = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$$

(iii) Find A^{16} and A^{15} . [Hint: note that if $A = QDQ^{-1}$, then $A^m = QD^mQ^{-1}$ and $A^{15} = A^{-1}A^{16}$]

(iv) Convince me that $A^9 + A^7 + 4A^5 + 2A^3 + 7I_2 = c_1A + C_2I_2$ for some real numbers c_1, c_2 . Then find $A^9 + A^7 + 4A^5 + 2A^3 + 7I_2$.[Hint: Let $f(\alpha) = \alpha^9 + \alpha^7 + 4\alpha^5 + 2\alpha^3 + 7$. Then $f(\alpha) = q(\alpha)m_A(\alpha) + r(\alpha)$ — such that $deg(r) < deg(m(\alpha))$. Since $m_A(A) = 0_{2\times 2}$, we have f(A) = r(A).]

$$A^{3} + A^{3} + 4A^{5} + 2A^{3} + 4T_{2} = 392A + 4T$$

$$= \begin{pmatrix} 0 & 1568 \\ 392 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix} - \begin{pmatrix} 7 & 1569 \\ 392 & 4 \end{pmatrix}$$
QUESTION 3. (i) Let $f(a)$ be a polynomial such that $f(A) = 0_{non}$. Convince me that $m_{A}(a) | f(a)$.
D ivide $f(a)$ by $m_{A}(a')$. $50 \quad f^{(\alpha)} = 9(\alpha) \quad m_{A}(\alpha) + r(\alpha)$

$$f(A) = 9(A) \quad m_{A}(A) + r(A)$$

$$0_{RKA} = 0_{RKA} + r(A) \implies r(A) = 0_{RKA}$$

$$0_{RKA} = 0_{RKA} + r(A) \implies r(A) = 0_{RKA}$$

$$0 = (\alpha) = 0_{V} \qquad 3vch that $m_{A}(A) - o_{1} = 0_{RK}$

$$0_{RKA} = 0_{RKA} + r(A) \implies r(A) = 0_{RKA}$$

$$0 = (\alpha) = 0_{V} \qquad 3vch that $m_{A}(A) - o_{1} = 0_{RKA}$

$$0 = m_{A}(\alpha) | f(\alpha) = 0_{V} \qquad 3vch that $m_{A}(A) - o_{1} = 0_{RKA}$

$$(ii) Up to similarity, classify all 5 \times 5 matrices such that $A^{2} - 5A = -6I_{S}$. [Hint: Let $f(a) = a^{2} - 5a + 6$.
Hence, by hypothesis, $f(A) = 0_{RSS}$, By $(0, m_{A}(\alpha)) | f(\alpha)$. Hence $m_{A}(\alpha) = a - 20R m_{A}(\alpha) = a - 30R$

$$m_{A}(\alpha) = 1(\alpha) - 1$$

$$(ii) Up to similarity, classify all 5 \times 5 matrices such that $A^{2} - 5A = -6I_{S}$. [Hint: Let $f(a) = a^{2} - 5a + 6$.
Hence, by hypothesis, $f(A) = 0_{RSS}$. By $(0, m_{A}(\alpha)) | f(\alpha)$. Hence $m_{A}(\alpha) = a - 20R m_{A}(\alpha) = a - 30R$

$$m_{A}(\alpha) = 1(\alpha) - 1$$

$$(ii) M_{P}(\alpha) = \alpha - 2$$

$$(ii) M_{P}(\alpha) = \alpha - 2$$

$$f hen, C_{A}(\alpha) = (\alpha - 3)$$

$$A \approx C(\alpha - 3) \oplus C(\alpha - 3) \oplus C(\alpha - 3) \oplus C(\alpha - 3)$$

$$(if) m_{A}(\alpha) = \alpha^{2} - 5\alpha + 6 = (\alpha - 2)(\alpha^{2} - 3)$$

$$(if) m_{A}(\alpha) = \alpha^{2} - 5\alpha + 6 = (\alpha - 2)(\alpha^{2} - 3)$$

$$(if) m_{A}(\alpha) = \alpha^{2} - 5\alpha + 6 = (\alpha - 2)(\alpha^{2} - 3)$$

$$(if) m_{A}(\alpha) = \alpha^{2} - 5\alpha + 6 = (\alpha - 2)(\alpha^{2} - 3)$$

$$(if) m_{A}(\alpha) = (\alpha^{2} - 3) \oplus C(\alpha^{2} - 3) \oplus C(\alpha^{2} - 3)$$

$$(if) m_{A}(\alpha) = (\alpha^{2} - 3) \oplus C(\alpha^{2} - 3) \oplus C(\alpha^{2} - 3)$$

$$(if) m_{A}(\alpha) = (\alpha^{2} - 5\alpha + 6 = (\alpha^{2} - 3)(\alpha^{2} - 3)$$

$$(if) m_{A}(\alpha) = (\alpha^{2} - 5\alpha + 6 = (\alpha^{2} - 3)(\alpha^{2} - 3)$$

$$(if) m_{A}(\alpha) = (\alpha^{2} - 5\alpha + 6 = (\alpha^{2} - 3)(\alpha^{2} - 3)$$

$$(if) m_{A}(\alpha) = (\alpha^{2} - 3) \oplus C(\alpha^{2} - 3) \oplus C(\alpha^{2} - 3)$$

$$(if) m_{A}(\alpha) = (\alpha^{2} - 3) \oplus C(\alpha^{2} - 3) \oplus C(\alpha^{2} - 3)$$

$$(if) m_{A}(\alpha) = (\alpha^{2} - 3) \oplus C(\alpha^{2} - 3)$$

$$(if) m_{A}(\alpha) = (\alpha^{2} - 5\alpha + 6 = (\alpha^{2} - 3)(\alpha^{2} - 3)$$

$$(if) m_{A}(\alpha$$$$$$$$$$$$

$$(\underline{\alpha} \underline{\varphi} 2): C_{\beta}(\alpha') = (\alpha' - 2)^{\alpha} (\alpha' - 3)^{3}$$

$$A \approx C(\alpha' - 3) \oplus C((\alpha' - 3)(\alpha' - 3)) \oplus C((\alpha' - 4)(\alpha' - 3))$$

$$(\underline{\alpha} \underline{\varphi} 3): C_{\beta}(\alpha') = (\alpha' - 2)^{\alpha} (\alpha' - 3)^{1}$$

$$A \approx C(\alpha' - 3) \oplus C(\alpha' - 2) \oplus C((\alpha' - 2) \oplus C((\alpha' - 2)(\alpha' - 3))$$

$$(\underline{\alpha} \underline{\varphi} 4): C_{\beta}(\alpha') = (\alpha' - 2)^{3} (\alpha' - 3)^{3}$$

$$A \approx C(\alpha' - 3) \oplus C((\alpha' - 3) \oplus C((\alpha' - 3) \oplus C((\alpha' - 2)(\alpha' - 3)))$$

$$(\underline{\alpha} \underline{\varphi} 4): C_{\beta}(\alpha') = (\alpha' - 2)^{3} (\alpha' - 3)^{3}$$

$$(\underline{\alpha} + 3) = C(\alpha' - 3)^{3} (\alpha' - 3)^{3} \oplus C((\alpha' - 3) \oplus C((\alpha' - 2)(\alpha' - 3)))$$

$$(\underline{\alpha} \underline{\varphi} 4): C_{\beta}(\alpha') = (\alpha' - 2)^{3} (\alpha' - 3)^{3} \oplus C((\alpha' - 3) \oplus C((\alpha' - 2)(\alpha' - 3)))$$

$$(\underline{\alpha} + 1) = C_{\beta}(\alpha') \oplus C(\alpha' - 3) \oplus C((\alpha' - 3) \oplus C((\alpha' - 2)(\alpha' - 3)))$$

$$(\underline{\alpha} + 1) = C_{\alpha}(\alpha) = \alpha' - 2\alpha' - 3\alpha' + 4\beta \alpha' - 9 = (\alpha' - 1)^{\alpha} (\alpha' + 3)(\alpha' - 3)$$

$$(\underline{\alpha} + 1) = C_{\beta}(\alpha')$$

$$(\underline{\alpha} + 1) = (\alpha' - 2)^{3} - 8\alpha'' + 4\beta \alpha' - 9 = (\alpha' - 1)^{\alpha} (\alpha' + 3)(\alpha' - 3)$$

$$(\underline{\alpha} + 1) = C_{\beta}(\alpha')$$

$$(\underline{\alpha}$$

QUESTION 4. (1) Give me an example of a matrix A such that $C_A(\alpha) = (\alpha - 1)^5(\alpha - 4)^3$ and $m_A(\alpha) = (\alpha - 1)^2(\alpha - 4)^2$ where $E_1(A) = 3$ [Hint: Write down your answer as $A = C() \oplus C() \oplus \cdots \oplus C()$]

$+ \kappa = (\alpha - 1)^{2} (\alpha$	-4)2
$f_2 = (\alpha - 1)^2$	(α -4)
$P_1 = (\alpha - 1)$	

$A = C (\alpha - 1) \oplus C ((\alpha - 1)(\alpha - 4)) \oplus C ((\alpha - 1)^{2} (\alpha - 4)^{2})$

(2) Give me an example of a matrix A such that $C_A(\alpha) = (\alpha - 1)^5 (\alpha - 4)^3$ and $m_A(\alpha) = (\alpha - 1)^2 (\alpha - 4)^2$ where $E_1(A) = 4$.

(3) Is there a matrix A such that $C_A(\alpha) = (\alpha - 1)^5 (\alpha - 4)^3$ and $m_A(\alpha) = (\alpha - 1)^2 (\alpha - 4)^2$ where $E_4(A) = 3$? Explain briefly

No. Since dim(Eq(A)) = 3 (
$$\alpha$$
+) must be a factor
for 3 fi's for $0 < i \leq K$
but $f_{k} = m_{A}(\alpha) = (\alpha - i)(\alpha - 4)^{2}$.
So we only need one more $(\alpha - i)$ to sodify
 $f_{i} \cdot f_{2} \cdot \dots \cdot f_{K} = C_{A}(\alpha)$.

QUESTION 5. Given A is similar to $H = C(\alpha - 4) \oplus C(\alpha - 4) \oplus C(\alpha^2 + \alpha - 20) \oplus C(\alpha^2 + \alpha - 20)$
(i) Find $C_A(\alpha)$ and $m_A(\alpha)$.
(ii) For each eigenvalue a of A find $dim(E_a(A))$
(iii) Is A diagnolizable? explain briefly
(iv) Explicitly, write down the entries of <i>H</i> .
(i) $C_A(\alpha) = (\alpha - 4)^4 (\alpha + 5)^2$
$m_{A}(\alpha) = (\alpha - 4)(\alpha + 5) \langle \rangle$
(ii) $\dim(E_4 A) = 4$ $\dim(E_{-5}(A)) = 2$
(iii) yes, because marcal is the product of linear factors.
$(iv) C(\alpha - 4) = (4) \qquad \text{distinct}$
$C(\alpha^2 + \alpha - 2\alpha) = (0 20)$
0 0 0 20
= 0002000
004-100
000020

Question 6.

- (2) Given A is similar to $J = J_1(2) \oplus J_1(2) \oplus J_3(2) \oplus J_2(5) \oplus J_4(5) \oplus J_5(7)$.
- (i) Find $C_A(\alpha)$ and $m_A(\alpha)$.
- (ii) For each eigenvalue a of A find $dim(E_a(A))$.
- (iii) A is similar to a matrix H in rational form. Find H. [Hint: write $H = C() \oplus \cdots \oplus C()$]

(i) $C_{A}(\alpha) = (\alpha - \beta) (\alpha - \beta)^{3} (\alpha - 5)^{2} (\alpha - 5)^{4} (\alpha - 7)^{5}$ $m_{A}(\alpha) = (\alpha - 2)^{3} (\alpha - 5)^{4} (\alpha - 7)^{5}$ (ii) dim $(E_{a}(A)) = 3$ $dim (E_{s}(A)) = 2$ $\dim (E_{\mp}(A)) = 1$ $f_{K} = (\alpha - 2)^{3} (\alpha - 5)^{4} (\alpha - 7)^{5}$ (iii) $C_{A}(\alpha) = (\alpha - 2)^{5}(\alpha - 5)^{6}(\alpha - 7)^{5}$ $P_1 \cdot P_2 \cdot \dots \cdot P_{K-1} = (\alpha - 2)^2 (\alpha - 5)^2$ $P_3 = M_A(\alpha)$ $f_2 = (\alpha - \lambda) (\alpha - 5)^2$ $f_1 = (\alpha - 2)$

 $H = C(\alpha - 2) \bigoplus C((\alpha - 2)(\alpha - 5)^{2}) \bigoplus C(m_{A}(\alpha))$

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{QUESTION 7.Let } & 1 & \mathbb{R}^{2} + h & \text{such and } (1 & h) & = h & -2h + h & \text{Define} < f_{1}, f_{2}, h_{2} & = f_{2}^{2}, f_{3}^{2}, f_{4}^{2}, de \text{ and} \end{array} \\ \hline & & T^{-1} : \begin{array}{c} \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2} & P_{2}^{-1} \end{array} \right) & V = \begin{array}{c} \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) \in \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) \in \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) \in \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) \in \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) \in \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) \in \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) \in \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) \in \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) \in \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) \in \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) \in \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) \in \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) \in \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) \in \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) \in \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) \in \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) = \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) = \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) = \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) = \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) = \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) = \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) = \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) = \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) = \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) = \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) = \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) = \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) = \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) = \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) = \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) = \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) = \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) = \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) = \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) = \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) = \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) = \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) = \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) = \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) = \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) = \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) = \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{2}, (a, b) = \left(\begin{array}{c} \mathbb{R}^{2} \\ - \end{array} \right)^{$$