Name: Djamila Ait Elhadi
Student ID: 00098182
MTH512 Homework 4
6 May 2023 Advanced Linear Algebra

1. Assume A, B are similar $n \times n$ matrices, say $A=Q^{-1} B Q$
(i) We know $C_{A}(\alpha)=C_{B}(\alpha)$. Prove $m_{A}(\alpha)=m_{B}(\alpha)$.

Answer:
$m_{A}(\alpha)=a_{k} \alpha^{k}+a_{k-1} \alpha^{k-1}+\ldots+a_{1} \alpha+a_{0}$.
$m_{b}(\alpha)=b_{k} \alpha^{k}+b_{k-1} \alpha^{k-1}+\ldots+b_{1} \alpha+b_{0}$.
We have

$$
\begin{gathered}
0_{n \times n}=M_{A}(A)=a_{k} A^{k}+a_{k-1} A^{k-1}+\ldots+a_{1} A+a_{0} I \\
=a_{k}\left(Q^{-1} B Q\right)^{k}+a_{k-1}\left(Q^{-1} B Q\right)^{k-1}+\ldots+a_{1}\left(Q^{-1} B Q\right)+a_{0} I \\
=a_{k} Q^{-1} B^{k} Q+a_{k-1} Q^{-1} B^{k-1} Q+\ldots+a_{1} Q^{-1} B Q+a_{0} I \\
=Q^{-1}\left(a_{k} B^{k} Q+a_{k-1} B^{k-1} Q+\ldots+a_{1} B Q+a_{0} Q\right) \\
=Q^{-1}\left(a_{k} B^{k}+a_{k-1} B^{k-1}+\ldots+a_{1} B+a_{0}\right) Q=Q^{-1} m_{A}(B) Q
\end{gathered}
$$

$m_{A}(B)=0_{n \times n} \Rightarrow m_{B}(\alpha) \mid m_{A}(\alpha)$. It is clear that $B=Q A Q^{-1}$. Repeating the process with $M_{B}(B)$, we get $0_{n \times n}=M_{B}(B)=Q M_{B}(A) Q^{-1}$ $m_{B}(A)=0_{n \times n} \Rightarrow m_{A}(\alpha) \mid m_{B}(\alpha)$.
Since $m_{B}(\alpha) \mid m_{A}(\alpha)$ and $m_{A}(\alpha) \mid m_{B}(\alpha), m_{B}(\alpha)=m_{A}(\alpha)$.
(ii) Assume that a is an eigenvalue of A and $v_{1}, v_{2}, \ldots, v_{k}$ is a basis for $E_{a}(A)$. Prove that $\left\{Q_{v_{1}}, Q_{v_{2}}, \ldots, Q_{v_{k}}\right\}$ is a basis for $E_{a}(B)$. [Hint: Observe that
 $B Q=Q A$ and since Q is invertible, $Q w=0_{n}$ iff $w=0_{n}$]
Answer: Let a be an eigenvalue of A and $v_{1}, v_{2}, \ldots, v_{k}$ be a basis for $E_{a}(A)$. Then a be an eigenvalue of B and $\operatorname{dim}\left(E_{a}(B)\right)=\operatorname{dim}\left(E_{a}(A)\right)=$ k.
$A=Q^{-1} B Q \Rightarrow Q A=B Q \Rightarrow(Q A) v_{i}=(B Q) v_{i}$.
$\Rightarrow Q\left(A v_{i}\right)=B\left(Q v_{i}\right) \Rightarrow a\left(Q v_{i}\right)=B\left(Q v_{i}\right)$.

Since Q is invertible and $v_{i} \neq 0, Q v_{i}$ is a nonzero vector. Therefore, $Q v_{i}$ is an eigenvector of B for $1 \leq i \leq k$. Therefore the set $\left\{Q v_{1}, Q v_{2}, \ldots, Q v_{k}\right\}$ forms a basis for $E_{q}(B)$. show?

$2)=m_{A}(\alpha)$. This is the product of two linear factors, therefore A is diagonalizable with eigenvalues $\alpha=2,-2$.
(ii) If A is diagnolizable, then find an invertible matrix Q and a diagonal matrix D such that $Q^{-1} A Q=D$.
Answer: We have $D=\left[\begin{array}{cc}2 & 0 \\ 0 & -2\end{array}\right]$. To find Q , we find eigenvectors associated with each eigenvalue.
For $\alpha=2$, we have $(2 I-A)=\left[\begin{array}{cc}2 & -4 \\ -1 & 2\end{array}\right]$. We find the null space of this matrix using an online calculator, which gives us $E_{2}(A)=\operatorname{span}\{(2,1)\}$. For $\alpha=-2$, we have $(2 I-A)=\left[\begin{array}{ll}-2 & -4 \\ -1 & -2\end{array}\right]$. We find the null space of this matrix using an online calculator, which gives us $E_{2}(A)=$ $\operatorname{span}\{(-2,1)\}$.
Therefore $Q=\left[\begin{array}{cc}2 & -2 \\ 1 & 1\end{array}\right]$ and $Q^{-1}=\left[\begin{array}{cc}\frac{1}{4} & \frac{1}{2} \\ \frac{-1}{4} & \frac{1}{2}\end{array}\right]$
(iii) Find A^{16} and A^{15}. [Hint: note that if $A=Q D Q^{-1}$, then $A m=$ $Q D^{m} Q^{-1}$ and $\left.A^{15}=A^{-1} A^{16}\right]$
Answer:

$$
\begin{aligned}
A^{16} & =Q D^{16} Q^{-1}=\left[\begin{array}{cc}
2^{16} & 0 \\
0 & 2^{16}
\end{array}\right]=\left[\begin{array}{cc}
65536 & 0 \\
0 & 65536
\end{array}\right] \\
A^{15} & =A^{-1} A^{16}=\left[\begin{array}{cc}
0 & 2^{16} \\
2^{24} & 0
\end{array}\right]=\left[\begin{array}{cc}
0 & 65536 \\
16384 & 0
\end{array}\right]
\end{aligned}
$$

(iv) Convince me that $A^{9}+A^{7}+4 A^{5}+2 A^{3}+7 I_{2}=c_{1} A+C_{2} I_{2}$ for some real numbers c_{1}, c_{2}. Then find $A^{9}+A^{7}+4 A^{5}+2 A^{3}+7 I_{2}$. [Hint: Let $f(\alpha)=\alpha^{9}+\alpha^{7}+4 \alpha^{5}+2 \alpha^{3}+7$. Then $f(\alpha)=q(\alpha) m_{A}(\alpha)+r(\alpha)$ such that $\operatorname{deg}(r)<\operatorname{deg}(m(\alpha))$. Since $m_{A}(A)=0_{2 \times 2}$, we have $f(A)=r(A)$.] Answer: Using polynomial long division, we have

$$
\begin{gathered}
\frac{\alpha^{9}+\alpha^{7}+4 \alpha^{5}+2 \alpha^{3}+7}{\alpha^{2}-4}=\left(\alpha^{7}+5 \alpha^{5}+24 \alpha^{3}+98 \alpha\right)+\frac{392 \alpha+7}{\alpha^{2}-4} \\
\Rightarrow f(\alpha)=q(\alpha) m_{A}(\alpha)+(392 \alpha+7)
\end{gathered}
$$

Therefore, $A^{9}+A^{7}+4 A^{5}+2 A^{3}+7 I_{2}=392 A+7 I_{2}=\left[\begin{array}{cc}7 & 1568 \\ 392 & 7\end{array}\right]$
3. (i) Let $f(\alpha)$ be a polynomial such that $f(A)=0_{n \times n}$. Convince me that $m_{A}(\alpha) \mid f(\alpha)$.
Answer: Let $f(\alpha)$ be a polynomial such that $f(A)=0_{n \times n}$. We know that $\operatorname{deg}(f(\alpha)) \geq \operatorname{deg}\left(m_{A}(\alpha)\right)$. Otherwise, $f(\alpha)$ would be the minimum polynomial for A. Suppose $f(\alpha)=q(\alpha) m_{A}(\alpha)+r(\alpha)$. Then $f(A)=$ $q(A) m_{A}(A)+r(A)=0+r(A)=r(A)=0$. But since $\operatorname{deg}(r(\alpha))<$ $m_{A}(\alpha)$ that means $r(\alpha)$ would be the minimal polynomial, contradiction. Hence, $r(\alpha)=0 \forall \alpha$ (i.e. $r(\alpha)$ is the zero polynomial). Therefore, $m_{A}(\alpha) \mid f(\alpha)$.
(ii) Up to similarity, classify all 5×5 matrices such that $A^{2}-5 A=-6 I_{5}$. [Hint: Let $f(\alpha)=\alpha^{2}-5 \alpha+6$. Hence, by hypothesis, $f(A)=0_{5 \times 5}$. By (i), $m_{A}(\alpha) \mid f(\alpha)$. Hence $m_{A}(\alpha)=\alpha-2$ OR $m_{A}(\alpha)=\alpha-3$ OR $m_{A}(\alpha)=f(\alpha)$.]
Answer: There are three possibilities for $m_{A}(\alpha)$. Either $m_{A}(\alpha)=\alpha-2$ OR $m_{A}(\alpha)=\alpha-3$ OR $m_{A}(\alpha)=f(\alpha)$.
For $m_{A}(\alpha)=\alpha-2, A \simeq C(\alpha-2) \oplus C(\alpha-2) \oplus C(\alpha-2) \oplus C(\alpha-2) \oplus$ $\bar{C}(\alpha-2) . \quad$ In fact, $\mathrm{A}=2 \mathrm{I} _5$
Similarly, For $m_{A}(\alpha)=\alpha-3, A \simeq C(\alpha-3) \oplus C(\alpha-3) \oplus C(\alpha-3) \oplus$ $C(\alpha-3) \oplus C(\alpha-3) . \quad$ Again, A = 3I_5
For $m_{A}(\alpha)=f(\alpha)=(\alpha-3)(\alpha-2)$, we have several possibilities for $\overline{C_{A}(\alpha) .} C_{A}(\alpha)=(\alpha-3)^{3}(\alpha-2)^{2}$ OR $C_{A}(\alpha)=(\alpha-3)^{2}(\alpha-2)^{3}$ OR $C_{A}(\alpha)=(\alpha-3)^{4}(\alpha-2)^{1}$ OR $C_{A}(\alpha)=(\alpha-3)^{1}(\alpha-2)^{4}$.
For $C_{A}(\alpha)=(\alpha-3)^{3}(\alpha-2)^{2}$, We have $A \simeq C(\alpha-3) \oplus C((\alpha-3)(\alpha-$ 2)) $\oplus C((\alpha-3)(\alpha-2))$
$=C(\alpha-3) \oplus C\left(\alpha^{2}-5 \alpha+6\right) \oplus C\left(\alpha^{2}-5 \alpha+6\right)$.
For $C_{A}(\alpha)=(\alpha-3)^{2}(\alpha-2)^{3}$, We have $A \simeq C(\alpha-2) \oplus C((\alpha-3)(\alpha-$
2)) $\oplus C((\alpha-3)(\alpha-2))$
$=C(\alpha-2) \oplus C\left(\alpha^{2}-5 \alpha+6\right) \oplus C\left(\alpha^{2}-5 \alpha+6\right)$.
For $C_{A}(\alpha)=(\alpha-3)^{4}(\alpha-2)$, We have $A \simeq C(\alpha-3) \oplus C(\alpha-3) \oplus C((\alpha-$
3)) $\oplus C((\alpha-3)(\alpha-2))$
$=C(\alpha-3) \oplus C(\alpha-3) C(\alpha-3) \oplus \nmid C\left(\alpha^{2}-5 \alpha+6\right)$.
For $C_{A}(\alpha)=(\alpha-3)(\alpha-2)^{4}$, We have $A \simeq C(\alpha-2) \oplus C(\alpha-2) \oplus C((\alpha-$
2)) $\oplus C((\alpha-3)(\alpha-2))$
$=C(\alpha-2) \oplus C(\alpha-2) C(\alpha-2) \oplus C\left(\alpha^{2}-5 \alpha+6\right)$.
(iii) Let A be a 4×4 such that A is similar to $H=\left[\begin{array}{cccc}0 & 0 & 0 & 9 \\ 1 & 0 & 0 & -18 \\ 0 & 1 & 0 & 8 \\ 0 & 0 & 1 & 2\end{array}\right]$
(a) Find $C_{A}(\alpha)$ and $m_{A}(\alpha)$.
 18 $\alpha-9$) $\Rightarrow C_{A}(\alpha)=m_{A}(\alpha)=\alpha^{4}-2 \alpha^{3}-8 \alpha^{2}+18 \alpha-9$
(b) For each eigenvalue a of A find $\operatorname{dim}\left(E_{a}(A)\right)\left[\right.$ Hint: $C_{A}(\alpha)=\left(\alpha^{2}-\right.$ $\left.2 \alpha+1)\left(\alpha^{2}-9\right)\right]$
Answer: $C_{A}(\alpha)=\left(\alpha^{2}-1\right)^{2}(\alpha-3)(\alpha+3)$. Therefore the eigenvalues a are $3,-3$, and 1 and $\operatorname{dim}\left(E_{a}(A)\right)=1$ for each eigenvalue of the A.
(c) Theoretically, how do you construct the columns of the invertible matrix Q where $Q^{-1} A Q=H$?
Answer: By class notes, there exists w in \mathbb{R}^{4} such that the columns of Q would be $\left\{w, A w, A^{2} w, A^{3} w\right\}$ and $\left\{w, A w, A^{2} w, A^{3} w\right\}$ is a basis of \mathbb{R}^{4}.
4. (1) Give me an example of a matrix A such that $C_{A}(\alpha)=(\alpha-1)^{5}(\alpha-4)^{3}$ and $m_{A}(\alpha)=(\alpha-1)^{2}(\alpha-4)^{2}$ where $E_{1}(A)=3$ [Hint: Write down your answer as $A=C() \oplus C() \oplus \ldots \oplus C()]$
Answer: $A=C(\alpha-1) \oplus C\left((\alpha-1)^{2}(\alpha-4)\right) \oplus C\left((\alpha-1)^{2}(\alpha-4)^{2}\right)$
(2) Give me an example of a matrix A such that $C_{A}(\alpha)=(\alpha-1)^{5}(\alpha-4)^{3}$ and $m_{A}(\alpha)=(\alpha-1)^{2}(\alpha-4)^{2}$ where $E_{1}(A)=4$
Answer: $A=C(\alpha-1) \oplus C(\alpha-1) \oplus C((\alpha-1)(\alpha-4)) \oplus C\left((\alpha-1)^{2}(\alpha-4)^{2}\right)$
(3) Is there a matrix A such that $C_{A}(\alpha)=(\alpha-1)^{5}(\alpha-4)^{3}$ and $m_{A}(\alpha)=$ $(\alpha-1)^{2}(\alpha-4)^{2}$ where $E_{4}(A)=3$? Explain Briefly

Answer: We know that $\operatorname{dim}\left(E_{4}\left(C\left(f_{i}\right)\right)\right)=1$ for each f_{i} such that $\Pi_{i=1}^{k} f_{i}=C_{A}(\alpha)=(\alpha-1)^{5}(\alpha-4)^{3}$ and $f_{k}=m_{A}(\alpha)=(\alpha-1)^{2}(\alpha-4)^{2}$ and $f_{1}|\ldots| f_{k}$. Since the multiplicity of 4 is 3 , and 4 is repeated twice in the minimum polynomial, we can only have one more polynomial with $f_{k-1}=(\alpha-1)^{j}(\alpha-4)$ where $1 \leq j \leq 2$. so, we cannot, i.e., there is no such matrix
5. Given A is similar to $H=C(\alpha-4) \oplus C(\alpha-4) \oplus C\left(\alpha^{2}+\alpha-20\right) \oplus C\left(\alpha^{2}+\alpha-20\right)$
(i) Find $C_{A}(\alpha)$ and $m_{A}(\alpha)$.
$<\quad$ Answer: $C_{A}(\alpha)=(\alpha-4)(\alpha-4)\left(\alpha^{2}+\alpha-20\right)\left(\alpha^{2}+\alpha-20\right)=(\alpha-$ 4) ${ }^{4}(\alpha-5)^{2}$.
$m_{A}(\alpha)=\alpha^{2}+\alpha-20=(\alpha-4)(\alpha+5)$
(ii) For each eigenvalue a of A find $\operatorname{dim}\left(E_{a}(A)\right)$
(Answer: $\operatorname{dim}\left(E_{4}(A)\right)=4$
$\operatorname{dim}\left(E_{-5}(A)\right)=2$
(iii) Is A diagonalizable? explain briefly

Answer: Yes, because the minimum polynomial is a product of distinct
 linear factors with the roots being the distinct eigenvalues. (Another answer: Yes, because $\operatorname{dim}\left(E_{a}(A)\right)$ is equal to the multiplicity of a for each a eigenvalue of A).
(iv) Explicitly, write down the entries of H.

6. Given A is similar to $J=J_{1}(2) \oplus J_{1}(2) \oplus J_{3}(2) \oplus J_{2}(5) \oplus J_{4}(5) \oplus J_{5}(7)$.
(i) Find $C_{A}(\alpha)$ and $m_{A}(\alpha)$

Answer: We have $C_{A}(\alpha)=(\alpha-2)(\alpha-2)(\alpha-2)^{3}(\alpha-5)^{2}(\alpha-5)^{4}(\alpha-$ $7)^{5}=(\alpha-2)^{5}(\alpha-5)^{6}(\alpha-7)^{5}$
We know that the multiplicity of a in the minimum polynomial is the number associated with the biggest Jordan block for a.
We have $m_{A}(\alpha)=(\alpha-2)^{3}(\alpha-5)^{4}(\alpha-7)^{5}$
(ii) For each eigenvalue a of A find $\operatorname{dim}\left(E_{a}(A)\right)$

Answer: We know that $\operatorname{dim}\left(E_{a}(A)\right)$ is the number of Jordan blocks for a.

(iii) A is similar to a matrix H in rational form. Find H. [Hint: write $H=C() \oplus \ldots \oplus C()]$
Answer: $H=C(\alpha-2) \oplus C\left((\alpha-2)(\alpha-5)^{2}\right) \oplus C\left((\alpha-2)^{3}(\alpha-5)^{4}(\alpha-7)^{5}\right)$
7. Let $T: \mathbb{R}^{2} \rightarrow P^{2}$ such that $T(a, b)=b x+2 a+b$. Define $<f 1, f 2>_{P^{2}}=$ $\int_{0}^{1} f_{1} f_{2} d x$ and $<q_{1}, q_{2}>_{\mathbb{R}^{2}}=q_{1} \cdot q_{2}$. Find T^{a} (the adjoint operator of T) Answer: We know that $T^{a}(c x+d)=(m, n)$. We shall find m, n (in terms of c, d). We have

$$
\begin{aligned}
& <T(a, b), c x+d>_{P^{2}}=<(a, b),(m, n)>_{\mathbb{R}^{2}} \\
& \int_{0}^{1}(b x+2 a+b)(c x+d) d x=a m+b n \\
& \frac{b c}{3}+a c+\frac{b c}{2}+\frac{b d}{2}+2 a d+b d=a m+b n \\
& b\left(\frac{5 c}{6}+\frac{3 d}{2}\right)+a(2 d+c)=a m+b n \\
& \quad \Rightarrow m=(2 d+c), n=\left(\frac{5 c}{6}+\frac{3 d}{2}\right)
\end{aligned}
$$

Therefore, $T^{a}(c x+d)=\left(2 d+c, \frac{5 c}{6}+\frac{3 d}{2}\right)$

QUESTION 1. Assume A, B are similar $n \times n$ matrices, say $A=Q^{-1} B Q$.

$$
B=Q A Q^{-1}
$$

105/110
(i) We know $C_{A}(\alpha)=C_{B}(\alpha)$. Prove $m_{A}(\alpha)=m_{B}(\alpha)$.

Take any polynomial $f(\alpha)=\alpha^{k}+a_{k-1} \alpha^{k-1}+\cdots+a_{1} \alpha+a_{0}$

$$
\left.\begin{array}{rl}
f(A)=f\left(Q^{-1} B Q\right) \\
\left(Q^{-1} B Q\right)^{2} & =\left(Q^{-1} B Q\right)\left(Q^{-1} B Q\right) \\
& =\left(Q^{-1} B\right)(I)(B Q)
\end{array}=\left(Q^{-1} B\right)(B Q)(B Q)\right)
$$

by same method $\left(Q^{-1} B Q\right)^{n}=Q^{-1} B^{n} Q$

$$
\begin{aligned}
\Rightarrow f(A) & =Q^{-1} B^{k} Q+a_{k-1} Q^{-1} B^{k-1} Q+\ldots+a_{1} Q^{-1} B Q+a_{0} I \\
& =Q^{-1}\left(B^{k}+a_{k-1} B^{k-1}+a B+a_{0} I\right) Q \\
& =Q^{-1} f(B) Q
\end{aligned}
$$

Let $m_{A}(\alpha)$ and $m_{B}(\alpha)$ be the minimal polynomials of A and B respectively, then $m_{A}(B)=m_{A}\left(Q A Q^{-1}\right)=Q m_{A}(A) Q^{-1}$

$$
=Q O_{n \times n} Q^{-1}=O_{n \times n}
$$

So $m_{B}(\alpha) \mid m_{A}(\alpha)$
Similarly $m_{B}(A)=O_{n \times n} \Rightarrow m_{A}(\alpha) \mid m_{B}(\alpha)$

$$
\Rightarrow m_{B}(\alpha)=m_{A}(\alpha)
$$

(ii) Assume that a is an eigenvalue of A and $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is a basis for $E_{a}(A)$. Prove that $\left\{Q v_{1}, Q v_{2}, \ldots, Q v_{k}\right\}$ is a basis for $E_{a}(B)$. [Hint: Observe that $B Q=Q A$ and since Q is invertible, $Q w=0_{n}$ iff $w=0_{n}$]

To show the $\quad B Q v_{i}=a Q v_{i} \quad \forall i \quad 1 \leqslant i \leqslant k$
$B Q v_{i}=Q A v_{i}=Q\left(a v_{i}\right) \quad$ (since a is an eigenvalue of $\left.A\right)$.

$$
=a\left(Q v_{i}\right)
$$

$\therefore Q V_{0}$ is an eigenvector of B.

$$
\begin{aligned}
C_{A}(\alpha)=|\alpha I-A| & =\left|\begin{array}{cc}
\alpha & -4 \\
-1 & \alpha
\end{array}\right|=\alpha^{2}-4 \Rightarrow \alpha= \pm 2 \text { are the eigenvalues } \\
& \Rightarrow m_{A}(\alpha)=(\alpha-2)(\alpha+2)
\end{aligned}
$$

(ii) If A is diagnolizable, then find an invertible matrix Q and a diagonal matrix D such that $Q^{-1} A Q=D$.

$$
\left.\begin{array}{c}
E_{2}(A)=\operatorname{span}\{(2,1)\} \\
E_{-2}(A)=\operatorname{sean}\{(-2,1)\} \\
1 \\
Q=1
\end{array}\right) \quad Q^{-1}=\left(\begin{array}{ll}
1 / 4 & 1 / 2 \\
-1 / 4 & 1 / 2
\end{array}\right)
$$

(iii) Find A^{16} and A^{15}. [Hint: note that if $A=Q D Q^{-1}$, then $A^{m}=Q D^{m} Q^{-1}$ and $A^{15}=A^{-1} A^{16}$]

$$
\begin{gathered}
A^{16}=Q D^{16} Q^{-1}=Q\left(\begin{array}{cc}
65536 & 0 \\
0 & 65536
\end{array}\right) Q^{-1} \\
=\left(\begin{array}{cc}
65536 & 0 \\
0 & 65536
\end{array}\right) \\
A^{-1}=\left(\begin{array}{cc}
0 & 1 \\
1 / 4 & 0
\end{array}\right)
\end{gathered}
$$

(iv) Convince me that $A^{9}+A^{7}+4 A^{5}+2 A^{3}+7 I_{2}=c_{1} A+C_{2} I_{2}$ for some real numbers c_{1}, c_{2}. Then find $A^{9}+A^{7}+4 A^{5}+2 A^{3}+7 I_{2}$.[Hint: Let $f(\alpha)=\alpha^{9}+\alpha^{7}+4 \alpha^{5}+2 \alpha^{3}+7$. Then $f(\alpha)=q(\alpha) m_{A}(\alpha)+r(\alpha)$ such that $\operatorname{deg}(r)<\operatorname{deg}(m(\alpha))$. Since $m_{A}(A)=0_{2 \times 2}$, we have $f(A)=r(A)$.]

$$
\begin{aligned}
& \frac{\left.\alpha^{7}+5 \alpha^{3}+5 \alpha^{5}+24 \alpha^{3}+98 \alpha\right\}}{\alpha^{2}} \frac{7}{5}(\alpha) \\
& \alpha^{2}-4 \quad \alpha^{9}+\alpha^{7}+4 \alpha^{5}+2 \alpha^{3}+7 \\
& \left.-\frac{\alpha^{9}+4 \alpha^{7} \downarrow}{\alpha^{7}} \right\rvert\, \quad \Rightarrow f(\alpha)=q_{(\alpha)} \quad \Rightarrow m_{A}(\alpha)+r(\alpha) \\
& f(A)=r(A) \\
& \Rightarrow c_{1}=392 \\
& C_{2}=7 \\
& \frac{-24 \alpha^{5}+96 \alpha^{3}}{0+98 \alpha^{3}}+7 \\
& \frac{-98 \alpha^{3}+392 \alpha}{392 \alpha+7}
\end{aligned}
$$

$$
\begin{aligned}
A^{9}+A^{7}+4 A^{5}+2 A^{3}+7 I_{2} & =392 A+7 I \\
& =\left(\begin{array}{ll}
0 & 1568 \\
392 & 0
\end{array}\right)+\left(\begin{array}{ll}
7 & 0 \\
0 & 7
\end{array}\right)=\left(\begin{array}{lc}
7 & 1568 \\
392 & 7
\end{array}\right)
\end{aligned}
$$

QUESTION 3. (i) Let $f(\alpha)$ be a polynomial such that $f(A)=0_{n \times n}$. Convince me that $m_{A}(\alpha) \mid f(\alpha)$.
Divide $f(\alpha)$ by $m_{A}(\alpha)$. so $f(\alpha)=q(\alpha) m_{A}(\alpha)+r(\alpha)$

$$
\begin{aligned}
& f(A)=q(A) m_{A}(A)+r(A) \\
& O_{n \times n}=O_{n \times n}+r(A) \Rightarrow r(A)=O_{n \times n}
\end{aligned}
$$

$0 \leqslant \operatorname{deg}(r(a))<\operatorname{deg}\left(m_{A}(\alpha)\right)\left(\right.$ but $m_{A}(\alpha)$ is the minimal

$$
\begin{aligned}
& \text { jo } \quad r(\alpha)=O_{v} \\
\Rightarrow m_{A}(a) & f(\alpha)
\end{aligned}
$$

(ii) Up to similarity, classify all 5×5 matrices such that $A^{2}-5 A=-6 I_{5}$. [Hint : Let $f(\alpha)=\alpha^{2}-5 \alpha+6$.

Hence, by hypothesis, $f(A)=0_{5 \times 5}$. By (i), $m_{A}(\alpha) \mid f(\alpha)$. Hence $m_{A}(\alpha)=\alpha-2$ OR $m_{A}(\alpha)=\alpha-3$ OR $\left.m_{A}(\alpha)=f(\alpha).\right]$

- if $m_{A}(\alpha)=\alpha-2$.
then, $C_{A}(\alpha)=(\alpha-2)^{5}$

$$
A \approx C(\alpha-2) \oplus C(\alpha-2) \oplus C(\alpha-2) \oplus C(\alpha-2)
$$

-if $m_{A}(\alpha)=\alpha-3$
then, $C_{A}(\alpha)=(\alpha-3)^{5}$

$$
A \approx C(\alpha-3) \oplus C(\alpha-3) \oplus C(\alpha-3) \oplus C(\alpha-3)
$$

if $m_{A}(\alpha)=\alpha^{2}-5 \alpha+6=(\alpha-2)(\alpha-3)$
Case 1: $C_{A}(\alpha)=(\alpha-2)^{3}(\alpha-3)^{2}$

$$
A \approx C(\alpha-2) \oplus C((\alpha-2)(\alpha-3)) \oplus C((\alpha-2)(\alpha-3))
$$

Case 2: $C_{A}(\alpha)=(\alpha-2)^{2}(\alpha-3)^{3}$
$A \approx C(\alpha-3) \oplus C((\alpha-2)(\alpha-3)) \oplus C((\alpha-2)(\alpha-3))$
Case 3: $C_{A}(\alpha)=(\alpha-2)^{4}(\alpha-3)^{\prime}$
$A \approx C(\alpha-2) \oplus C(\alpha-2) \oplus C(\alpha-2) \oplus C((\alpha-2)(\alpha-3))$
Case 4: $C_{A}(\alpha)=(\alpha-2)^{1}(\alpha-3)^{4}$
$A \approx C(\alpha-3) \oplus C(\alpha-3) \oplus C(\alpha-3) \oplus C((\alpha-2)(\alpha-3))$
(iii) Let A be a 4×4 such that A is similar to $H=\left[\begin{array}{cccc}0 & 0 & 0 & 9 \\ 1 & 0 & 0 & -18 \\ 0 & 1 & 0 & 8 \\ 0 & 0 & 1 & 2\end{array}\right]$
a. Find $C_{A}(\alpha)$ and $m_{A}(\alpha)$.
b. For each eigenvalue a of A find $\operatorname{dim}\left(E_{a}(A)\right)$ [Hint: $\left.C_{A}(\alpha)=\left(\alpha^{2}-2 \alpha+1\right)\left(\alpha^{2}-9\right)\right]$
c. Theoretically, how do you construct the columns of the invertible matrix Q where $Q^{-1} A Q=H$?
a. $C_{A}(\alpha)=\alpha^{4}-2 \alpha^{3}-8 \alpha^{2}+18 \alpha-9=(\alpha-1)^{2}(\alpha+3)(\alpha-3)$
\} H is not diagonalizable. $50 m_{A}(\alpha) \neq(\alpha-1)(\alpha+3)(\alpha-3)$

$$
m_{A}(\alpha)=C_{A}(\alpha)
$$

b. $\operatorname{dim}\left(E_{1}(A)\right)=1, \quad \operatorname{dim}\left(E_{3}(A)\right)=1, \quad \operatorname{dim}\left(E_{-3}(A)\right)=1$

QUESTION 4. (1) Give me an example of a matrix A such that $C_{A}(\alpha)=(\alpha-1)^{5}(\alpha-4)^{3}$ and $m_{A}(\alpha)=$ $(\alpha-1)^{2}(\alpha-4)^{2}$ where $E_{1}(A)=3$ [Hint: Write down your answer as $A=C() \oplus C() \oplus \cdots \oplus C()$]

$$
\begin{aligned}
& f_{k}=(\alpha-1)^{2}(\alpha-4)^{2} \\
& f_{2}=(\alpha-1)^{2}(\alpha-4) \\
& f_{1}=(\alpha-1) \\
& A=C(\alpha-1) \oplus C((\alpha-1)(\alpha-4)) \oplus C\left((\alpha-1)^{2}(\alpha-4)^{2}\right)
\end{aligned}
$$

(2) Give me an example of a matrix A such that $C_{A}(\alpha)=(\alpha-1)^{5}(\alpha-4)^{3}$ and $m_{A}(\alpha)=(\alpha-1)^{2}(\alpha-4)^{2}$ where $E_{1}(A)=4$.

$$
\begin{aligned}
& f_{4}=(\alpha-1)^{2}(\alpha-4)^{2} \\
& f_{3}=(\alpha-1)(\alpha-4) \\
& f_{2}=(\alpha-1) \\
& f_{1}=(\alpha-1)
\end{aligned}
$$

$$
A=C(\alpha-1) \oplus C(\alpha-1) \oplus C(\alpha-1)(\alpha-4) \oplus C\left((\alpha-1)^{2}(\alpha-4)^{2}\right)
$$

(3) Is there a matrix A such that $C_{A}(\alpha)=(\alpha-1)^{5}(\alpha-4)^{3}$ and $m_{A}(\alpha)=(\alpha-1)^{2}(\alpha-4)^{2}$ where $\left.E_{4}(A)\right)=3$? Explain briefly

No, since $\operatorname{dim}\left(E_{4}(A)\right)=3, \quad(\alpha-4)$ must be a factor for 3 fin's for $0 \leqslant i \leqslant K$
but $f_{k}=m_{A}(\alpha)=(\alpha-1)^{2}(\alpha-4)^{2}$.
So we only need one more $(\alpha-1)$ to satisfy

$$
f_{1} \cdot f_{2} \cdot \ldots \cdot f_{k}=C_{A}(\alpha)
$$

QUESTION 5. Given A is similar to $H=C(\alpha-4) \oplus C(\alpha-4) \oplus C\left(\alpha^{2}+\alpha-20\right) \oplus C\left(\alpha^{2}+\alpha-20\right)$
(i) Find $C_{A}(\alpha)$ and $m_{A}(\alpha)$.
(ii) For each eigenvalue a of A find $\operatorname{dim}\left(E_{a}(A)\right)$
(iii) Is A diagnolizable? explain briefly
(iv) Explicitly, write down the entries of H.
(i)

$$
\begin{aligned}
& C_{A}(\alpha)=(\alpha-4)^{4}(\alpha+5)^{2} \\
& m_{A}(\alpha)=(\alpha-4)(\alpha+5)
\end{aligned}
$$

(ii) $\quad \operatorname{dim}\left(E_{4}(A)\right)=4, \quad \operatorname{dim}\left(E_{-5}(A)\right)=2$
(iii) Yes, because $m_{A}(\alpha)$ is the product of linear factors.
(iv)

$$
\begin{aligned}
& C(\alpha-4)=(4) \\
& C\left(\alpha^{2}+\alpha-20\right)=\left(\begin{array}{ll}
0 & 20 \\
1 & -1
\end{array}\right) \\
& H=(4) \oplus(4) \oplus\left(\begin{array}{ll}
0 & 20 \\
1 & -1
\end{array}\right) \oplus\left(\begin{array}{ll}
0 & 20 \\
1 & -1
\end{array}\right) \\
&=\left(\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right) \oplus\left(\begin{array}{ccccc}
0 & 20 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 0 & 20 \\
0 & 0 & 1 & -1
\end{array}\right) \\
&=\left(\begin{array}{lllll}
4 & 0 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 & 0 \\
0 & 0 & 0 & 20 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

Question $6:$
(2) Given A is similar to $J=J_{1}(2) \oplus J_{1}(2) \oplus J_{3}(2) \oplus J_{2}(5) \oplus J_{4}(5) \oplus J_{5}(7)$.
(i) Find $C_{A}(\alpha)$ and $m_{A}(\alpha)$.
(ii) For each eigenvalue a of A find $\operatorname{dim}\left(E_{a}(A)\right)$.
(iii) A is similar to a matrix H in rational form. Find H. [Hint: write $H=C() \oplus \cdots \oplus C()$]
(i)

$$
\begin{aligned}
& C_{A}(\alpha)=(\alpha-2)(\alpha-2)(\alpha-2)^{3}(\alpha-5)^{2}(\alpha-5)^{4}(\alpha-7)^{5} \\
& m_{A}(\alpha)=(\alpha-2)^{3}(\alpha-5)^{4}(\alpha-7)^{5}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \operatorname{dim}\left(E_{2}(A)\right)=3 \\
& \operatorname{dim}\left(E_{5}(A)\right)=2 \\
& \operatorname{dim}\left(E_{7}(A)\right)=1
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& f_{K}=(\alpha-2)^{3}(\alpha-5)^{4}(\alpha-7)^{5} \\
& C_{A}(\alpha)=(\alpha-2)^{5}(\alpha-5)^{6}(\alpha-7)^{5} \\
& f_{1} \cdot f_{2} \cdot \ldots f_{k-1}=(\alpha-2)^{2}(\alpha-5)^{2} \\
& f_{3}=m_{A}(\alpha) \\
& f_{2}=(\alpha-2)(\alpha-5)^{2} \\
& f_{1}=(\alpha-2) \\
& H=C(\alpha-2) \oplus C\left((\alpha-2)(\alpha-5)^{2}\right) \oplus C\left(m_{A}(\alpha)\right)
\end{aligned}
$$

$$
\begin{gather*}
T: \mathbb{R}^{2} \rightarrow P^{2} \quad v=\mathbb{R}^{2},(a, b) \in \mathbb{R}^{2} \\
T^{a}: P_{2} \rightarrow \mathbb{R}^{2}, P_{2}, a, x+a_{2} \in P_{2} \\
\langle T(v), w\rangle_{w}=\left\langle v_{1} T^{a}(w)\right\rangle_{v} \\
\left\langle T(a, b), a, x+a_{2}\right\rangle_{P_{2}}=\left\langle(a, b), T^{a}\left(a_{1} x+a_{2}\right)\right\rangle \mathbb{R}^{2} \\
\left\langle b x+2 a+b, a_{1} x+a_{2}\right\rangle P_{2}=\int_{0}^{1}(b x+2 a+b)\left(a_{1} x+a_{2}\right) d x \\
=\frac{b a_{1}}{3}+\frac{\left(b a_{2}+2 a a_{1}+b a_{1}\right)}{2}+\left(2 a a_{2}+b a_{2}\right)
\end{gather*}
$$

$\Rightarrow \quad \operatorname{Let} T^{a}\left(a_{1} x+a_{2}\right)=\left(a_{3}, a_{4}\right)$

$$
\begin{align*}
\Rightarrow\left\langle(a, b), T^{a}\left(a, x+a_{2}\right)\right\rangle \mathbb{R}^{2} & =\left\langle(a, b),\left(a_{3}, a_{4}\right)\right\rangle_{\mathbb{R}^{2}} \\
& =a a_{3}+b a_{4} \tag{2}
\end{align*}
$$

$$
(1)=2
$$

$$
\begin{gathered}
\frac{b a_{1}}{3}+\frac{\left(b a_{2}+2 a a_{1}+b a_{1}\right)}{2}+\left(2 a a_{2}+b a_{2}\right)=a a_{3}+b a_{4} \\
\left(\frac{a_{1}}{3}+\frac{3 a_{2}}{2}+\frac{a_{1}}{2}\right) b+\left(a_{1}+2 a_{2}\right) a=a a_{3}+b a_{4} \\
\Rightarrow a_{3}=a_{1}+2 a_{2} \\
a_{4}=\frac{a_{1}}{3}+\frac{3 a_{2}}{2}+\frac{a_{1}}{2} \\
T^{a}\left(a_{1} x+a_{2}\right)=\left(a_{1}+2 a_{2}, \frac{5 a_{1}}{6}+\frac{3 a_{2}}{2}\right)
\end{gathered}
$$

