

(ii) Find $|A \otimes B|$

Answer: We know that $|A \otimes B| = |A|^m |B|^n$, where *m* is the size of *B* and *n* is the size of *A*.

$$|A| = 2 \times 2 - 1 \times 2 = 4 - 2 = 2$$
$$|B| = -2 \begin{vmatrix} 1 & 1 \\ 0 & 2 \end{vmatrix} = -2(2 - 0) = -4$$

Therefore,

 $|A \otimes B| = (2)^3 (4)^2 = 128$

(iii) Find $Trace(A \otimes B)$ **Answer:** We know that $Trace(A \otimes B) = Trace(A) \times Trace(B)$.

$$Trace(A) = 2 + 2 = 4$$

 $Trace(B) = 1 + 2 - 2 = 1$

Therefore,

$$Trace(A \otimes B) = Trace(A) \times Trace(B) = 4 \times 1 = 4$$

2. (a) Let $T: V \to V$, $L: W \to W$ be \mathbb{R} -homomorphisms such that α is an eigenvalue of T, and β is an eigenvalue L. Prove that $\alpha\beta$ is an eigenvalue of $T \otimes L$. [hint: note that $T \otimes L(v \otimes w) = T(v) \otimes L(w)$]

for some v not = 0_V

for some w not = 0_w

Answer: Let $T : V \to V$ be a linear transformation such that α is an eigenvalue of $T \Rightarrow v \in V$ such that $T(v) = \alpha v$. Similarly, Let $L: W \to W$ be a linear transformation such that β is an eigenvalue of T $\Rightarrow w \in W$ such that $T(w) = \beta w$. Take $T \otimes L(v \otimes w) = T(v) \otimes L(w) =$ $\alpha v \otimes \beta w = \alpha \beta (v \otimes w) \Rightarrow \alpha \beta$ is an eigenvalue of $T \otimes L$.

(b) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$, $L : \mathbb{R}^3 \to \mathbb{R}^3$ be R-homomorphisms such that -3, -3, -7 are the eigenvalues of T, and 4, 1, 2, 3 are the eigenvalues of L. If $E_{-3}(T) = span\{(1, 0, 1), (-1, 1, -1)\}$ and $E_4(L) = span\{(1, 0, 1, 0)\}$. In view of (a), find $E_{-12}(T \otimes L)$ I claim if -3, -3, -6 are the eigenvalues of T, then I cannot find $E_{-12}(T \otimes L)$ unless more information is provided, why?

Answer: If v is an eigenvector of T, and w is an eigenvector of L, then $v \otimes w$ is an eigenvector of $T \otimes L$. Therefore,

$$v_1 = (1, 0, 1) \otimes (1, 0, 1, 0) \sim (1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0)$$

and

$$v_2 = (-1, 1, -1) \otimes (1, 0, 1, 0) \sim (-1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0)$$

are the eigenvectors of $T \otimes L$ corresponding to -12. By staring, these two vectors are independent. Therefore, $E_{-12} = span\{v_1, v_2\}$. If the eigenvalues of T were -3, -3, -6, then we have $-3 \times 4 = -12$ and $2 \times -6 = -12$. Therefore, we would need to know $E_2(L)$ and $E_{-6}(T)$ to know $E_{-12}(T \otimes L)$.

(c) Let $T : \mathbb{R}^2 \to \mathbb{R}^2 L : \mathbb{R}^2 \to \mathbb{R}^2$ be \mathbb{R} -homomorphisms such that T(a, b) = (2a+4b, -a-2b) and L(a, b) = (-a+b, a-b). Find a basis for $Range(T \otimes L)$ and a basis for $Ker(T \otimes L)$. [Hint: let $\{f_1, f_2, f_3, f_4\}$ be the standard basis of \mathbb{R}^4 , define the colinear $H : \mathbb{R}^4 \to \mathbb{R}^4$ with the standard matrix presentation $M = [H(f_1), H(f_2), H(f_3), H(f_4)]$, where $H(f_1) = T(e_1) \otimes L(e_1), H(f_2) = T(e_1) \otimes L(e_2), ..., H(f_4) = T(e_2) \otimes L(e_2)$. Now find the range of H and Ker(H). Assume $Range(H) = span\{(3, 7, 2, 1)\}$. Then $Range(T \otimes L) = span\{3e_1 \otimes e_2 + 7e_1 \otimes e_2 + 2e_2 \otimes e_1 + e_2 \otimes e_2\}]$. Answer: We have

$$H(f_1) = T(e_1) \otimes L(e_1) = (2, -1) \otimes (-1, 1) = (-2, 2, 1, -1)$$

$$H(f_2) = T(e_1) \otimes L(e_2) = (2, -1) \otimes (1, -1) = (2, -2, -1, 1)$$
$$H(f_1) = T(e_1) \otimes L(e_1) = (4, -2) \otimes (-1, 1) = (-4, 4, 2, -2)$$
$$H(f_1) = T(e_1) \otimes L(e_1) = (4, -2) \otimes (1, -1) = (4, -4, -2, 2)$$

Therefore,

$$M_H = \begin{bmatrix} -2 & 2 & -4 & 4\\ 2 & -2 & 4 & -4\\ 1 & -1 & 2 & -2\\ -1 & 1 & -2 & 2 \end{bmatrix}$$

To find Ker(H), we need to find the nullspace of M_H . Using Kill below, we get

Hence, $Ker(H) = span\{(1, 1, 0, 0), (-2, 0, 1, 0), (2, 0, 0, 1)\}$. Therefore, $Ker(T \otimes L) = \{e_1 \otimes e_1 + e_1 \otimes e_2, -2e_1 \otimes e_1 + e_2 \otimes e_1, 2e_1 \otimes e_1 + e_2 \otimes e_2\}$. We know that $dim(Range(H)) = dim(\mathbb{R}^4) - dim(Ker(T)) = 4 - 3 =$ 1. Looking at the reduced matrix, we find that the first column of the original matrix spans the whole column space. Thus, Range(H) = $span\{(-2, 2, 1, -1)\}$. Therefore,

$$Range(T \otimes L) = \{-2e_1 \otimes e_1 + 2e_1 \otimes e_2 + e_2 \otimes e_1 - e_2 \otimes e_2\}$$

- 3. Let D be a subspace of a real inner product space V and assume $2 \leq dim(V) = n$. Then the orthogonal space of D is denoted by D^{\perp} and $D^{\perp} = \{w \in V | < w, d \ge 0 \forall d \in D\}$. It is clear that if D has a basis $B = \{v_1, ..., v_k\}$, then $f \in D^{\perp}$ if and only if $\langle f, v_i \rangle \ge 0$ for every $1 \leq i \leq k$.
 - (i) Prove that $D \cap D^{\perp} = \{0_V\}$ [hint: Trivial, it should not exceed 2 lines] **Answer:** Suppose there is a nonzero vector f in $D \cap D^{\perp} \Rightarrow < f, d >= 0$ for every $d \in D$ but since $f \in D \Rightarrow f = 0_V$, Contradiction.
 - (ii) Prove that $D + D^{\perp} = V$ and $dim(D + D^{\perp}) = dim(D) + dim(D^{\perp})$ (recall that $H + F = \{h + f | h \in H, f \in F\}$)[hint: One way, assume $B = \{v_1, ..., v_k\}$ is an ORTHOGONAL basis for D. Then B

can be extended to a basis for V, how? choose v_{k+1} not in D, then $v_{k+1}, v_1, v_2, ..., v_k$ are independent, continue this process, choose v_{k+2} not in $span\{v_1, ..., v_k, v_{k+1}\}$, then $v_{k+2}, v_{k+1}, v_1, ..., v_k$ are independent. By continuing this process, we get a basis $K = \{v_1, ..., v_k, v_{k+1}, ..., v_n\}$ for V. Now for each $k + 1 \leq i \leq n$, use the (modified) Gram-Schmidt process(i.e., just use the orthogonal basis of D, see(b) in Question 4) and form the elements $w_{k+1}, ..., w_n$, where $wi = vi - (\sum_{j=1}^k \frac{\langle v_i, v_j \rangle}{|v_j|^2} v_j)$. Note that each w_i is orthogonal to v_j for every $1 \leq j \leq k$. Then $W = \{v_1, ..., v_k, w_{k+1}, ..., w_n\}$ form a basis for V (note that since K is a basis for V, by construction, W is a basis for V !!). By construction, $D^{\perp} = span\{w_{k+1}, ..., w_n\}$. Since $D \cap D^{\perp} = 0_v$, it is clear $dim(D + D^{\perp}) = dim(D) + dim(D^{\perp}) = n$. Thus $V = D + D^{\perp}$] Answer: We know that $D + D^{\perp} \subseteq V$. We show that $V \subseteq D + D^{\perp}$. Let $v \in V$. Let $B = \{v_1, ..., v_k\}$ be an orthogonal basis for D. Define $x = \sum_{i=1}^k \frac{\langle v_i v_i \rangle}{|v_i|^2} v_i$. Let $w = v - x \Rightarrow v = w + x$. We know that $x \in D$.

We show that $w \in D^{\perp}$. Therefore, we need to show that $\langle w, v_j \rangle = 0$ for every $v_j \in B$. We have

$$< w, v_{j} > = < v, v_{j} > - < x, v_{j} >$$

$$= < v, v_{j} > -\sum_{i=1}^{k} \frac{< v, v_{i} >}{|v_{i}|^{2}} < v_{i}, v_{j} >$$

$$= < v, v_{j} > -\frac{< v, v_{j} >}{|v_{j}^{2}|} < v_{j}, v_{j} >$$

$$= < v, v_{j} > - < v, v_{j} > = 0$$

Hence, $w \in D^{\perp} \Rightarrow v \in d + d^{\perp} \Rightarrow D + D^{\perp} = V$. Since $D \cap D^{\perp} = \{0_v\}$, $dim(D + D^{\perp}) = dim(D) + dim(D^{\perp}) = n$.

(iii) We know that ∫₀¹ f(x) dx is an inner product on P₄. Let D = span{x², 1}. use the hint in (i) and find D[⊥].
Answer: f ∈ D[⊥] if and only if < f, v_i >= 0 ∀v_i in a the basis of D. We

have

$$< f, x^{2} >= \int_{0}^{1} x^{2} (ax^{3} + bx^{2} + cx + d) \, dx = \frac{a}{6} + \frac{b}{5} + \frac{c}{4} + \frac{d}{3} = 0$$
$$< f, 1 >= \int_{0}^{1} (ax^{3} + bx^{2} + cx + d) \, dx = \frac{a}{4} + \frac{b}{3} + \frac{c}{2} + d = 0$$

We obtain the system

$$\begin{bmatrix} \frac{1}{6} & \frac{1}{5} & \frac{1}{4} & \frac{1}{3} \\ \frac{1}{4} & \frac{1}{3} & \frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Using kill below, we get

$$\begin{bmatrix} 1 & 0 & -3 & -16 \\ 0 & 1 & \frac{15}{4} & 15 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

We obtain a basis for the nullspace of the matrix $\{(3, -\frac{15}{4}, 1, 0), (16, -15, 0, 1)\}$ Therefore, a basis for D^{\perp} is

$$K = \{3x^3 - \frac{15}{4}x^2 + x, 16x^3 - 15x^2 + 1\}$$

No linear combination of the two polynomial in the basis gives a polynomial of the form $ax^2 + b$. Therefore, $D \cap D^{\perp} = \{0_{P^4}\}$

(iv) (nice, no need for Gram schmidt Thm) Let

$$D = span\{Q_1 = (1, 0, 0, 1, 0), Q_2 = (0, 1, 1, 1, 0)\}$$

. It is clear dim(D) = 2. Use the normal dot product on R5 and find D^{\perp} .[Hint: Matrix multiplication is a dot product of 2 vectors!. So construct the matrix M, 2×5 , i.e., $Q_1 =$ first row, Q2 = second row. Then find Null(M), i.e., the solution to the homogeneous system MX = 0, then $D^{\perp} = span\{$ basis of Null(M) $\}$]

Answer: Let $M = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \end{bmatrix}$. Find Null(M). We find

$$\{(0, -1, 1, 0, 0), (-1, -1, 0, 1, 0), (0, 0, 0, 0, 1)\}$$

is a basis for $Null(M) = D^{\perp}$. Therefore,

 $D^{\perp} = span\{(0,-1,1,0,0), (-1,-1,0,1,0), (0,0,0,0,1)\}$

(v) Use the "mimic dot product" on P_5 . Let $D = span\{x^4 + x, x^3 + x^2 + x\}$. Find D^{\perp} . [hint: Translate to R5, use the normal dot product on \mathbb{R}^5 . Stare at (iv), translate the answer of (iv) to P_5 . Done] **Answer:** By translation and (iv), we have

$$D^{\perp} = span\{-x^3 + x^2, -x^4 - x^3, 1\}$$

4. (a) Let V be a normed vector space over \mathbb{R} . Prove that $\frac{||x+y||+||x-y||}{2} \le ||x|| + ||y||$ Answer: We have

$$\begin{aligned} ||x+y|| + ||x-y|| &= ||x+y-y+y|| + ||x-y+x-x|| \\ &\leq ||x+y-y|| + ||y|| + ||x-y-x|| + ||x|| = 2(||x|| + ||y||) \\ &\Rightarrow \frac{||x+y|| + ||x-y||}{2} \leq ||x|| + ||y|| \end{aligned}$$

(b) Let V be a real inner product vector space and $v_1, ..., v_k$ be nonzero pairwise othogonal vectors (points) in V. Choose $Q \notin span\{v_1, ..., v_k\}$ and let $h = Q - (\sum_{j=1}^k \frac{\langle Q, v_j \rangle}{|v_j|^2} v_j)$. Prove that h is orthogonal to every $v_i, 1 \leq i \leq k$. [Hint: Routine calculations using the definition of inner product]

Answer: We have

$$< h, v_i > = < Q - (\Sigma_{j=1}^k \frac{< Q, v_j >}{|v_j|^2} v_j), v_i >$$

$$= < Q, v_i > - < \Sigma_{j=1}^k \frac{< Q, v_j >}{|v_j|^2} v_j, v_i >$$

$$= < Q, v_i > -\Sigma_{j=1}^k \frac{< Q, v_j >}{|v_j|^2} < v_j, v_i >$$

$$= < Q, v_i > -\frac{< Q, v_i >}{|v_i|^2} < v_i, v_i >$$

$$= < Q, v_i > - < Q, v_i > = 0$$

Therefore, h is orthogonal to every v_i in the list.

(c) V be a real inner product vector space, and $D = span\{v_1, ..., v_k\}$, such that dim(D) = k < dim(V). Choose a point Q in V - D. Then the distance between Q and D is denoted by $d(Q, D) = min\{|Q-d||d \in D\}$. Question? how do we find $d \in D$ such that |Q-d| is minimum. Answer: (the idea relies on what we learned in school that says: assume L is a line in the plane and Q is a point not on the line L. To find the distance between the point Q and L, we draw a perpendicular line, say H, from Q to the line L, then H intersects L in a point A. Hence A is on the line L and it is the nearest point to Q). Now, let $B = \{w_1, ..., w_k\}$ be an orthogonal basis of D. We know that $h = Q - (\sum_{j=1}^k \frac{\langle Q, w_j \rangle}{|w_j|^2} w_j)$ is orthogonal (perpendicular) to every w_j . Thus $d = \sum_{j=1}^k \frac{\langle Q, w_j \rangle}{|w_j|^2} w_j \in D$ is such point (vector) in D where |Q-d| is minimum. Let $D = span\{w_1 = (1, 0, 0, 0, -4), w_2 = (4, 1, 1, 1, 1)\}$. Then D is a subspace of \mathbb{R}^5 . Given Q = (2, 2, 2, 2, 0) is not in D. Find $d \in D$ such that |Q-d| is minimum. Use the normal dot product on \mathbb{R}^5 . [Hint: to minimize the calculation, w_1, w_2 are already orthogonal.]

Answer:

$$d = \sum_{j=1}^{2} \frac{\langle Q, w_j \rangle}{|w_j|^2} w_j$$

= $\frac{\langle Q, w_1 \rangle}{|w_1|^2} w_1 + \frac{\langle Q, w_2 \rangle}{|w_2|^2} w_2$
= $\frac{\langle (2, 2, 2, 2, 0), (1, 0, 0, 0, -4) \rangle}{17} w_1 + \frac{\langle (2, 2, 2, 2, 0), (4, 1, 1, 1, 1) \rangle}{20} w_2$
= $\frac{2}{17} w_1 + \frac{14}{20} w_2$
= $(\frac{248}{85}, \frac{14}{20}, \frac{14}{20}, \frac{14}{20}, \frac{39}{170})$

- 5. Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation, $B = \{(5,1), (4,1)\}$ be a basis for \mathbb{R}^2 , and $C = \{(1,0,1), (0,1,1), (0,-1,0)\}$ is a basis for \mathbb{R}^3 , Given T(5,1) = (-1,0,1) and T(4,1) = (0,0,1).
 - (i) Find $[T]_{B,C}$.

Answer: $[T]_{B,C} = K^{-1}M'Q^{-1}$, where

$$K = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 1 & 1 & 0 \end{bmatrix}, M' = \begin{bmatrix} -1 & 0 \\ 0 & 0 \\ 1 & 1 \end{bmatrix}, Q = \begin{bmatrix} 5 & 4 \\ 1 & 1 \end{bmatrix}$$

Therefore,
$$[T]_{B,C} = \begin{bmatrix} -1 & 4\\ 1 & -3\\ 1 & -3 \end{bmatrix}$$

(ii) Use (i) and find T(7,8)Answer:

$$[T(7,8)]_{B,C} = \begin{bmatrix} -1 & 4\\ 1 & -3\\ 1 & -3 \end{bmatrix} \begin{bmatrix} 7\\ 8 \end{bmatrix} = \begin{bmatrix} 25\\ -17\\ -17 \end{bmatrix}$$
$$\Rightarrow T(7,8) = 25(1,0,1) - 17(0,1,1) - 17(0,-1,0) = (25,0,8)$$

(iii) Find the standard matrix presentation of T Answer:

$$M_T = M'Q^{-1} = \begin{bmatrix} -1 & 4\\ 0 & 0\\ 0 & 4 \end{bmatrix}$$

1

(iv) Use (iii) and again find T(7,8). Answer:

$$M_T = M'Q^{-1} = \begin{bmatrix} -1 & 4\\ 0 & 0\\ 0 & 4 \end{bmatrix} \begin{bmatrix} 7\\ 8 \end{bmatrix} = \begin{bmatrix} 25\\ 0\\ 8 \end{bmatrix}$$

	00/07	1
	93/95	
MTH 512, Home Work	III	
		Hadeel
		93357
QUESTION 1. Let $A = \begin{bmatrix} 2 & 2 \\ 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & -2 \end{bmatrix}$.		
(i) Find $A \otimes B$		
<u> </u>		
$A \otimes B = \begin{pmatrix} 2B & 2B \\ 1B & 2B \end{pmatrix} = \begin{pmatrix} 2 & 2 & 2 & 2 & 2 \\ 0 & 4 & 2 & 0 & 4 & 2 \\ 0 & 0 & -4 & 0 & 0 & -4 \\ 1 & 1 & 1 & 2 & 2 & 2 \\ 0 & 2 & 1 & 0 & 4 & 2 \\ 0 & 0 & -2 & 0 & 0 & -4 \end{pmatrix}$		
(ii) Find $ A \otimes B $		
$ A \otimes B = A ^m B ^n$, $n = 2$, $m = 3$		
A = 4 - 2 = 2		
	\rangle	
B = -H		
$ A \otimes B = (2)^3 (-4)^2 = 128$		
(iii) Find $Trace(A \otimes B)$	/	
Trace $(A \otimes B) = Trace (A) Trace (B) = (4)(3) = 4$	\checkmark	
QUESTION 2. (a) Let $T: V \to V, L: W \to W$ be <i>R</i> -homomorphisms such that α is an - an eigenvalue L. Prove that $\alpha\beta$ is an eigenvalue of $T \otimes L$. [hint: note that $T \otimes L(v \otimes w)$		
$T(\mathbf{x}) = \mathbf{a} \mathbf{x}$ for some $\mathbf{x} \in V$ for some \mathbf{v} not = 0_V		
	\uparrow	
$L(w) = Bw Por some w \in W$. For some w not = 0_W		
$(T \otimes L) (V \otimes W) = T(V) \otimes L(W) = \alpha V \otimes BW = \alpha B(V)$	(w &	
(b) Let $T: \mathbb{R}^3 \to \mathbb{R}^3, L: \mathbb{R}^4 \to \mathbb{R}^4$ be \mathbb{R} -homomorphisms such that $-3, -3, -7$ are the 4, 1, 2, 3 are the eigenvalues of L. If $E_{-3}(T) = span\{(1,0,1), (-1,1,-1)\}$ and $E_4(L) =$ view of (a), find $E_{-12}(T \otimes L)$	eigenvalues of T, and $span\{(1,0,1,0)\}$. In	
I claim if $-3, -3, -6$ are the eigenvalues of T, then I cannot find $E_{-12}(T \otimes L)$ unless	s more information is	
provided, why? {e_1,e_2, e_3} standard basis of R^3, {b_1, b_2,		/
b_3, b_4} standard basis of R^4		\sim
$E_{-12}(TOL) = 3pan \left\{ (1,0,1,0,0,0,0,0,1,0,1,0), (-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0$		
17 the eigenvalues are -3,-3,6 then we will have 2 pos	sibilities for E-12 (T@L)	~
as $-3x4 = -12$ and $2x-6 = -12$. Use the language of the	ensor $E_{-12} = span\{e_1(tensor)b_1 + e_2\}$	1(tensor)b 3 ±
Ose the language of the	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	
$e_2(tensor)b_1 + e_2(tensor)b_1$	(tensor)b_3 - e_3(tensor)b_1 - e_3(tensor)	or)b_3}

(c) Let $T : R^2 \to R^2, L : R^2 \to R^2$ be *R*-homomorphisms such that T(a, b) = (2a + 4b, -a - 2b) and L(a, b) = (-a + b, a - b). Find a basis for $Range(T \otimes L)$ and a basis for $Ker(T \otimes L)$. [Hint: let $\{f_1, f_2, f_3, f_4\}$ be the standard basis of R^4 , define the colinear $H : R^4 \to R^4$ with the standard matrix presentation $M = [H(f_1), H(f_2), H(f_3), H(f_4)]$, where $H(f_1) = T(e_1) \otimes L(e_1), H(f_2) = T(e_1) \otimes L(e_2), ..., H(f_4) = T(e_2) \otimes L(e_2)$. Now find the range of H and Ker(H). Assume $Range(H) = span\{(3, 7, 2, 1)\}$. Then $Range(T \otimes L) = span\{3e_1 \otimes e_2 + 7e_1 \otimes e_2 + 2e_2 \otimes e_1 + e_2 \otimes e_2\}$].

$T \otimes L: \mathbb{R}^{2} \otimes \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2} \otimes \mathbb{R}^{2}$ $T \otimes L: (a, a, a) \otimes (b_{1}, b_{2}) \rightarrow T(a_{1}, a_{2}) \otimes L(b_{1}, b_{2})$ $H \text{ is the co-linear } H: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{4}$ $T(e_{1}) = T(4, a) = (2, -4) \qquad L(e_{1}) = L(4, 0) = (-4, -1)$ $T(e_{2}) = T(a, 4) = (4, -2) \qquad L(e_{3}) = L(0, 4) = (-4, -4)$ $H(f_{1}) = T(e_{1}) \otimes L(e_{1}) = (2, -4) \otimes (-4, 4) = (-2, 2, -4, -4)$ $H(f_{2}) = T(e_{1}) \otimes L(e_{2}) = (2, -4) \otimes (-4, -4) = (2, -2, -4, -4)$ $H(f_{2}) = T(e_{1}) \otimes L(e_{2}) = (2, -4) \otimes (-4, -4) = (2, -2, -4, -4)$
$H(f_{a}) = T(e_{2}) \otimes L(e_{1}) = (4, -2) \otimes (-1, 1) = (-4, 4, 2, -2)$
$H(f_{4}) = T(e_{2}) \otimes L(e_{1}) = (4, -2) \otimes (4, -4) = (4, -4, -2, 2)$
$M_{H} = \begin{pmatrix} -2 & 2 & -4 & 4 \\ 2 & -2 & 4 & -4 \\ 1 & -1 & 2 & -2 \\ -1 & 1 & -2 & 2 \end{pmatrix} \land \begin{pmatrix} 1 & -\frac{1}{2} & 2 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $Range(H) = Span i(1, -1, 2, -2)i$ $Range(T \otimes L) = Span i(2, \otimes C_{1} + -C, \otimes C_{2} + 2C_{2} \otimes C_{2})$
To find the Ker (T \otimes L) we solve $\begin{pmatrix} -2 & 2 & -4 & 4 & & 0 \\ 2 & -2 & 4 & -4 & \\ 1 & -1 & 2 & -2 & & 0 \\ -1 & 1 & -2 & 2 & & 0 \end{pmatrix}$
$Ker(H) = 5pan \{ (1, 1, 0, 0), (-2, 0, 1, 0), (2, 0, 0, 1) \}$ $Ker(T\otimes L) = 5pan \{ e \otimes e_1 + e_1 \otimes e_2, -2e \otimes e_1 + e_2 \otimes e_1, 2e \otimes e_1 + e_2 \otimes e_2 \}$

QUESTION 3. Let *D* be a subspace of a real inner product space *V* and assume $2 \le dim(V) = n$. Then the – orthogonal space of D is denoted by D^{\perp} and $D^{\perp} = \{w \in V \mid < w, d \ge 0 \text{ for every } d \in D\}$. It is clear that if D — has a basis $B = \{v_1, ..., v_k\}$, then $f \in D^{\perp}$ if and only if $< f, v_i \ge 0$ for every $1 \le i \le k$.

(i) Prove that $D \cap D^{\perp} = \{O_V\}$ [hint: Trivial, it should not exceed 2 lines]	
assume Z V=0, c D ∩ D ^L => V c D, V c D ^L	\sim
By definition of $D^{\perp} \langle V, V \rangle = 0 \iff V = 0_{V}$ [] Contradiction.	

(ii) Prove that $D + D^{\perp} = V$ and $dim(D + D^{\perp}) = dim(D) + dim(D^{\perp})$ (recall that $H + F = \{h + f \mid h \in H \text{ and } f \in F\}$)[hint: One way, assume $B = \{v_1, ..., v_k\}$ is an ORTHOGONAL basis for D. Then B can be extended to a basis for V, how? choose v_{k+1} not in D, then $v_{k+1}, v_1, v_2, ..., v_k$ are independent, continue this process, choose v_{k+2} not in $span\{v_1, ..., v_k, v_{k+1}\}$, then $v_{k+2}, v_{k+1}, v_1, ..., v_k$ are independent. By continuing this process, we get a basis $K = \{v_1, ..., v_k, v_{k+1}, ..., v_n\}$ for V. Now for each $k + 1 \leq i \leq n$, use the (modified) Gram-Schmidt process(i.e., just use the orthogonal basis of D, see(b) in Question 4) and form the elements $w_{k+1}, ..., w_n$, where $w_i = v_i - (\sum_{j=1}^k \frac{\langle v_i, v_j \rangle}{|v_j|^2} v_j)$. Note that each w_i is orthogonal to v_j for every $-1 \leq j \leq k$. Then $W = \{v_1, ..., v_k, w_{k+1}, ..., w_n\}$ form a basis for V (note that since K is a basis for V, by construction, W is a basis for V!!). By construction, $D^{\perp} = span\{w_{k+1}, ..., w_n\}$. Since $D \cap D^{\perp} = \{o_v\}$, it is clear $dim(D + D^{\perp}) = dim(D) + dim(D^{\perp}) = n$. Thus $V = D + D^{\perp}$]

 $D + D^{\perp} = V$ To prove we prove that $\forall v \in V$, $v = w + ol s + d \in D$ and $w \in D^{1}$. B = {V, ..., VKJ is orthogonal basis for D. Take any $v \in V$. Then $v_0 = v - \langle v, v, \rangle v_1 - \langle v, v_2 \rangle v_2 - \dots - \langle v, v_K \rangle V_K$ then v_0 is orthogonal to V_i for $1 \leq i \leq K$. $\Rightarrow v_0 \in D^{\perp}$ $\frac{V = V_0 + \langle V, V_1 \rangle}{|V_1|^2} V_1 + \frac{\langle V, V_2 \rangle}{|V_k|^2} V_{2+m} + \frac{\langle V, V_k \rangle}{|V_k|^2} V_k$ εD (this is a linear combined ion of the basis) $\Rightarrow V = D + D^{\perp}$ $\dim (D + D^{\perp}) = \dim (D) + \dim (D^{\perp}) - \dim (D \cap D^{\perp})$ 10 70 v 7 dian (fOr]) = 0. $\Rightarrow \dim(D+D^{\perp}) = \dim(D) + \dim(D^{\perp})$

(iii) We know that $\int_0^1 f(x) dx$ is an inner product on P_4 . Let $D = span\{x^2, 1\}$. use the hint in (i) and find D^{\perp} .

$$\begin{aligned} \frac{1}{44} V_{x} = 1 \quad \text{Find} \quad \text{the analogoed payetime of } q^{x} \quad \text{over } 1 \quad \text{Translate to } \mathbb{R}^{N} \\ V_{x}^{P} = \langle 1, 1 \rangle = \frac{1}{2} \int 1 \, dx = 1 \quad \langle x^{N}, 1 \rangle = \frac{1}{2} \int x^{2} \cdot 1 \, dx = \frac{1}{2} g \\ V_{x} = x^{2} - \frac{\langle x^{2}, 1 \rangle}{1} \quad 1 = x^{2} - \frac{1}{2} g \\ \langle 1, x^{2}, \frac{1}{2} \rangle = \frac{1}{2} \int x^{2} \cdot \frac{1}{2} g \, dx = \frac{x^{3}}{2} - \frac{1}{2} g \times \left[\frac{1}{2} \right] = 0 \\ \Rightarrow \int \frac{1}{2} \frac{1}{4} x^{2} \cdot \frac{1}{2} \frac{1}{3} \int \frac{1}{12} x^{2} \cdot \frac{1}{2} g \, dx = \frac{x^{3}}{2} - \frac{1}{2} \frac{1}{3} \times \left[\frac{1}{2} \right] = 0 \\ \text{Take } x^{3} \notin \text{Span } \frac{1}{1} \cdot x^{2} \cdot \frac{1}{2} \frac{1}{2} - \frac{1}{2} \frac{1}{2}$$

(iv) (nice, no need for Gram schmidt Thm) Let $D = span\{Q_1 = (1,0,0,1,0), Q_2 = (0,1,1,1,0)\}$. It is clear dim(D) = 2. Use the normal dot product on R^5 and find D^{\perp} .[Hint: Matrix multiplication is a dot product of 2 vectors!. So construct the matrix M, 2 × 5, i.e., Q_1 = first row, Q_2 = second row. Then find Null(M), i.e., the solution to the homogeneous system $MX = 0$, then $D^{\perp} = span\{basis \ of \ Null(M)\}\}$
$M = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \end{pmatrix}$
$ \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & -1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \end{pmatrix} $ $ x_{2} = -x_{3} - x_{4} $
$X_{3} = -X_{4}$ $X_{3} = -X_{4}$ $X_{5} = -X_{4}$ $X_{5} = -X_{4}$ $X_{5} = -X_{4}$ $X_{5} = -X_{4}$
$Null(N) = \{(0, -1, 1, 0, 0), (-1, -1, 0, 1, 0), (0, 0, 0, 1)\} = D^{\perp}$
(v) Use the "mimic dot product" on P_5 . Let $D = span\{x^4 + x, x^3 + x^2 + x\}$. Find D^{\perp} . [hint: Translate to R^5 , use the normal dot product on R^5 . Stare at (iv), translate the answer of (iv) to P_5 . Done] Translate D to R^5 , $D = 5pan\{(1,0,0,1,0), (0,1,1,1,0)\}$ $D^{\perp} = Null UM$ (M from the previous part) $D^{\perp} = 5pan\{(0, -1, 1, 0, 0), (-1, -1, 0, 1, 0), (0, 0, 0, 0, 1)\}$ $D^{\perp} = 8pan\{-x^3 + x^2, -x^4 - x^3 + x, 1, 1\}$

QUESTION 4. (a) Let V be a normed vector space over R. Prove that $\frac{||x+y||+||x-y||}{2} \leq ||x||+||y||$.

$$\frac{\|x+y\| + \|x-y\|}{2} \leq \frac{\|x\|}{2} + \frac{\|y\|}{2} + \frac{\|x\|}{2} + \frac{\|x\|}{2} = \|x\| + \|y\|$$

(b) Let V be a real inner product vector space and $v_1, ..., v_k$ be nonzero pairwise othogonal vectors (points) in V. Choose $Q \notin span\{v_1, ..., v_k\}$ and let $h = Q - (\sum_{j=1}^k \frac{\langle Q, v_j \rangle}{|v_j|^2} v_j)$. Prove that h is orthogonal to every v_i , $1 \le i \le k$. [Hint: Routine calculations using the definition of inner product]

$$\langle \mathbf{h}, \mathbf{V}_{i}^{c} \rangle = \langle \mathbf{Q} - \sum_{j=1}^{K} \langle \mathbf{Q}, \mathbf{V}_{i} \rangle \\ = \langle \mathbf{Q}, \mathbf{V}_{i} \rangle - \sum_{i=1}^{K} \langle \mathbf{Q}, \mathbf{V}_{i} \rangle \\ \downarrow_{i=1}^{K} \langle \mathbf{V}_{i}, \mathbf{V}_{i} \rangle$$

(c) V be a real inner product vector space, and $D = span\{v_1, ..., v_k\}$, such that dim(D) = k < dim(V). Choose a point Q in V - D. Then the distance between Q and D is denoted by $d(Q, D) = min\{|Q - d| \mid d \in D\}$. Question? how do we find $d \in D$ such that |Q - d| is minimum. Answer: (the idea relies on what we learned in school that says: assume L is a line in the plane and Q is a point not on the line L. To find the distance between the point Q and L, we draw a perpendicular line, say H, from Q to the line L, then H intersects L in a point A. Hence A is on the line L and it is the nearest point to Q). Now, let $B = \{w_1, ..., w_k\}$ be an orthogonal basis of D. We know that $h = Q - (\sum_{j=1}^k \frac{\langle Q, w_j \rangle}{|w_j|^2} w_j)$ is orthogonal (perpendicular) to every w_j . Thus $d = \sum_{j=1}^k \frac{\langle Q, w_j \rangle}{|w_j|^2} w_j \in D$ is such point (vector) in D where |Q - d| is minimum.

Let $D = span\{w_1 = (1, 0, 0, 0, -4), w_2 = (4, 1, 1, 1, 1)\}$. Then D is a subspace of R^5 . Given Q = (2, 2, 2, 2, 0)is not in D. Find $d \in D$ such that |Q - d| is minimum. Use the normal dot product on R^5 . [Hint: to minimize the calculation, w_1, w_2 are already orthogonal.]

$$d_{=} \langle Q, \omega_{1} \rangle | \omega_{1} + \langle Q, \omega_{2} \rangle | \omega_{2} \rangle$$

$$(\omega_{1})^{2} = (2,2,2,2,3,0) \cdot (1,0,0,0,-4) = 2$$

$$\langle Q, \omega_{2} \rangle = (2,2,2,2,0) \cdot (4,1,1,1,1) = 8 + 2 + 2 + 2 = 14$$

(ii) Use (i) and find
$$T(7, 8)$$

$$\begin{bmatrix} T(7, 8) \end{bmatrix}_{B,C} = \begin{pmatrix} -1 & 4 \\ 1 & -3 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} 4 \\ 8 \end{pmatrix} = \begin{pmatrix} 25 \\ -17 \\ -17 \end{pmatrix}$$

$$T(7, 8) = 25 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - 17 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} - 17 \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 25 \\ 0 \\ 8 \end{pmatrix}$$

(iii) Find the standard matrix presentation of T

$$\begin{bmatrix} \top (1,0) \end{bmatrix}_{B,C} = \begin{pmatrix} -1 & 4 \\ 1 & -3 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$$

$$T(1,0) = -1 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 6 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{bmatrix} \top (0,1) \end{bmatrix}_{B,C} = \begin{pmatrix} -1 & 4 \\ 1 & -3 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ -3 \\ -3 \end{pmatrix}$$

$$T(o, 1) = H\begin{pmatrix} i \\ o \\ 1 \end{pmatrix} - 3\begin{pmatrix} 6 \\ i \\ 1 \end{pmatrix} - 3\begin{pmatrix} o \\ -i \\ 0 \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix}$$
$$\Rightarrow M_{T} = \begin{pmatrix} -i & H \\ o & o \\ o & 1 \end{pmatrix}$$

(iv) Use (iii) and again find T(7,8).

$$T(7,8) = M_T O(1) \begin{pmatrix} Y \\ g \end{pmatrix} = \begin{pmatrix} -1 & H \\ 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 7 \\ g \end{pmatrix} = \begin{pmatrix} 25 \\ 0 \\ g \end{pmatrix}$$

Since M_T is the standard matrix, we have $T(7, 8) = M_T(7,8)^T = (25, 0, 8)$. NO NEED for Q^{-1} !! note that $M_T = LQ^{-1}$, see above