MTH512 Homework 39 April 2023 Advanced Linear Algebra

1. Let $A=\left[\begin{array}{ll}2 & 2 \\ 1 & 2\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & -2\end{array}\right]$
(i) Find $A \otimes B$

Answer:

$$
A \otimes B=\left[\begin{array}{cccccc}
2 & 2 & 2 & 2 & 2 & 2 \\
0 & 4 & 2 & 0 & 4 & 2 \\
0 & 0 & -4 & 0 & 0 & -4 \\
1 & 1 & 1 & 2 & 2 & 2 \\
0 & 2 & 1 & 0 & 4 & 2 \\
0 & 0 & -2 & 0 & 0 & -4
\end{array}\right]
$$

(ii) Find $|A \otimes B|$

Answer: We know that $|A \otimes B|=|A|^{m}|B|^{n}$, where m is the size of B and n is the size of A.

$$
\begin{gathered}
|A|=2 \times 2-1 \times 2=4-2=2 \\
|B|=-2\left|\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right|=-2(2-0)=-4
\end{gathered}
$$

Therefore,

$$
|A \otimes B|=(2)^{3}(4)^{2}=128
$$

(iii) Find $\operatorname{Trace}(A \otimes B)$

Answer: We know that $\operatorname{Trace}(A \otimes B)=\operatorname{Trace}(A) \times \operatorname{Trace}(B)$.

$$
\begin{gathered}
\operatorname{Trace}(A)=2+2=4 \\
\operatorname{Trace}(B)=1+2-2=1
\end{gathered}
$$

Therefore,

$$
\operatorname{Trace}(A \otimes B)=\operatorname{Trace}(A) \times \operatorname{Trace}(B)=4 \times 1=4
$$

2. (a) Let $T: V \rightarrow V, L: W \rightarrow W$ be \mathbb{R}-homomorphisms such that α is an eigenvalue of T, and β is an eigenvalue L. Prove that $\alpha \beta$ is an eigenvalue of $T \otimes L$. [hint: note that $T \otimes L(v \otimes w)=T(v) \otimes L(w)]$
Answer: Let $T: V \rightarrow V$ be a linear transformation such that α is for some v not $=0 _V$ an eigenvalue of $\mathrm{T} \Rightarrow v \in V$ such that $T(v)=\alpha v$. Similarly, Let $L: W \rightarrow W$ be a linear transformation such that β is an eigenvalue of T $\Rightarrow w \in W$ such that $T(w)=\beta w$. Take $T \otimes L(v \otimes w)=T(v) \otimes L(w)=$ $\alpha v \otimes \beta w=\alpha \beta(v \otimes w) \Rightarrow \alpha \beta$ is an eigenvalue of $T \otimes L$.
(b) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be R -homomorphisms such that $-3,-3,-7$ are the eigenvalues of T, and $4,1,2,3$ are the eigenvalues of L. If $E_{-3}(T)=\operatorname{span}\{(1,0,1),(-1,1,-1)\}$ and $E_{4}(L)=\operatorname{span}\{(1,0,1,0)\}$. In view of (a), find $E_{-12}(T \otimes L)$ I claim if $-3,-3,-6$ are the eigenvalues of T, then I cannot find $E_{-12}(T \otimes L)$ unless more information is provided, why?
Answer: If v is an eigenvector of T, and w is an eigenvector of L, then $v \otimes w$ is an eigenvector of $T \otimes L$. Therefore,

$$
v_{1}=(1,0,1) \otimes(1,0,1,0) \sim(1,0,1,0,0,0,0,0,1,0,1,0)
$$

and

$$
v_{2}=(-1,1,-1) \otimes(1,0,1,0) \sim(-1,0,-1,0,1,0,1,0,-1,0,-1,0)
$$

are the eigenvectors of $T \otimes L$ corresponding to -12 . By staring, these two vectors are independent. Therefore, $E_{-12}=\operatorname{span}\left\{v_{1}, v_{2}\right\}$. If the eigenvalues of T were $-3,-3,-6$, then we have $-3 \times 4=-12$ and $2 \times-6=-12$. Therefore, we would need to know $E_{2}(L)$ and $E_{-6}(T)$ to know $E-12(T \otimes L)$.
(c) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be \mathbb{R}-homomorphisms such that $T(a, b)=$ $(2 a+4 b,-a-2 b)$ and $L(a, b)=(-a+b, a-b)$. Find a basis for Range $(T \otimes$ $L)$ and a basis for $\operatorname{Ker}(T \otimes L)$. [Hint: let $\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$ be the standard basis of \mathbb{R}^{4}, define the colinear $H: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ with the standard matrix presentation $M=\left[H\left(f_{1}\right), H\left(f_{2}\right), H\left(f_{3}\right), H\left(f_{4}\right)\right]$, where $H\left(f_{1}\right)=T\left(e_{1}\right) \otimes$ $L\left(e_{1}\right), H\left(f_{2}\right)=T\left(e_{1}\right) \otimes L\left(e_{2}\right), \ldots, H\left(f_{4}\right)=T\left(e_{2}\right) \otimes L\left(e_{2}\right)$. Now find the range of H and $\operatorname{Ker}(H)$. Assume Range $(H)=\operatorname{span}\{(3,7,2,1)\}$. Then $\left.\operatorname{Range}(T \otimes L)=\operatorname{span}\left\{3 e_{1} \otimes e_{2}+7 e_{1} \otimes e_{2}+2 e_{2} \otimes e_{1}+e_{2} \otimes e_{2}\right\}\right]$. Answer: We have

$$
H\left(f_{1}\right)=T\left(e_{1}\right) \otimes L\left(e_{1}\right)=(2,-1) \otimes(-1,1)=(-2,2,1,-1)
$$

$$
\begin{aligned}
& H\left(f_{2}\right)=T\left(e_{1}\right) \otimes L\left(e_{2}\right)=(2,-1) \otimes(1,-1)=(2,-2,-1,1) \\
& H\left(f_{1}\right)=T\left(e_{1}\right) \otimes L\left(e_{1}\right)=(4,-2) \otimes(-1,1)=(-4,4,2,-2) \\
& H\left(f_{1}\right)=T\left(e_{1}\right) \otimes L\left(e_{1}\right)=(4,-2) \otimes(1,-1)=(4,-4,-2,2)
\end{aligned}
$$

Therefore,

$$
M_{H}=\left[\begin{array}{cccc}
-2 & 2 & -4 & 4 \\
2 & -2 & 4 & -4 \\
1 & -1 & 2 & -2 \\
-1 & 1 & -2 & 2
\end{array}\right]
$$

To find $\operatorname{Ker}(H)$, we need to find the nullspace of M_{H}. Using Kill below, we get

$$
M_{H}=\left[\begin{array}{cccc}
1 & -1 & 2 & -2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Hence, $\operatorname{Ker}(H)=\operatorname{span}\{(1,1,0,0),(-2,0,1,0),(2,0,0,1)\}$. Therefore, $\operatorname{Ker}(T \otimes L)=\left\{e_{1} \otimes e_{1}+e_{1} \otimes e_{2},-2 e_{1} \otimes e_{1}+e_{2} \otimes e_{1}, 2 e_{1} \otimes e_{1}+e_{2} \otimes e_{2}\right\}$. We know that $\operatorname{dim}(\operatorname{Range}(H))=\operatorname{dim}\left(\mathbb{R}^{4}\right)-\operatorname{dim}(\operatorname{Ker}(T))=4-3=$ 1. Looking at the reduced matrix, we find that the first column of the original matrix spans the whole column space. Thus, $\operatorname{Range}(H)=$ $\operatorname{span}\{(-2,2,1,-1)\}$. Therefore,

$$
\operatorname{Range}(T \otimes L)=\left\{-2 e_{1} \otimes e_{1}+2 e_{1} \otimes e_{2}+e_{2} \otimes e_{1}-e_{2} \otimes e_{2}\right\}
$$

3. Let D be a subspace of a real inner product space V and assume $2 \leq$ $\operatorname{dim}(V)=n$. Then the orthogonal space of D is denoted by D^{\perp} and $D^{\perp}=$ $\{w \in V \mid<w, d>=0 \forall d \in D\}$. It is clear that if D has a basis $B=\left\{v_{1}, \ldots, v_{k}\right\}$, then $f \in D^{\perp}$ if and only if $<f, v_{i}>=0$ for every $1 \leq i \leq k$.
(i) Prove that $D \cap D^{\perp}=\left\{0_{V}\right\}$ [hint: Trivial, it should not exceed 2 lines] Answer: Suppose there is a nonzero vector f in $D \cap D^{\perp} \Rightarrow<f, d>=0$ for every $d \in D$ but since $f \in D \Rightarrow f=0_{V}$, Contradiction.
(ii) Prove that $D+D^{\perp}=V$ and $\operatorname{dim}\left(D+D^{\perp}\right)=\operatorname{dim}(D)+\operatorname{dim}\left(D^{\perp}\right)$ (recall that $H+F=\{h+f \mid h \in H, f \in F\}$)[hint: One way, assume $B=\left\{v_{1}, \ldots, v_{k}\right\}$ is an ORTHOGONAL basis for D. Then B
can be extended to a basis for V, how? choose v_{k+1} not in D, then $v_{k+1}, v_{1}, v_{2}, \ldots, v_{k}$ are independent, continue this process, choose v_{k+2} not in $\operatorname{span}\left\{v_{1}, \ldots ., v_{k}, v_{k+1}\right\}$, then $v_{k+2}, v_{k+1}, v_{1}, \ldots, v_{k}$ are independent. By continuing this process, we get a basis $K=\left\{v_{1}, \ldots, v_{k}, v_{k+1}, \ldots, v_{n}\right\}$ for V. Now for each $k+1 \leq i \leq n$, use the (modified) Gram-Schmidt process(i.e., just use the orthogonal basis of D, see(b) in Question 4) and form the elements w_{k+1}, \ldots, w_{n}, where $w i=v i-\left(\sum_{j=1}^{k} \frac{\left\langle v_{i}, v_{j}\right\rangle}{\left|v_{j}\right|^{2}} v_{j}\right)$. Note that each w_{i} is orthogonal to v_{j} for every $1 \leq j \leq k$. Then $W=\left\{v_{1}, . ., v_{k}, w_{k+1}, \ldots, w_{n}\right\}$ form a basis for V (note that since K is a basis for V, by construction, W is a basis for $V!!$). By construction, $D^{\perp}=\operatorname{span}\left\{w_{k+1}, \ldots, w_{n}\right\}$. Since $D \cap D^{\perp}=0_{v}$, it is clear $\operatorname{dim}\left(D+D^{\perp}\right)=\operatorname{dim}(D)+\operatorname{dim}\left(D^{\perp}\right)=n$. Thus $\left.V=D+D^{\perp}\right]$
Answer: We know that $D+D^{\perp} \subseteq V$. We show that $V \subseteq D+D^{\perp}$.
Let $v \in V$. Let $B=\left\{v_{1}, \ldots, v_{k}\right\}$ be an orthogonal basis for D. Define $x=\sum_{i=1}^{k} \frac{\left\langle v, v_{i}\right\rangle}{\left|v_{i}\right|^{2}} v_{i}$. Let $w=v-x \Rightarrow v=w+x$. We know that $x \in D$. We show that $w \in D^{\perp}$. Therefore, we need to show that $\left\langle w, v_{j}\right\rangle=0$ for every $v_{j} \in B$. We have

$$
\begin{gathered}
<w, v_{j}>=<v, v_{j}>-<x, v_{j}> \\
=<v, v_{j}>-\sum_{i=1}^{k} \frac{<v, v_{i}>}{\left|v_{i}\right|^{2}}<v_{i}, v_{j}> \\
=<v, v_{j}>-\frac{<v, v_{j}>}{\left|v_{j}^{2}\right|}<v_{j}, v_{j}> \\
=<v, v_{j}>-<v, v_{j}>=0
\end{gathered}
$$

Hence, $w \in D^{\perp} \Rightarrow v \in d+d^{\perp} \Rightarrow D+D^{\perp}=V$. Since $D \cap D^{\perp}=\left\{0_{v}\right\}$, $\operatorname{dim}\left(D+D^{\perp}\right)=\operatorname{dim}(D)+\operatorname{dim}\left(D^{\perp}\right)=n$.
(iii) We know that $\int_{0}^{1} f(x) d x$ is an inner product on P_{4}. Let $D=\operatorname{span}\left\{x^{2}, 1\right\}$. use the hint in (i) and find D^{\perp}.
Answer: $f \in D^{\perp}$ if and only if $<f, v_{i}>=0 \forall v_{i}$ in a the basis of D . We have

$$
\begin{gathered}
<f, x^{2}>=\int_{0}^{1} x^{2}\left(a x^{3}+b x^{2}+c x+d\right) d x=\frac{a}{6}+\frac{b}{5}+\frac{c}{4}+\frac{d}{3}=0 \\
<f, 1>=\int_{0}^{1}\left(a x^{3}+b x^{2}+c x+d\right) d x=\frac{a}{4}+\frac{b}{3}+\frac{c}{2}+d=0
\end{gathered}
$$

We obtain the system

$$
\left[\begin{array}{llll}
\frac{1}{6} & \frac{1}{5} & \frac{1}{4} & \frac{1}{3} \\
\frac{1}{4} & \frac{1}{3} & \frac{1}{2} & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Using kill below, we get

$$
\left[\begin{array}{cccc}
1 & 0 & -3 & -16 \\
0 & 1 & \frac{15}{4} & 15
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

We obtain a basis for the nullspace of the matrix $\left\{\left(3,-\frac{15}{4}, 1,0\right),(16,-15,0,1)\right\}$ Therefore, a basis for D^{\perp} is

$$
K=\left\{3 x^{3}-\frac{15}{4} x^{2}+x, 16 x^{3}-15 x^{2}+1\right\}
$$

No linear combination of the two polynomial in the basis gives a polynomial of the form $a x^{2}+b$. Therefore, $D \cap D^{\perp}=\left\{0_{P^{4}}\right\}$
(iv) (nice, no need for Gram schmidt Chm) Let

$$
D=\operatorname{span}\left\{Q_{1}=(1,0,0,1,0), Q_{2}=(0,1,1,1,0)\right\}
$$

. It is clear $\operatorname{dim}(D)=2$. Use the normal dot product on R5 and find D^{\perp}.[Hint: Matrix multiplication is a dot product of 2 vectors!. So construct the matrix $M, 2 \times 5$, i.e., $Q_{1}=$ first row, $Q 2=$ second row. Then find $\operatorname{Null}(M)$, i.e., the solution to the homogeneous system $M X=0$, then $D^{\perp}=\operatorname{span}\{$ basis of $\left.\operatorname{Null}(\mathrm{M})\}\right]$
Answer: Let $M=\left[\begin{array}{lllll}1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0\end{array}\right]$. Find $\operatorname{Null}(M)$. We find

$$
\{(0,-1,1,0,0),(-1,-1,0,1,0),(0,0,0,0,1)\}
$$

is a basis for $\operatorname{Null}(M)=D^{\perp}$. Therefore,

$$
D^{\perp}=\operatorname{span}\{(0,-1,1,0,0),(-1,-1,0,1,0),(0,0,0,0,1)\}
$$

(v) Use the "mimic dot product" on P_{5}. Let $D=\operatorname{span}\left\{x^{4}+x, x^{3}+x^{2}+x\right\}$. Find D^{\perp}. [hint: Translate to R5, use the normal dot product on \mathbb{R}^{5}. Stare at (iv), translate the answer of (iv) to P_{5}. Done] Answer: By translation and (iv), we have

$$
D^{\perp}=\operatorname{span}\left\{-x^{3}+x^{2},-x^{4}-x^{3}, 1\right\}
$$

4. (a) Let V be a normed vector space over \mathbb{R}. Prove that $\frac{\|x+y\|+\|x-y\|}{2} \leq$ $\|x\|+\|y\|$
Answer: We have

$$
\begin{gathered}
\|x+y\|+\|x-y\|=\|x+y-y+y\|+\|x-y+x-x\| \\
\leq\|x+y-y\|+\|y\|+\|x-y-x\|+\|x\|=2(\|x\|+\|y\|) \\
\quad \Rightarrow \frac{\|x+y\|+\|x-y\|}{2} \leq\|x\|+\|y\|
\end{gathered}
$$

(b) Let V be a real inner product vector space and v_{1}, \ldots, v_{k} be nonzero pairwise othogonal vectors (points) in V . Choose $Q \notin \operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}$ and let $h=Q-\left(\sum_{j=1}^{k} \frac{\left\langle Q, v_{j}>\right.}{\left|v_{j}\right|^{2}} v_{j}\right)$. Prove that h is orthogonal to every $v_{i}, 1 \leq i \leq k$. [Hint: Routine calculations using the definition of inner product]
Answer: We have

$$
\begin{gathered}
<h, v_{i}>=<Q-\left(\sum_{j=1}^{k} \frac{<Q, v_{j}>}{\left|v_{j}\right|^{2}} v_{j}\right), v_{i}> \\
=<Q, v_{i}>-<\Sigma_{j=1}^{k} \frac{<Q, v_{j}>}{\left|v_{j}\right|^{2}} v_{j}, v_{i}> \\
=<Q, v_{i}>-\sum_{j=1}^{k} \frac{<Q, v_{j}>}{\left|v_{j}\right|^{2}}<v_{j}, v_{i}> \\
=<Q, v_{i}>-\frac{<Q, v_{i}>}{\left|v_{i}\right|^{2}}<v_{i}, v_{i}> \\
=<Q, v_{i}>-<Q, v_{i}>=0
\end{gathered}
$$

Therefore, h is orthogonal to every v_{i} in the list.

(c) V be a real inner product vector space, and $D=\operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}$, such that $\operatorname{dim}(D)=k<\operatorname{dim}(V)$. Choose a point Q in $V-D$. Then the distance between Q and D is denoted by $d(Q, D)=\min \{\mid Q-d \| d \in D\}$. Question? how do we find $d \in D$ such that $|Q-d|$ is minimum. Answer: (the idea relies on what we learned in school that says: assume L is a line in the plane and Q is a point not on the line L. To find the distance between the point Q and L, we draw a perpendicular line, say H, from Q to the line L, then H intersects L in a point A. Hence A is on the line L and it is the nearest point to Q). Now, let $B=\left\{w_{1}, \ldots, w_{k}\right\}$ be an orthogonal basis of D. We know that $h=Q-\left(\sum_{j=1}^{k} \frac{\left\langle Q, w_{j}\right\rangle}{\left|w_{j}\right|^{2}} w_{j}\right)$ is orthogonal (perpendicular) to every w_{j}. Thus $d=\sum_{j=1}^{k} \frac{\left\langle Q, w_{j}>\right.}{\left|w_{j}\right|^{2}} w_{j} \in D$ is such point (vector) in D where $|Q-d|$ is minimum. Let $D=\operatorname{span}\left\{w_{1}=\right.$ $\left.(1,0,0,0,-4), w_{2}=(4,1,1,1,1)\right\}$. Then D is a subspace of \mathbb{R}^{5}. Given $Q=(2,2,2,2,0)$ is not in D. Find $d \in D$ such that $|Q-d|$ is minimum. Use the normal dot product on \mathbb{R}^{5}. [Hint: to minimize the calculation, w_{1}, w_{2} are already orthogonal.]
Answer:

$$
\begin{gathered}
d=\Sigma_{j=1}^{2} \frac{<Q, w_{j}>}{\left|w_{j}\right|^{2}} w_{j} \\
=\frac{<Q, w_{1}>}{\left|w_{1}\right|^{2}} w_{1}+\frac{<Q, w_{2}>}{\left|w_{2}\right|^{2}} w_{2} \\
=\frac{<(2,2,2,2,0),(1,0,0,0,-4)>}{17} w_{1}+\frac{<(2,2,2,2,0),(4,1,1,1,1)>}{20} w_{2} \\
=\frac{2}{17} w_{1}+\frac{14}{20} w_{2} \\
=\left(\frac{248}{85}, \frac{14}{20}, \frac{14}{20}, \frac{14}{20}, \frac{39}{170}\right)
\end{gathered}
$$

5. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation, $B=\{(5,1),(4,1)\}$ be a basis for \mathbb{R}^{2}, and $C=\{(1,0,1),(0,1,1),(0,-1,0)\}$ is a basis for \mathbb{R}^{3}, Given $T(5,1)=(-1,0,1)$ and $T(4,1)=(0,0,1)$.
(i) Find $[T]_{B, C}$.

Answer: $[T]_{B, C}=K^{-1} M^{\prime} Q^{-1}$, where

$$
K=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1 \\
1 & 1 & 0
\end{array}\right], M^{\prime}=\left[\begin{array}{cc}
-1 & 0 \\
0 & 0 \\
1 & 1
\end{array}\right], Q=\left[\begin{array}{ll}
5 & 4 \\
1 & 1
\end{array}\right]
$$

Therefore, $[T]_{B, C}=\left[\begin{array}{cc}-1 & 4 \\ 1 & -3 \\ 1 & -3\end{array}\right]$

(ii) Use (i) and find $T(7,8)$

Answer:

$$
\begin{aligned}
& {[T(7,8)]_{B, C}=\left[\begin{array}{cc}
-1 & 4 \\
1 & -3 \\
1 & -3
\end{array}\right]\left[\begin{array}{l}
7 \\
8
\end{array}\right]=\left[\begin{array}{c}
25 \\
-17 \\
-17
\end{array}\right]} \\
& \Rightarrow T(7,8)=25(1,0,1)-17(0,1,1)-17(0,-1,0)=(25,0,8)
\end{aligned}
$$

(iii) Find the standard matrix presentation of T Answer:

$$
M_{T}=M^{\prime} Q^{-1}=\left[\begin{array}{cc}
-1 & 4 \\
0 & 0 \\
0 & 4
\end{array}\right]
$$

(iv) Use (iii) and again find $T(7,8)$.

Answer:

$$
M_{T}=M^{\prime} Q^{-1}=\left[\begin{array}{cc}
-1 & 4 \\
0 & 0 \\
0 & 4
\end{array}\right]\left[\begin{array}{l}
7 \\
8
\end{array}\right]=\left[\begin{array}{c}
25 \\
0 \\
8
\end{array}\right]
$$

QUESTION 1. Let $A=\left[\begin{array}{ll}2 & 2 \\ 1 & 2\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & -2\end{array}\right]$.
(i) Find $A \otimes B$
$A \otimes B=\left(\begin{array}{ccc}2 B & 2 B \\ 1 B & 2 B\end{array}\right)=\left(\begin{array}{cccccc}2 & 2 & 2 & 2 & 2 & 2 \\ 0 & 4 & 2 & 0 & 4 & 2 \\ 0 & 0 & -4 & 0 & 0 & -4 \\ 1 & 1 & 1 & 2 & 2 & 2 \\ 0 & 2 & 1 & 0 & 4 & 2 \\ 0 & 0 & -2 & 0 & 0 & -4\end{array}\right)$
(ii) Find $|A \otimes B|$

$$
|A \otimes B|=|A|^{m}|B|^{n}, \quad n=2, \quad m=3
$$

$$
|A|=4-2=2
$$

$|B|=-4$

$|A \otimes B|=(2)^{3}(-4)^{2}=128$
(iii) Find $\operatorname{Trace}(A \otimes B)$
$\operatorname{Trace}(A \otimes B)=\operatorname{Trace}(A) \operatorname{Trace}(B)=(4)(1)=4$

QUESTION 2. (a) Let $T: V \rightarrow V, L: W \rightarrow W$ be R-homomorphisms such that α is an eigenvalue of T , and β is an eigenvalue L. Prove that $\alpha \beta$ is an eigenvalue of $T \otimes L$. [hint: note that $T \otimes L(v \otimes w)=T(v) \otimes L(w)]$
$T(v)=\alpha V \quad$ for some $V \in V$.
$L(\omega)=B \omega$ for some $\omega \in W$
for some v not $=0 _\mathrm{V}$
For some w not $=0 _\mathrm{W}$

$(T \otimes L)(v \otimes w)=T(v) \otimes L(w)=\alpha v \otimes \beta w=\alpha \beta(v \otimes w)$
(b) Let $T: R^{3} \rightarrow R^{3}, L: R^{4} \rightarrow R^{4}$ be R-homomorphisms such that $-3,-3,-7$ are the eigenvalues of T , and $4,1,2,3$ are the eigenvalues of L . If $E_{-3}(T)=\operatorname{span}\{(1,0,1),(-1,1,-1)\}$ and $E_{4}(L)=\operatorname{span}\{(1,0,1,0)\}$. In view of (a), find $E_{-12}(T \otimes L)$

I claim if $-3,-3,-6$ are the eigenvalues of T, then I cannot find $E_{-12}(T \otimes L)$ unless more information is provided, why?

$$
\begin{aligned}
& \left\{\mathrm{e} _1, \mathrm{e} _2, \mathrm{e} _3\right\} \text { standard basis of } \mathrm{R} \wedge 3,\left\{\mathrm{~b} _1, \mathrm{~b} _2,\right. \\
& \left.\mathrm{b} _3, \mathrm{~b} _4\right\} \text { standard basis of } \mathrm{R} \wedge 4
\end{aligned}
$$

$E_{-12}(T \otimes L)=\operatorname{span}\{(1,0,1,0,0,0,0,0,1,0,1,0),(-1,0,-1,0,1,0,1,0,-1,0,-1,0)\}$

If the eigenvalues are $-3,-3,6$ then we will have 2 possibilities for $E_{-12}(T \otimes L)$
as $-3 \times 4=.12$ and $2 x-6=-12$.
(c) Let $T: R^{2} \rightarrow R^{2}, L: R^{2} \rightarrow R^{2}$ be R-homomorphisms such that $T(a, b)=(2 a+4 b,-a-2 b)$ and $L(a, b)=(-a+b, a-b)$. Find a basis for Range $(T \otimes L)$ and a basis for $\operatorname{Ker}(T \otimes L)$. [Hint: let $\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$ be the standard basis of R^{4}, define the colinear $H: R^{4} \rightarrow R^{4}$ with the standard matrix presentation $M=$ $\left[H\left(f_{1}\right), H\left(f_{2}\right), H\left(f_{3}\right), H\left(f_{4}\right)\right]$, where $H\left(f_{1}\right)=T\left(e_{1}\right) \otimes L\left(e_{1}\right), H\left(f_{2}\right)=T\left(e_{1}\right) \otimes L\left(e_{2}\right), \ldots, H\left(f_{4}\right)=T\left(e_{2}\right) \otimes L\left(e_{2}\right)$. Now find the range of H and $\operatorname{Ker}(\mathrm{H})$. Assume Range $(H)=\operatorname{span}\{(3,7,2,1)\}$. Then Range $(T \otimes L)=\operatorname{span}\left\{3 e_{1} \otimes\right.$ $\left.\left.e_{2}+7 e_{1} \otimes e_{2}+2 e_{2} \otimes e_{1}+e_{2} \otimes e_{2}\right\}\right]$.
$T \otimes L: \mathbb{R}^{2} \otimes \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \otimes \mathbb{R}^{2}$
$T \otimes L:\left(a_{1}, a_{2}\right) \otimes\left(b_{1}, b_{2}\right) \rightarrow T\left(a_{1}, a_{2}\right) \otimes L\left(b_{1}, b_{2}\right)$
H is the collinear $H: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$

$$
\begin{array}{ll}
T\left(e_{1}\right)=T(1,0)=(2,-1) & L\left(e_{1}\right)=L(1,0)=(-1,1) \\
T\left(e_{2}\right)=T(0,1)=(4,-2) & L\left(e_{2}\right)=L(0,1)=(1,-1) \\
H\left(f_{1}\right)=T\left(e_{1}\right) \otimes L\left(e_{1}\right)=(2,-1) \otimes(-1,1)=(-2,2,1,-1) \\
H\left(f_{2}\right)=T\left(e_{1}\right) \otimes L\left(e_{2}\right)=(2,-1) \otimes(1,-1)=(2,-2,-1,1) \\
H\left(f_{3}\right)=T\left(e_{2}\right) \otimes L\left(e_{1}\right)=(4,-2) \otimes(-1,1)=(-4,4,2,-2) \\
H\left(f_{4}\right)=T\left(e_{2}\right) \otimes L\left(e_{2}\right)=(4,-2) \otimes(1,-1)=(4,-4,-2,2)
\end{array}
$$

$M_{H}=\left(\begin{array}{cccc}-2 & 2 & -4 & 4 \\ 2 & -2 & 4 & -4 \\ 1 & -1 & 2 & -2 \\ -1 & 1 & -2 & 2\end{array}\right) \sim\left(\begin{array}{cccc}1 & -1 & 2 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
$\operatorname{Range}(H)=\operatorname{Span}\{(1,-1,2,-2)\}$
$\operatorname{Range}(T \otimes L)=\operatorname{span}\left\{e_{1} \otimes e_{1}+-e_{1} \otimes e_{2}+2 e_{2} \otimes e_{1}+-2 e_{2} \otimes e_{2}\right\}$

To find the $\operatorname{Ker}(T \otimes L)$ we Solve $\left(\begin{array}{cccc:c}-2 & 2 & -4 & 4 & 0 \\ 2 & -2 & 4 & -4 & 0 \\ 1 & -1 & 2 & -2 & 0 \\ -1 & 1 & -2 & 2 & 0\end{array}\right)$
$\operatorname{Ker}(H)=\operatorname{span}\{(1,1,0,0),(-2,0,1,0),(2,0,0,1)\}$
$\operatorname{Ker}(T \otimes L)=\operatorname{span}\left\{e_{1} \otimes e_{1}+e_{1} \otimes e_{2},-2 e_{1} \otimes e_{1}+e_{2} \otimes e_{1}, 2 e_{1} \otimes e_{1}+e_{2} \otimes e_{2}\right\}$

QUESTION 3. Let D be a subspace of a real inner product space V and assume $2 \leq \operatorname{dim}(V)=n$. Then the orthogonal space of D is denoted by D^{\perp} and $D^{\perp}=\{w \in V \mid<w, d>=0$ for every $d \in D\}$. It is clear that if D has a basis $B=\left\{v_{1}, \ldots, v_{k}\right\}$, then $f \in D^{\perp}$ if and only if $<f, v_{i}>=0$ for every $1 \leq i \leq k$.
(i) Prove that $D \cap D^{\perp}=\left\{O_{V}\right\}$ [hint: Trivial, it should not exceed 2 lines]

$$
\text { assume } \exists v \neq O_{v} \in D \cap D^{\perp} \Rightarrow v \in D, v \in D^{\perp}
$$

By definition of $D^{\perp}\langle V, V\rangle=0 \Leftrightarrow V=O_{V}$!! contradiction.
(ii) Prove that $D+D^{\perp}=V$ and $\operatorname{dim}\left(D+D^{\perp}\right)=\operatorname{dim}(D)+\operatorname{dim}\left(D^{\perp}\right)$ (recall that $H+F=\{h+f \mid h \in H$ and $f \in F\}$)[hint: One way, assume $B=\left\{v_{1}, \ldots, v_{k}\right\}$ is an ORTHOGONAL basis for D. Then B can be extended to a basis for V , how? choose v_{k+1} not in D , then $v_{k+1}, v_{1}, v_{2}, \ldots, v_{k}$ are independent, continue this process, choose v_{k+2} not in $\operatorname{span}\left\{v_{1}, \ldots, v_{k}, v_{k+1}\right\}$, then $v_{k+2}, v_{k+1}, v_{1}, \ldots, v_{k}$ are independent. By continuing this process, we get a basis $K=\left\{v_{1}, \ldots, v_{k}, v_{k+1}, \ldots, v_{n}\right\}$ for V. Now for each $k+1 \leq i \leq n$, use the (modified) Gram-Schmidt process(i.e., just use the orthogonal basis of D, see (b) in Question 4) and form the elements w_{k+1}, \ldots, w_{n}, where $w_{i}=v_{i}-\left(\sum_{j=1}^{k} \frac{\left\langle v_{i}, v_{j}\right\rangle}{\left|v_{j}\right|^{2}} v_{j}\right)$. Note that each w_{i} is orthogonal to v_{j} for every $1 \leq j \leq k$. Then $W=\left\{v_{1}, . ., v_{k}, w_{k+1}, \ldots, w_{n}\right\}$ form a basis for V (note that since K is a basis for V , by construction, W is a basis for $V!!)$. By construction, $D^{\perp}=\operatorname{span}\left\{w_{k+1}, \ldots, w_{n}\right\}$. Since $D \cap D^{\perp}=\left\{o_{v}\right\}$, it is clear $\operatorname{dim}\left(D+D^{\perp}\right)=\operatorname{dim}(D)+\operatorname{dim}\left(D^{\perp}\right)=n$. Thus $\left.V=D+D^{\perp}\right]$

To prove $D+D^{\perp}=V$ we prove that $\forall v \in V, v=w+d$ st. $d \in D$ and $w \in D^{1}$.
$B=\left\{V_{1}, \ldots, v_{k}\right\}$ is orthogonal basis for D.
Take any $v \in V$. Then $v_{0}=v-\frac{\left\langle v_{1} v_{1}\right\rangle}{\left|v_{1}\right|^{2}} v_{1}-\frac{\left\langle v_{1} v_{2}\right\rangle}{\left|v_{2}\right|^{2}} v_{2}-\ldots-\frac{\left\langle v_{1} v_{k}\right\rangle}{\left|v_{k}\right|^{2}} V_{k}$ then v_{0} is orthogonal to v_{i} for $1 \leqslant i \leqslant k . \Rightarrow v_{0} \in D^{1}$

$$
\begin{array}{r}
V=V_{0}+\underbrace{\frac{\left\langle V_{1} V_{1}\right\rangle}{\left|V_{1}\right|^{2}}} \\
\Rightarrow V=D+D^{1}
\end{array}
$$

(this is a linear combination of the basis)

$$
\operatorname{dim}\left(D+D^{\perp}\right)=\operatorname{dim}(D)+\operatorname{dim}\left(D^{1}\right)-\operatorname{dim}\left(D \cap D^{1}\right)
$$

$$
\{O v\}
$$

$$
\operatorname{dim}\left(\left\{O_{v}\right\}\right)=0
$$

$$
\Rightarrow \operatorname{dim}\left(D+D^{\perp}\right)=\operatorname{dim}(D)+\operatorname{din}\left(D^{\perp}\right)
$$

(iii) We know that $\int_{0}^{1} f(x) d x$ is an inner product on P_{4}. Let $D=\operatorname{span}\left\{x^{2}, 1\right\}$. use the hint in (i) and find D^{\perp}.

Let $V_{1}=1$. Find the orthogonal projection of x^{2} over 1 . Translate to \mathbb{R}^{4}.

$$
\begin{aligned}
& \left|V_{1}\right|^{2}=\langle 1,1\rangle=\int_{0}^{1} 1 d x=1, \quad\left\langle x^{2} \cdot 1\right\rangle=\int_{0}^{1} x^{2} \cdot 1 d x=1 / 3 \\
& \quad V_{2}=x^{2}-\frac{\left\langle x^{2}, 1\right\rangle}{1} \cdot 1=x^{2}-1 / 3 \\
& \quad\left\langle 1, x^{2}-1 / 3\right\rangle=\int_{0}^{1} x^{2}-1 / 3 d x=\frac{x^{3}}{3}-1 /\left.3 x\right|_{0} ^{1}=0
\end{aligned}
$$

$\Rightarrow\left\{1, x^{2}-\frac{1}{3}\right\}$ is orthogonal basis of D.
Take $x^{3} \& \operatorname{Span}\left\{1, x^{2}-1 / 3\right\}$

$$
\begin{aligned}
\left\langle x^{3}, 1\right\rangle=1 / 4 & \left\langle x^{3}, x^{2}-1 / 3\right\rangle=1 / 12,\left\langle x^{2}-1 / 3, x^{2}-1 / 3\right\rangle=\frac{1 / 42}{45} \\
V_{3} & =x^{3}-\frac{1 / 4}{1} \cdot 1-\frac{1 / 45}{} \quad\left(x^{2}-1 / 3\right) \\
& =x^{3}-1 / 4-15 / 16 x^{2}+5 / 16=x^{3}-15 / 16 x^{2}+1 / 16
\end{aligned}
$$

we can cheek $\left\langle V_{1}, V_{3}\right\rangle=0$ and $\left\langle V_{2}, V_{3}\right\rangle=0$
Take $x \notin \operatorname{span}\left\{V_{1}, V_{2}, V_{3}\right\}$

$$
\begin{aligned}
& \langle x, 1\rangle=1 / 2,\left\langle x, v_{2}\right\rangle=1 / 12 \\
& v_{4}=x-\frac{1 / 2}{1} \cdot 1-\frac{1 / 12}{4 / 45}\left(x^{2}-1 / 3\right)=x-\frac{15}{16} x^{2}-3 / 16
\end{aligned}
$$

we can cheek $\left\langle V_{1}, V_{4}\right\rangle=0$ and $\left\langle V_{2}, V_{4}\right\rangle=0$

$$
D^{1}=\operatorname{span}\left\{x^{3}-15 / 16 x^{2}+1 / 16, x-\frac{15}{16} x^{2}-3 / 16\right\}
$$

you used the proof to do the calculation, and that is fine. See the solution by Jamila, simpler Calculations
(iv) (nice, no need for Gram schmidt Chm) Let $D=\operatorname{span}\left\{Q_{1}=(1,0,0,1,0), Q_{2}=(0,1,1,1,0)\right\}$. It is clear $\operatorname{dim}(\mathrm{D})=2$. Use the normal dot product on R^{5} and find D^{\perp}. [Hint: Matrix multiplication is a dot product of 2 vectors!. So construct the matrix $\mathrm{M}, 2 \times 5$, ie., $Q_{1}=$ first row, $Q_{2}=$ second row. Then find $\operatorname{Null}(\mathrm{M})$, i.e., the solution to the homogeneous system $M X=0$, then $D^{\perp}=\operatorname{span}\{b a s i s$ of $\left.\operatorname{Null}(M)\}\right]$
\qquad
\qquad
\qquad
\qquad

$$
M=\left(\begin{array}{lllll}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0
\end{array}\right)
$$

$$
\left(\begin{array}{llll:l}
1 & 0 & 0 & 1 & 0
\end{array} 0\right) \sim\left(\begin{array}{rrrrr:l}
1 & -1 & -1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0
\end{array}\right) \sim\left(\begin{array}{ll}
0 & 1
\end{array} 0: 0\right)
$$

$$
x_{2}=-x_{3}-x_{4}
$$

$$
x_{1}=-x_{4}
$$

x_{3}, x_{4}, x_{5} free variables

$$
\operatorname{Null}(M)=\operatorname{jpan}\{(0,-1,1,0,0),(-1,-1,0,1,0),(0,0,0,0,1)\}=D^{1}
$$

(v) Use the "mimic dot product" on P_{5}. Let $D=\operatorname{span}\left\{x^{4}+x, x^{3}+x^{2}+x\right\}$. Find D^{\perp}. [hint: Translate to R^{5}, use the normal dot product on R^{5}. Stare at (iv), translate the answer of (iv) to P_{5}. Done]

Translate D to $\mathbb{R}^{5}, \tilde{D}=\operatorname{span}\{(1,0,0,1,0),(0,1,1,1,0)\}$
\qquad
$\bar{D}^{\perp}=\operatorname{Null}(M)$ (M from the previous part)

$$
D^{1}=\operatorname{span}\{(0,-1,1,0,0),(-1,-1,0,1,0),(0,0,0,0,1)\}
$$

$$
D^{\perp}=\operatorname{span}\left\{-x^{3}+x^{2},-x^{4}-x^{3}+x, 1\right\}
$$

QUESTION 4. (a) Let V be a normed vector space over R. Prove that $\frac{\|x+y\|+\|x-y\|}{2} \leq\|x\|+\|y\|$.

$$
\frac{\|x+y\|+\|x-y\|}{2} \leqslant \frac{\|x\|}{2}+\frac{\|y\|}{2}+\frac{\|x\|}{2}+\frac{\|-y\|}{2}=\|x\|+\|y\|
$$

(b) Let V be a real inner product vector space and v_{1}, \ldots, v_{k} be nonzero pairwise othogonal vectors (points) in V. Choose $Q \notin \operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}$ and let $h=Q-\left(\sum_{j=1}^{k} \frac{\left\langle Q, v_{j}\right\rangle}{\left|v_{j}\right|^{2}} v_{j}\right)$. Prove that h is orthogonal to every v_{i}, $1 \leq i \leq k$. [Hint: Routine calculations using the definition of inner product]
choose any i. Show $\left\langle h, v_{i}\right\rangle=0$

$$
\left\langle h, v_{j}\right\rangle=\left\langle Q-\sum_{j=1}^{K} \frac{\left\langle Q \cdot v_{j}\right\rangle}{\left|v_{i}\right|^{2}} v_{j}, v_{i}\right\rangle
$$

$$
=\left\langle Q, v_{i}\right\rangle-\underbrace{\sum_{j=1}^{k} \frac{\left\langle Q \cdot v_{j}\right\rangle}{\left|v_{j}\right|^{2}}\left\langle v_{j}, v_{i}\right\rangle}_{\text {Nor } \text { for } j \neq i}
$$

$$
=\left\langle Q, v_{i}\right\rangle-\frac{\left\langle Q, v_{i}\right\rangle}{\left|v_{i}\right|^{2}}\left\langle v_{i}, V_{i}\right\rangle=0
$$

(c) V be a real inner product vector space, and $D=\operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}$, such that $\operatorname{dim}(D)=k<\operatorname{dim}(V)$. Choose a point Q in $V-D$. Then the distance between Q and D is denoted by $d(Q, D)=\min \{|Q-d| \mid d \in D\}$. Question? how do we find $d \in D$ such that $|Q-d|$ is minimum. Answer: (the idea relies on what we learned in school that says: assume L is a line in the plane and Q is a point not on the line L . To find the distance between the point Q and L , we draw a perpendicular line, say H , from Q to the line L , then H intersects L in a point A. Hence A is on the line L and it is the nearest point to Q$)$. Now, let $B=\left\{w_{1}, \ldots, w_{k}\right\}$ be an orthogonal basis of D. We know that $h=Q-\left(\sum_{j=1}^{k} \frac{\left\langle Q, w_{j}\right\rangle}{\left|w_{j}\right|^{2}} w_{j}\right)$ is orthogonal (perpendicular) to every w_{j}. Thus $d=\sum_{j=1}^{k} \frac{\left\langle Q, w_{j}\right\rangle}{\left|w_{j}\right|^{2}} w_{j} \in D$ is such point (vector) in D where $|Q-d|$ is minimum.

Let $D=\operatorname{span}\left\{w_{1}=(1,0,0,0,-4), w_{2}=(4,1,1,1,1)\right\}$. Then D is a subspace of R^{5}. Given $Q=(2,2,2,2,0)$ is not in D. Find $d \in D$ such that $|Q-d|$ is minimum. Use the normal dot product on R^{5}. [Hint: to minimize the calculation, w_{1}, w_{2} are already orthogonal.]

$$
\begin{aligned}
& d=\frac{\left\langle Q, w_{1}\right\rangle}{\left|w_{1}\right|^{2}} w_{1}+\frac{\left\langle Q, w_{2}\right\rangle}{\left|w_{2}\right|^{2}} w_{2} \\
& \left\langle Q, w_{1}\right\rangle=(2,2,2,2,0) \cdot(1,0,0,0,-4)=2 \\
& \left\langle Q, w_{2}\right\rangle=(2,2,2,2,0) \cdot(4,1,1,1,1)=8+2+2+2=14
\end{aligned}
$$

$$
\begin{aligned}
& \left|w_{1}\right|^{2}=(1)^{2}+(-4)^{2}=17 \\
& \left|w_{2}\right|^{2}=(4)^{2}+(1)^{2}+(1)^{2}+(1)^{2}+(1)^{2}=20 \\
& d=\frac{2}{17}(1,0,0,0,-4)+\frac{14}{20}(4,1,1,1,1) \\
& \quad=\left(\frac{248}{85}, \frac{7}{10}, \frac{7}{10} \cdot \frac{7}{10}, \frac{39}{170}\right)
\end{aligned}
$$

QUESTION 5. Let $T: R^{2} \rightarrow R^{3}$ be a linear transformation, $B=\{(5,1),(4,1)\}$ be a basis for R^{2}, and $C=$ $\{(1,0,1),(0,1,1),(0,-1,0)\}$ is a basis for R^{3}, Given $T(5,1)=(-1,0,1)$ and $T(4,1)=(0,0,1)$.
(i) Find $[T]_{B, C}$.

$$
\begin{array}{ll}
{[T]_{B, C}=C^{-1} M Q^{-1}} \\
M=\left(\begin{array}{cc}
-1 & 0 \\
0 & 0 \\
1 & 1
\end{array}\right), & Q=\left(\begin{array}{cc}
5 & 4 \\
1 & 1
\end{array}\right), Q^{-1}=\left(\begin{array}{cc}
1 & -4 \\
-1 & 5
\end{array}\right) \\
C=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1 \\
1 & 1 & 0
\end{array}\right), & C^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 0 & 1 \\
-1 & -1 & 1
\end{array}\right)
\end{array}
$$

$$
\begin{array}{r}
{[T]_{B_{1} C}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 0 & 1 \\
-1 & -1 & 1
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
0 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{c}
1 \\
3 \times 2 \\
-1
\end{array}\right.} \\
\begin{array}{l}
\text { call it } \mathrm{L} \\
\text { note } \mathrm{M}-\mathrm{T}=\mathrm{LQ} \wedge\{-1\}
\end{array}
\end{array}
$$

(ii) Use (i) and find $T(7,8)$

$$
\begin{aligned}
& {[T(7,8)]_{B, C}=\left(\begin{array}{cc}
-1 & 4 \\
1 & -3 \\
1 & -3
\end{array}\right)\binom{7}{8}=\left(\begin{array}{c}
25 \\
-17 \\
-17
\end{array}\right)} \\
& T(7,8)=25\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)-17\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)-17\left(\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right)=\left(\begin{array}{c}
25 \\
0 \\
8
\end{array}\right)
\end{aligned}
$$

(iii) Find the standard matrix presentation of T

$$
\begin{aligned}
& {[T(1,0)]_{B C}=\left(\begin{array}{cc}
-1 & 4 \\
1 & -3 \\
1 & -3
\end{array}\right)\binom{1}{0}=\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right)} \\
& T(1,0)=-1\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)+\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)+\left(\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right)=\left(\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right) \\
& {[T(0,1)]_{B_{1} C}=\left(\begin{array}{cc}
-1 & 4 \\
1 & -3 \\
1 & -3
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
4 \\
-3 \\
-3
\end{array}\right)}
\end{aligned}
$$

$$
T(0,1)=4\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)-3\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)-3\left(\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right)=\left(\begin{array}{l}
4 \\
0 \\
1
\end{array}\right)
$$

$$
\Rightarrow M_{T}=\left(\begin{array}{cc}
-1 & 4 \\
0 & 0 \\
0 & 1
\end{array}\right)
$$

(iv) Use (iii) and again find $T(7,8)$.

$$
\left.T(7,8)=M_{T} O\right)^{\prime}\binom{7}{8}=\left(\begin{array}{cc}
-1 & 4 \\
0 & 0 \\
0 & 1
\end{array}\right)\binom{1}{0}\left(\begin{array}{l}
7 \\
1 \\
8
\end{array}\right)=\left(\begin{array}{c}
25 \\
0 \\
8
\end{array}\right) \quad M
$$

Since $M_{-} T$ is the standard matrix, we have $T(7,8)=M_{-} T(7,8)^{\wedge} T=(25,0,8)$. NO NEED for $Q^{\wedge}\{-1\}!$!
note that $\mathrm{M} _\mathrm{T}=\mathrm{LQ} \wedge\{-1\}$, see above

