

Name: Djamila Ait ElhadiStudent ID: 00098182MTH512 Homework 212 March 2023Advanced Linear Algebra

1. Let W be a finite dimensional vector space over a field F such that $dim(W) = n \ge 2024$. Given $T, L: W \to W$ are F-homomorphisms such that

$$\dim(Range(T)) = n - 2023$$

and $(T \circ L)(w) = 0_w$ for every $w \in W$. Let d = dim(Range(L)). Find the maximum value of d, and explain briefly.

Answer: Since $(T \circ L)(w) = 0_w$ for every $w \in W$, $L(w) \in Ker(T) \forall w \in W$. Hence,

$$Range(L) \subseteq Ker(T)$$

We know that

dim(Range(T)) + dim(Ker(T)) = dim(W) = n

Therefore, the maximum value for d = dim(Range(L)) is going to be:

dim(Ker(T)) = dim(W) - dim(Range(T)) = n - (n - 2023) = 2023

Therefore, $d \leq 2023$.

- 2. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be an \mathbb{R} -homomorphism. Given 1, -1, 2 are the eigenvalues of T, such that $E_1(T) = span\{(5, 2, 1)\}, E_{-1}(T) = span\{(-5, -1, -1)\}, \text{ and}$ $E_2(T) = span\{(0, 0, 7)\}$. Let $L = T^2 + I$ (where I is the identity map). Then $L : \mathbb{R}^3 \to \mathbb{R}^3$ is an \mathbb{R} -Homomorphism.
 - (i) Find all eigenvalues of L.

We know that the eigenvalues a for $T^2 + I$ are given by $a = \alpha^2 + 1$ where α is an eigenvalue of T. Therefore, the eigenvalues of L are $a_1 = \sqrt{(1)^2 + 1} = 2$, $a_2 = (-1)^2 + 1 = 2$, and $a_3 = (2)^2 + 1 = 5$.

(ii) For each eigenvalue a of L, find $E_a(L)$.

Answer: The eigenvectors of T are also eigenvectors of L.

 $\langle \rangle$

- for a = 5, L((0, 0, 2)) = 5(0, 0, 2) = (0, 0, 1). $\Rightarrow E_5(L) = span\{(0, 0, 1)\}$ for a = 2, L((5, 2, 1)) = (10, 4, 2) and $L((-5, -1, -1)) = (-10, -1, -1) \Rightarrow$ $E_2(L) = span\{(5, 2, 1), (-5, -1, -1)\}.$
- (iii) Let $F = T^2 I : \mathbb{R}^3 \to \mathbb{R}^3$, then F is an \mathbb{R} -homomorphism. Find Ker(F)and Range(F) (nice question)[hint: Find $E_a(F)$ for each eigenvalue a of

F, then stare and scratch your head] Answer: We have:

$$a_1 = (1)^2 - 1 = 0, \ a_2 = (-1)^2 - 1 = 0, \ a_3 = (2)^2 - 1 = 3$$

for a = 3, $E_3(F) = span\{(0, 0, 1)\}$. for $\alpha = 0$, $E_0(F) = span\{(5, 2, 1), (-5, -1, -1)\}$. Notice that $E_0(F)$ does not intersect $E_3(F)$. Therefore, we have:

$$Ker(F) = Nul(M_T) = E_0(F) = span\{(5, 2, 1), (-5, -1, -1)\}$$

Since dim(Range(F)) + dim(ker(F)) = 3, dim(Range(F)) = 1. Due to \mathbb{R} -isomorphism, We have:

$$Range(F) = span\{(0,0,1)\}$$

Since the eigenspace is invariant under L.

3. Let $T: P2 \to P2$ such that T(ax+b) = (2a+3b)x+a+b, and $L: P2 \to P2$ such that L(ax+b) = (a+4b)x+a+3b. I claim that $(T \circ L)^{-1}: P2 \to P2$ exists and $(T \circ L)^{-1}(ax+b) = (\text{something})x+ (\text{something else})$. Find the something and the something else. [Hint: use the concept of co-linear and translation]

Answer: We know that $P_2 \simeq \mathbb{R}^2$. The co-linear transformation of T is $T': \mathbb{R}^2 \to \mathbb{R}^2$ such that T((a,b)) = (2a+3b, a+b) and the co-linear transformation of L is $L': \mathbb{R}^2 \to \mathbb{R}^2$ such that L((a,b)) = (a+4b, a+3b). Then, $M_{T'} = \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix}$ and $M_{L'} = \begin{bmatrix} 1 & 4 \\ 1 & 3 \end{bmatrix}$. We have

$$M_{T' \circ L'} = M_{T'} M_{L'} = \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 17 \\ 2 & 7 \end{bmatrix}$$
$$M_{(T' \circ L')^{-1}} = M^{-1} I_{T' \circ L'} = \begin{bmatrix} 7 & -17 \\ -2 & 5 \end{bmatrix}$$

Therefore, $(T' \circ L')^{-1} = (7a - 17b, -2a + 5b)$. Translating back, we get $(T \circ L)^{-1} = (7a - 17b)x - 2a + 5b$.

4. Let $T : \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 2}$ such that

$$T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{bmatrix} 2a+b+3d & 2b+c+d \\ 0 & 0 \end{bmatrix}$$

(i) For each eigenvalue a of T find $E_a(T)$. [Hint: use the concept of co-linear and translate **Answer:** We know that $\mathbb{R}^{2\times 2} \simeq \mathbb{R}^4$. The co-linear of T is $T' : \mathbb{R}^4 \to \mathbb{R}^4$ such that T'((a, b, c, d)) = (2a + b + 3d, 2b + c + d, 0, 0). The standard matrix representation of T' is $M_{T'} = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. For the eigenvalues: Find the roots of $C_{M_{T'}}(a) = det(aI_4 - M_{T'}) = a^2(a-2)^2$. The eigenvalues are $a_1 = 0$ and $a_2 = 2$. To find the eigenspace: For a = 2, we find the nullspace of $2I_4 - M_{T'} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix} \Rightarrow E_2(T') = span\{(1, 0, 0, 0)\} \Rightarrow$ $E_2(T) = span\{\begin{bmatrix} 1 & 0\\ 0 & 0 \end{bmatrix}\}.$ For a = 0, we find the nullspace of $0I_4 - M_{T'} = \begin{bmatrix} 0 & -2 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow$ $E_0(T') = span\{(1, 2, 4, 0), (7, 2, 0, 4)\} \Rightarrow E_0(T) = span\{\begin{bmatrix} 1 & 2 \\ 4 & 0 \end{bmatrix}, \begin{bmatrix} 7 & 2 \\ 0 & 4 \end{bmatrix}\}$ By staring, $\begin{bmatrix} 1 & 2 \\ 4 & 0 \end{bmatrix}$ and $\begin{bmatrix} 7 & 2 \\ 0 & 4 \end{bmatrix}$ solution (ii) Find Ker(T) [Hint: it should be copy-paste from (i)] **Answer:** $Ker(T) = E_0(T) = span\left\{ \begin{bmatrix} 1 & 2 \\ 4 & 0 \end{bmatrix}, \begin{bmatrix} 7 & 2 \\ 0 & 4 \end{bmatrix} \right\}$ Ok on wrong (iii) Consider the dual-operator T^* . Find a basis for $Range(T^*)$ and a basis for $Ker(T^*)$. [Hint: use the concept of co-linear and translate] **Answer:** To find the dual operator $T^* : (\mathbb{R}^{2 \times 2})^* \to (\mathbb{R}^{2 \times 2})^*$ we have $T^*(c_1e_1^* + c_2e_2^* + c_3e_3^* + c_4e_4^*) \sim \begin{vmatrix} 2 & 2 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 3 & 0 & 0 & 0 \end{vmatrix} \begin{vmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{vmatrix}$ $\sim (2c_1, c_1 + 2c_2, c_2, 3c_1 + c_2)$

$$\sim 2c_1(\overline{e}_1)^* + (c_1 + 2c_2)(\overline{e}_2)^* + c_2(\overline{e}_3)^* + (3c_1 + c_2)(\overline{e}_4)^*$$

Where $\{(\overline{e}_1)^*, (\overline{e}_2)^*, (\overline{e}_3)^*, (\overline{e}_4)^*\}$ is the standard ordered basis of $(R^{2\times 2})^*$.

$$Range(T^*) = span\{2(\overline{e}_1)^* + (\overline{e}_2)^* + 3(\overline{e}_4)^*, 2(\overline{e}_2)^* + (\overline{e}_3)^* + (\overline{e}_4)^*\}$$
$$Ker(T^*) = span\{e_3^*, e_4^*\}$$

By staring, the set $\{2(\overline{e}_1)^* + (\overline{e}_2)^* + 3(\overline{e}_4)^*, 2(\overline{e}_2)^* + (\overline{e}_3)^* + (\overline{e}_4)^*\}$ and the set $\{e_3^*, e_4^*\}$ are linearly independent sets. Therefore, a basis for $Range(T^*)$ is $\{2(\overline{e}_1)^* + (\overline{e}_2)^* + 3(\overline{e}_4)^*, 2(\overline{e}_2)^* + (\overline{e}_3)^* + (\overline{e}_4)^*\}$ and a basis for $Ker(T^*)$ is $\{e_3^*, e_4^*\}$.

5. Give me an example of a matrix A ∈ R^{2×2} such that A has no real eigenvalues, but all eigenvalues of A² are real numbers.
Answer: Let

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \Rightarrow A^2 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

A has no real eigenvalues as $C_A(\alpha) = \alpha^2 + 1$ has no real roots. However, A^2 has real eigenvalues as $C_{A^2}(\alpha) = (\alpha - 1)^2$ has one real root $\alpha = 1$.

