Name: Djamila Ait Elhadi
MTH512 Homework 212 March 2023 Advanced Linear Algebra

1. Let W be a finite dimensional vector space over a field F such that $\operatorname{dim}(W)=$ $n \geq 2024$. Given $T, L: W \rightarrow W$ are F-homomorphisms such that

$$
\operatorname{dim}(\operatorname{Range}(T))=n-2023
$$

and $(T \circ L)(w)=0_{w}$ for every $w \in W$. Let $d=\operatorname{dim}($ Range $(L))$. Find the maximum value of d, and explain briefly.
Answer: Since $(T \circ L)(w)=0_{w}$ for every $w \in W, L(w) \in \operatorname{Ker}(T) \forall w \in W$. Hence,

$$
\operatorname{Range}(L) \subseteq \operatorname{Ker}(T)
$$

We know that

$$
\operatorname{dim}(\operatorname{Range}(T))+\operatorname{dim}(\operatorname{Ker}(T))=\operatorname{dim}(W)=n
$$

Therefore, the maximum value for $d=\operatorname{dim}(\operatorname{Range}(L))$ is going to be:

$$
\operatorname{dim}(\operatorname{Ker}(T))=\operatorname{dim}(W)-\operatorname{dim}(\operatorname{Range}(T))=n-(n-2023)=2023
$$

Therefore, $d \leq 2023$.
2. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be an \mathbb{R}-homomorphism. Given $1,-1,2$ are the eigenvalues of T, such that $E_{1}(T)=\operatorname{span}\{(5,2,1)\}, E_{-1}(T)=\operatorname{span}\{(-5,-1,-1)\}$, and $E_{2}(T)=\operatorname{span}\{(0,0,7)\}$. Let $L=T^{2}+I$ (where I is the identity map). Then $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is an \mathbb{R}-Homomorphism.
(i) Find all eigenvalues of L.

We know that the eigenvalues a for $T^{2}+I$ are given by $a=\alpha^{2}+1$ where α is an eigenvalue of T. Therefore, the eigenvalues of L are $a_{1}=V$ $(1)^{2}+1=2, a_{2}=(-1)^{2}+1=2$, and $a_{3}=(2)^{2}+1=5$.
(ii) For each eigenvalue a of L, find $E_{a}(L)$.

Answer: The eigenvectors of T are also eigenvectors of L. for $a=5, L((0,0,2))=5(0,0,2)=(0,0,1) . \Rightarrow \mathrm{E}_{5}(L)=\operatorname{span}\{(0,0,1)\}$ for $a=2, L((5,2,1))=(10,4,2)$ and $L((-5,-1,-1))=(-10,-1,-1) \Rightarrow$ $E_{2}(L)=\operatorname{span}\{(5,2,1),(-5,-1,-1)\}$.
(iii) Let $F=T^{2}-I: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, then F is an \mathbb{R}-homomorphism. Find $\operatorname{Ker}(F)$ and Range (F) (nice question) [hint: Find $E_{a}(F)$ for each eigenvalue a of
F, then stare and scratch your head]
Answer: We have:

$$
a_{1}=(1)^{2}-1=0, a_{2}=(-1)^{2}-1=0, a_{3}=(2)^{2}-1=3
$$

for $a=3, E_{3}(F)=\operatorname{span}\{(0,0,1)\}$.
for $\alpha=0, E_{0}(F)=\operatorname{span}\{(5,2,1),(-5,-1,-1)\}$.
Notice that $E_{0}(F)$ does not intersect $E_{3}(F)$. Therefore, we have:

$$
\operatorname{Ker}(F)=\operatorname{Nul}\left(M_{T}\right)=E_{0}(F)=\operatorname{span}\{(5,2,1),(-5,-1,-1)\}
$$

Since $\operatorname{dim}(\operatorname{Range}(F))+\operatorname{dim}(\operatorname{ker}(F))=3, \operatorname{dim}(\operatorname{Range}(F))=1$. Due to \mathbb{R}-isomorphism, We have:

$$
\operatorname{Range}(F)=\operatorname{span}\{(0,0,1)\}
$$

Since the eigenspace is invariant under L.
3. Let $T: P 2 \rightarrow P 2$ such that $T(a x+b)=(2 a+3 b) x+a+b$, and $L: P 2 \rightarrow P 2$ such that $L(a x+b)=(a+4 b) x+a+3 b$. I claim that $(T \circ L)^{-1}: P 2 \rightarrow P 2$ exists and $(T \circ L)^{-1}(a x+b)=($ something $) x+$ (something else). Find the something and the something else. [Hint: use the concept of co-linear and translation]
Answer: We know that $P_{2} \simeq \mathbb{R}^{2}$. The co-linear transformation of T is $T^{\prime}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $T((a, b))=(2 a+3 b, a+b)$ and the co-linear transformation of L is $L^{\prime}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $L((a, b))=(a+4 b, a+3 b)$. Then, $M_{T^{\prime}}=\left[\begin{array}{ll}2 & 3 \\ 1 & 1\end{array}\right]$ and $M_{L^{\prime}}=\left[\begin{array}{ll}1 & 4 \\ 1 & 3\end{array}\right]$. We have

$$
\begin{gathered}
M_{T^{\prime} \circ L^{\prime}}=M_{T^{\prime}} M_{L^{\prime}}=\left[\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 4 \\
1 & 3
\end{array}\right]=\left[\begin{array}{cc}
5 & 17 \\
2 & 7
\end{array}\right] \\
M_{\left(T^{\prime} \circ L^{\prime}\right)^{-1}}=M^{-} 1_{T^{\prime} \circ L^{\prime}}=\left[\begin{array}{cc}
7 & -17 \\
-2 & 5
\end{array}\right]
\end{gathered}
$$

Therefore, $\left(T^{\prime} \circ L^{\prime}\right)^{-1}=(7 a-17 b,-2 a+5 b)$. Translating back, we get $(T \circ L)^{-1}=(7 a-17 b) x-2 a+5 b$.
4. Let $T: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{2 \times 2}$ such that

$$
T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{cc}
2 a+b+3 d & 2 b+c+d \\
0 & 0
\end{array}\right]
$$

(i) For each eigenvalue a of T find $E_{a}(T)$. [Hint: use the concept of co-linear and translate]
Answer: We know that $\mathbb{R}^{2 \times 2} \simeq \mathbb{R}^{4}$. The co-linear of T is $T^{\prime}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ such that $T^{\prime}((a, b, c, d))=(2 a+b+3 d, 2 b+c+d, 0,0$. The standard matrix representation of T^{\prime} is $M_{T^{\prime}}=\left[\begin{array}{llll}2 & 1 & 0 & 3 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$. For the eigenvalues: Find the roots of $C_{M_{T^{\prime}}}(a)=\operatorname{det}\left(a I_{4}-M_{T^{\prime}}\right)=a^{2}(a-2)^{2}$. The eigenvalues are $a_{1}=0$ and $a_{2}=2$. To find the eigenspace: For $a=2$, we find the nullspace of $2 I_{4}-M_{T^{\prime}}=\left[\begin{array}{llll}0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2\end{array}\right] \Rightarrow E_{2}\left(T^{\prime}\right)=\operatorname{span}\{(1,0,0,0)\} \Rightarrow$ $E_{2}(T)=\operatorname{span}\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\right\}$.

For $a=0$, we find the nullspace of $0 I_{4}-M_{T^{\prime}}=\left[\begin{array}{cccc}-2 & 1 & 0 & 3 \\ 0 & -2 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \Rightarrow$
$E_{0}\left(T^{\prime}\right)=\operatorname{span}\{(1,2,4,0),(7,2,0,4)\} \Rightarrow E_{0}(T)=\operatorname{span}\left[\begin{array}{cc}1 & 2 \\ 4 & 0\end{array}\right] \stackrel{\left[\begin{array}{c}7 \\ 0 \\ 0 \\ \text { calculation ? see } \\ \text { cal }\end{array}\right.}{\text {. }}$.
By staring, $\left[\begin{array}{ll}1 & 2 \\ 4 & 0\end{array}\right]$ and $\left[\begin{array}{ll}7 & 2 \\ 0 & 4\end{array}\right]$
(ii) Find $\operatorname{Ker}(T)$ [Hint: it should be copy-paste from (i)] Answer:

$$
\operatorname{Ker}(T)=E_{0}(T)=\operatorname{span}\left\{\left[\begin{array}{ll}
1 & 2 \\
4 & 0
\end{array}\right],\left[\begin{array}{ll}
7 & 2 \\
0 & 4
\end{array}\right]\right\}
$$

Ok on wrong
(iii) Consider the dual-operator T^{*}. Find a basis for Ranye $\left(T^{*}\right)$ and a basis for $\operatorname{Ker}\left(T^{*}\right)$. [Hint: use the concept of co-linear and translate] Answer: To find the dual operator $T^{*}:\left(\mathbb{R}^{2 \times 2}\right)^{*} \rightarrow\left(\mathbb{R}^{2 \times 2}\right)^{*}$ we have

$$
\begin{gathered}
T^{*}\left(c_{1} e_{1}^{*}+c_{2} e_{2}^{*}+c_{3} e_{3}^{*}+c_{4} e_{4}^{*}\right) \sim\left[\begin{array}{cccc}
2 & 2 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
3 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right] \\
\sim\left(2 c_{1}, c_{1}+2 c_{2}, c_{2}, 3 c_{1}+c_{2}\right)
\end{gathered}
$$

$$
\sim 2 c_{1}\left(\bar{e}_{1}\right)^{*}+\left(c_{1}+2 c_{2}\right)\left(\bar{e}_{2}\right)^{*}+c_{2}\left(\bar{e}_{3}\right)^{*}+\left(3 c_{1}+c_{2}\right)\left(\bar{e}_{4}\right)^{*}
$$

Where $\left\{\left(\bar{e}_{1}\right)^{*},\left(\bar{e}_{2}\right)^{*},\left(\bar{e}_{3}\right)^{*},\left(\bar{e}_{4}\right)^{*}\right\}$ is the standard ordered basis of $\left(R^{2 \times 2}\right)^{*}$.

$$
\begin{gathered}
\operatorname{Range}\left(T^{*}\right)=\operatorname{span}\left\{2\left(\bar{e}_{1}\right)^{*}+\left(\bar{e}_{2}\right)^{*}+3\left(\bar{e}_{4}\right)^{*}, 2\left(\bar{e}_{2}\right)^{*}+\left(\bar{e}_{3}\right)^{*}+\left(\bar{e}_{4}\right)^{*}\right\} \\
\operatorname{Ker}\left(T^{*}\right)=\operatorname{span}\left\{e_{3}^{*}, e_{4}^{*}\right\}
\end{gathered}
$$

By staring, the set $\left\{2\left(\bar{e}_{1}\right)^{*}+\left(\bar{e}_{2}\right)^{*}+3\left(\bar{e}_{4}\right)^{*}, 2\left(\bar{e}_{2}\right)^{*}+\left(\bar{e}_{3}\right)^{*}+\left(\bar{e}_{4}\right)^{*}\right\}$ and the set $\left\{e_{3}^{*}, e_{4}^{*}\right\}$ are linearly independent sets. Therefore, a basis for Range $\left(T^{*}\right)$ is $\left\{2\left(\bar{e}_{1}\right)^{*}+\left(\bar{e}_{2}\right)^{*}+3\left(\bar{e}_{4}\right)^{*}, 2\left(\bar{e}_{2}\right)^{*}+\left(\bar{e}_{3}\right)^{*}+\left(\bar{e}_{4}\right)^{*}\right\}$ and a basis for $\operatorname{Ker}\left(T^{*}\right)$ is $\left\{e_{3}^{*}, e_{4}^{*}\right\}$.

5 . Give me an example of a matrix $A \in \mathbb{R}^{2 \times 2}$ such that A has no real eigenvalues, but all eigenvalues of A^{2} are real numbers.
Answer: Let

$$
A=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \Rightarrow A^{2}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

A has no real eigenvalues as $C_{A}(\alpha)=\alpha^{2}+1$ has no real roots. However, A^{2} has real eigenvalues as $C_{A^{2}}(\alpha)=(\alpha-1)^{2}$ has one real root $\alpha=1$.

