MTH 532, Final Exam

Ayman Badawi

ALL RINGS ARE COMMUTATIVE with $1 \neq 0$

QUESTION 1. (i) Let M, N be two maximal ideals of R such that $N \cap M=\{0\}$.
$/$ a. Prove that R is ring-isomorphic to $F_{1} \times F_{2}$ for some fields F_{1} and F_{2}.
b. Let Q_{1}, Q_{2} be co-prime ideals of R that are not maximal ideals of R. Prove that $Q_{1} \cap Q_{2} \neq\{0\}$
/c. How many idempotent elements does R have?
QUESTION 2. (i) Convince me that $f(y)=y^{3}+2 y+2$ is irreducible in $Z_{3}[y]$.
(ii) Find the smallest m so that $f(y)$ has all its roots in $G F\left(3^{m}\right)$.
(iii) Convince me that $f(y)=y^{2}+3$ is irreducible in $Z_{5}[y]$. Then $f(y)$ has all its roots in $Z_{5}[x] /\left(x^{2}+3\right)$.
Find all the roots of $f(y)$.

QUESTION 3. (a) Assume that $[E: Q]=15$. Let $f(x)$ be a monic irreducible polynomial in $Q[x]$ that has a root in E. What are the possibilities of $\operatorname{deg}(f(x))$?
$\chi(\mathrm{b})$ Assume that $[E: Q]=6$ and E is a Galois extension of Q. Assume that $f(x) \in Q[x]$ is monic irreducible in $Q[x]$ and $f(a)=0$ for some $a \in E$. Can we conclude that E is the splitting field of $f(x)$? explain. If your answer is no, then let F be the splitting field of of $f(x)$. Find $[F: Q]$.
(c) We know $E=Q(\sqrt{2}, \sqrt{7})$ is a Galois extension of Q. Find $A u t_{Q}(E)$. Find all subfields of E. Find all subgroups of $A u t_{Q}(E)$.
(d) Let E be the splititing field of $x^{50}-1$. Find $[E: Q]$. How many subfields does E have?

QUESTION 4. Let D be a group such that $|D|=7^{2} \times 1$. Up to isomorphism, find all such groups.

$$
11^{2}
$$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

Question 1: It M, N be two maximal icleds of R st. $\bar{N} \cap M=\{0\}^{2}$ a] Prove that R is ring is onorithic to $F_{1} \times F_{2}$ for some fields F_{1} and F_{2} Proof foist, notice that M, N are corrine.
circe M is maximal then $M+a h=R \quad \forall a \in R I M$ comply N is, then N_{+}aR $=R \quad \forall a \in R(N$ let $a \in N \backslash M$ then $M_{+a} R=R$.. Hence M, Mare caprine Noil, by the dinasceremainder thru... $R / M A N \quad R / N \times f / M$

$$
\begin{aligned}
& R / M N=R / 20 \approx F / N \times R / M \approx F_{1} \times F_{2} \\
& R \approx \text { dells sine } M \text {, } N
\end{aligned}
$$

and by class result $R / M, F / N$ ardelle since M, N ce marimalidials
-bf let $Q_{1}, a_{2} b$ caprine ideals off, both it moxiond ideals of R Prove that $Q_{1} \cap Q_{2} \neq 101$

a contradiction circe Q_{1}, Q_{2} are ntanarinual
(1). How many idenpotent elemerts does K have?

$$
R \simeq F / M \times R / N=F_{1} \times F_{2}
$$

in fields the only iden.potat ela ents ase 1,0

$$
\operatorname{se}(1,0),(0,1),(0,0),(1,1)
$$

are idempotentrs

(Cuestion 2: $)$ (onvince mie that $\psi(y)=a^{3}+2 y+2$ is irreduable in $z_{3}[y]$

$$
\begin{aligned}
& f(1)=1+2+2=2 \neq 0 \text { in } z_{3} \\
& f(2)=2^{3}+4+2=2 \neq 0 \text { in } z_{3} \\
& (0)=\lambda \neq 0 \text { in } z_{3}
\end{aligned}
$$

thens by Howrentt oflgls irred ualle.
9. Find the snallest in so that $\psi(y)$ has all its nots in $G F\left(3^{n}\right)$ sirce $f(g)$ is ireduable ofdegree 3 over $z_{3}[x]$
Hen $\frac{z_{3}[x]}{(f(y))} \approx F$, such that F is a finter $G F F_{3}$
of $f(y)$ thus $n=3)_{3} 4$ is ireduable in $z_{5}(y)$
3)

$$
\begin{aligned}
& \text { k we tit }=1+3 \neq 0 \text { in } z_{5} \\
& f(1)=4+3=2 \neq 0 \text { in } z_{5} \\
& f(2)=4 \neq 0 \text { in } \\
& f(3)=1+3=2=16=0 \text { in } z_{5} \\
& y(4)=16+3=4 \neq 0 \text { in } \\
& y(0)=3 \neq
\end{aligned}
$$

$$
\begin{aligned}
& \text { |hos all its rots } \\
& \frac{z_{5}[x)}{\left(x^{2}+3\right)} \approx G F\left(s^{2}\right)=\left\{a+b x+\left(x^{2}\right)\right.
\end{aligned}
$$

- let $y \in G F\left(5^{2}\right)$ by Hy lis ineduchle in $z_{5}[y$ Hhen y^{5} is the ecind root

$$
\begin{aligned}
& \left.a+b x+\left(a^{2}+3\right)\right) a, b+z_{5}{ }^{2} \\
& w\left\{(y)=y^{2}+3 \in\left(x^{2}+3\right)\right. \\
& \}
\end{aligned}
$$

Question 3:

1. Assure that $[E: Q]=15$ let $f(x i)$ be a manic irreducible polynomial in $Q[x]$ fit hos a coot in E what are the poscribities of $\operatorname{dog}(f(x))$?
lat $a \in E(a$ and $b \sin Q)$.
then $Q \leq Q(a) \leq E$
$\operatorname{Now}[E: Q]=[E: Q(a)][Q(a): Q]=15$
let an be $\operatorname{deg}(f(x))$ the m 115

$$
\rho m=1,3,5 \& 15
$$

2) Assume tr $[E: Q]=6$ and E is a galois extension $C[x]$ of Q. Assure that of $(11) \in Q(x)$ is monica made that E is and $f(a)=O$ for sac a $\in E_{1}$, we concha sion the cutting field of fur)?

Women ne $6=3 \times 2$

$$
\begin{aligned}
& \text { Hing field el fou): } \\
& {[E: Q]=6=\mid \text { Ant (E) } \theta=1}
\end{aligned}
$$

Hover fores with alberto

$$
\operatorname{st} \phi(n)=6
$$

so we con conclude that E is the splitting fill of sine irreducible of order to so E has to be a spiting reid cine it is a balois

$$
\begin{aligned}
& \begin{array}{r}
E=Q(\alpha) \quad \text { wise } \quad \alpha=C \\
\phi_{n}(n)=\pi\left(n-\alpha^{k}\right) \in Q[x] \\
\{\text { index that } E \text { is }
\end{array}
\end{aligned}
$$

C. we know $E=Q(\sqrt{2}, \sqrt{7})$ is a balois extensin of Q

Find Aute (E). Find all cobfields of E

$$
\begin{aligned}
& \text { Find all subaroups of Aut } Q(E) \text {. } \\
& {[E: Q]=[Q(\sqrt{2}, \sqrt{7}): Q(\sqrt{2})][Q(\sqrt{2}): Q]=4} \\
& \text { thas } \mid \text { Anct }_{Q}(F) \mid=4 \text { and Act }(E) \approx z_{2} \times z_{2} \text { (ablion } \text { groul)? } \\
& \text { Aut }(E)=G_{4} \quad z_{1} \times z_{2} \\
& E=Q(\sqrt{2}, \sqrt{7})
\end{aligned}
$$

$d(14)$

$$
\theta(\sqrt{7})
$$

$\left.\operatorname{Aut}\left(\frac{E}{14}\right) \quad \begin{array}{c}\operatorname{At}(E) \\ Q(\sqrt{7}) \\ \\ \\ \\ \operatorname{Aut}(E)\end{array}\right)$
$\operatorname{Aut}_{Q}(E)=$

$$
\begin{aligned}
& \operatorname{Aut}_{Q}(E)= \\
& \operatorname{Aut}_{Q(\sqrt{2})}(E)=\left\{\begin{array}{l}
\because:, E \\
f_{(\sqrt{2})}=\sqrt{2} \\
f(\sqrt{7})=-\sqrt{7}
\end{array}\right. \\
& , E, E
\end{aligned}
$$

$$
\operatorname{Aut}_{Q(\sqrt{14})}(E)=\left\{\begin{array}{l}
: E \rightarrow E \\
f(\sqrt{2})=-\sqrt{2} \\
y(\sqrt{7})=-\sqrt{2}
\end{array}\right.
$$

$\operatorname{Aut}_{Q(\sqrt{7})}(B)=\left\{\begin{array}{l}f: \begin{array}{l}E=F \\ y(\sqrt{7})=\sqrt{7} \\ f(\sqrt{2})=-\sqrt{2}\end{array}\end{array}\right.$
d). Let $E b c$ the splitting field of $x^{20}-1$

Find $[E: Q]$. How mory cubbjelds does E have?

$$
\begin{aligned}
\text { mory cubfields does E have } \\
\begin{aligned}
\therefore E: E]=\phi(50) & =(2-1)^{1-1} \times(5-1) 5^{2-1} \\
& =4.5=20
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \varphi[E: Q]=20 \quad \phi(50){ }_{2}^{2}
\end{aligned}
$$

so. $E=A(\alpha)$ whace $\alpha=e^{\frac{2 \pi i i}{50}}$
$\operatorname{Aut}_{\theta}(E) \approx \cup\left(Z_{50}\right)$
andrince $50=25^{2}$. than $U\left(z_{50}\right)$ is cyelic
thus is Aut (E) which ingli:es foo evsey factor of 20
Pat (E) Hus a rabgroul, i.l Goder $1,2,4,5,10,20$ each cirgorond dixes a prigue subjield in E. \& E hus 6 surfetas.

Question 4: let D be a group such that $101=7 \times 13^{-}$ up to istaror firm. Find al such groups.

$$
\begin{aligned}
& |\operatorname{sy}(7)|=z^{q} \quad a_{7} \mid 11^{2} \text { and } z_{7}=1(\operatorname{\operatorname {mod}7)} \text {. } \\
& \text { so } n_{7}=1 \\
& \mid \operatorname{syj}^{\prime}\left(h_{1} \mid=11^{2} \quad \eta_{11} 1^{2} \text { and } n_{A 1}=1(\bmod 11)=1\right. \\
& H=\operatorname{sy}\left(11^{\prime} \cdot \Delta D\right) \Delta D
\end{aligned}
$$

$$
\begin{aligned}
& \text { and }|H K|=13^{2} \times 7^{2}=|1|
\end{aligned}
$$

then 1) $\approx H \times K$
(y) (-1) and $\left(y \mid(13)\right.$ or fate groups with f^{2} elects. Hue ore both abelion. 0° Dis alelion (product of two alimony)
then 1) $\left(z_{7} \times z_{7}\right) \times\left(z_{11} \times z_{11}\right.$
(1) $z_{7} \times\left(z_{7} \times z_{12}\right)$
(1) $\underset{\sim}{z_{49}} \times z_{11} \times z_{11}$
D) $\approx \mathcal{F}_{99 \times 121}$
ylic

