Department of Mathematics and Statistics American University of Sharjah
 Final Exam - Fall 2017
 MTH 320 - Abstract Algebra I

Date: Saturday, December 16, 2017

Student Name	St
Instructor Name	Class Time
Dr. Ayman Badawi	M, W : 12:30-13:45

1. Do not open this exam until you are told to begin.
2. No questions are allowed during the examination.
3. This exam has 2pages + this cover exam page.
4. Do not separate the pages of the exam.
5. Scientific calculators are allowed.
6. Turn off all cell phones and remove all headphones.
7. Take off your cap.
8. No communication of any kind is allowed during the examination
9. If you are found wearing a smart watch or holding a mobile phone at any point during the exam then it will be considered an academic violation and will be reported to the dean's office.

Student signature: \qquad

Final Exam: Abstract Algebra, MTH 320,Fall 2017

Ayman Badawi

Score $=$

QUESTION 1. (i) Let $D=Z_{4} \times Z_{3}$. Then $H=\{0\} \times Z_{3}$ is a subgroup of D. Find all left cosets of H. The abelian group D / H is isomorphic to a well-known group F. What is F ?
(ii) Give me an example of an infinite NON-ABELIAN group say D such that D has a simple normal subgroup H $(H \neq\{e\}$ and $H \neq D)$ where D / H is abelien but not cyclic
(iii) Give me an example of a group say $(D, *)$ such that D has two elements a, b where $|a|=|b|=\infty$, but $|a * b|=13$

QUESTION 2. Let D be an abelien group with $3^{2} \cdot 13^{2}$ such that D has EXACTLY one subgroups with 13 elements. Up to isomorphism, find all possible structures of D.

QUESTION 3. Let D be an abelian group with $5 \cdot 7^{2}$ elements. Up to isomorphism, find all possible structures of D.

QUESTION 4.

Let $F:(Z,+) \rightarrow\left(\Re^{*},.\right)$ be a nontrivial group homomorphism. Given $\operatorname{Ker}(F) \neq\{0\}$. Find Range (F) and $\operatorname{Ker}(\mathrm{F})$. What is $F(12)$? What is $F(7)$?

QUESTION 5. Write $D=Z_{4} \times Z_{6} \times Z_{14}$ in terms of its invariant factors.

QUESTION 6. Assume H is a subgroup of $(D, *)$, where $H \neq D$. Assume that $D \backslash H$ is a finite set. Note that $D \backslash H=\{x \in D \mid x \notin H\}$. Prove that D is a finite group.

QUESTION 7. Consider the group $\left(S_{15}, o\right)$. Prove that S_{15} has a subgroup with 56 elements. Let M be a cyclic a subgroup of S_{15} of maximal order, say m (i.e., the order of every cyclic subgroup of S_{15} is less or equal to m). Find m.

Faculty information

